
EXAMPLES OF RICCI LIMIT SPACES WITH

NON-INTEGER HAUSDORFF DIMENSION

JIAYIN PAN AND GUOFANG WEI

Abstract. We give the first examples of collapsing Ricci limit spaces on which

the Hausdorff dimension of the singular set exceeds that of the regular set;
moreover, the Hausdorff dimension of these spaces can be non-integers. This

answers a question of Cheeger-Colding [4, Page 15] about collapsing Ricci limit

spaces.

Recall that for any sequence of complete n-dimensional Riemannian manifolds
(Mi, pi) with Ricci curvature uniformly bounded from below, there is always a
subsequence Gromov-Hausdorff converging to a metric space (X, p). X is called
a Ricci limit space. The regularity theory of Ricci limit spaces has been studied
extensively by Cheeger, Colding, and Naber. A point x ∈ X is called k-regular if
every tangent cone at x is isometric to Rk, where k is an integer; otherwise, it is
called singular. By the work of Cheeger-Colding [3, 5] and Colding-Naber [6], X
has a unique integer k ∈ [0, n] such that Rk has full measure and X is k-rectifiable
with respect to any limit measure of X, where Rk is the set of k-regular points of
X. This integer k is called the rectifiable dimension of X.

When the sequence is non-collapsing vol(B1(pi)) ≥ v > 0, the limit space X
has rectifiable dimension n, which is also the Hausdorff dimension of X; moreover,
the singular set has Hausdorff dimension at most n − 2 [3]. When the sequence is
collapsing vol(B1(pi)) → 0, as pointed out in [4, Page 15], an important question
is whether the Hausdorff dimension of the singular set could exceed that of the
regular set (also see the discussion in [3, Page 408]). Equivalently, one can ask
if the rectifiable dimension of X equals the Hausdorff dimension of X [11, Open
Problem 3.2]. In this paper, we give answers to these open questions by providing
examples of Ricci limit spaces on which the Hausdorff dimension of the singular
set is larger than that of the regular set; therefore, the Hausdorff dimension of
these examples is larger than their rectifiable dimension. Moreover, their Hausdorff
dimension can be non-integers.

The example is an asymptotic cone of an open manifold N of positive Ricci
curvature. Recall that an asymptotic cone (Y, y) of N is the Gromov-Hausdorff
limit of a sequence (r−1i N, x), where ri → ∞ and x ∈ N . In general, (Y, y) may
depend on the choice of ri and thus may not be unique.

Theorem A. Given any β > 0, for n sufficiently large (depending on β), there
is an open n-manifold N with Ric > 0, such that any asymptotic cone (Y, y) of N
satisfies the followings:
(1) Y = S ∪R2, where S is the singular set and R2 is the set of 2-regular points;
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(2) S has Hausdorff dimension 1 + β.
When β > 1, Y has Hausdorff dimension 1+β, larger than its rectifiable dimension.

By [5], the above R2 has Hausdorff dimension 2 and Y has rectifiable dimension
2. Thus for β > 1, the Hausdorff dimension of S is larger than that of the regular
set; also, Y has Hausdorff dimension 1 + β, which is not an integer when β 6∈ N.
Note that with respect to any limit measure, the regular set always has full measure
[3]. Our examples show that for a collapsing Ricci limit space, its limit measure and
any dimensional Hausdorff measure may not be mutually absolutely continuous.

We point out that Y is non-polar at y; see Remark 1.5. The non-polarity of
(Y, y) is consistent with [4, Theorem 1.38]: if any iterated tangent cone of Y at y
is polar, then the Hausdorff dimension of Y is an integer. The first examples of
non-polar asymptotic cones are constructed by Menguy [10].

We can also use the examples in Theorem A to construct compact Ricci limit
spaces with non-integer Hausdorff dimension; see Remark 1.8.

Our examples are indeed closely related to some known examples [12, 1, 15].
Nabonnand showed that for suitable functions f(r) and h(r), the doubly warped
product [0,∞) ×f S2 ×h S1 has positive Ricci curvature [12]. Our construction
starts with a doubly warped product M = [0,∞) ×f Sp−1 ×h S1, where warping
functions f(r), h(r) are the ones in [15] and h(r) has decay rate r−β ; then we take
the Riemannian universal cover N of M as our example in Theorem A.

One key feature of the universal cover N with π1(M,p)-action is that, d(γlp̃, p̃)

is comparable to l
1

1+β , where p ∈ M at r = 0, p̃ ∈ N is a lift of p, and γ is a
generator of π1(M,p) ∼= Z. With this, after passing to the asymptotic cone (Y, y),
the limit orbit at y has Hausdorff dimension 1 + β (see Section 1.3).

We would like to thank Jeff Cheeger, Aaron Naber, and the anonymous referees
for very helpful comments.

1. The examples and their geometry

1.1. Riemannian metric on M . On [0,∞)× Sp−1 × S1, where p ≥ 2, we define
a doubly warped product metric as

g = dr2 + f(r)2ds2p−1 + h(r)2ds21,

where ds2k is the standard metric on the unit sphere Sk. At r = 0, we require that

f(0) = 0, f ′(0) = 1, f ′′(0) = 0, h(0) > 0, h′(0) = 0.

Then (M, g) is a Riemannian manifold diffeomorpic to Rp × S1.
Let H = ∂/∂r, U a unit vector tangent to Sp−1, and V a unit vector tangent to

S1. The metric has Ricci curvature

Ric(H,H) = −h
′′

h
− (p− 1)

f ′′

f
,

Ric(U,U) = −f
′′

f
+
p− 2

f2
[
1− (f ′)2

]
− f ′h′

fh
,

Ric(V, V ) = −h
′′

h
− (p− 1)

f ′h′

fh
.

We use

f(r) = r(1 + r2)−1/4, h(r) = (1 + r2)−α,
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where α > 0 [15]. On (0,∞), f and h satisfy

f ′ > 0, 1− (f ′)2 > 0, f ′′ < 0, h′ < 0.

Then Ric(U,U) > 0 always holds. Also,

Ric(H,H) >
r2

(1 + r2)2

[
p− 1

4
− (2α+ 4α2)

]
Ric(V, V ) >

αr2

(1 + r2)2
[p− (3 + 4α)]

When integer p ≥ max{4α+ 3, 16α2 + 8α+ 1}, (M, g) has positive Ricci curvature.
From now on, we denote this open Riemannian manifold as (M, gα).

1.2. Distance estimate on Riemannian universal cover N . Let (M, gα) as
constructed above and let (N, g̃α) be the Riemannian universal cover of (M, gα).
Let S1(r) be a copy of S1 in M at distance r; it has length

L(r) = 2π(1 + r2)−α.

As the length of S1(r) decreases a lot, one expects that the length of minimal
geodesics representing γl grows much smaller than l, for γ representing S1 at r = 0.
Namely,

Lemma 1.1. Let p ∈M be a point with r = 0 and let γ be a generator of π1(M,p) ∼=
Z. Then for all positive integers l ≥ 91+

1
2α ,

C · l
1

1+2α − 2 ≤ d(γlp̃, p̃) ≤ 9 · l
1

1+2α ,

where C = 2 · 9− 1
2α and p̃ ∈ N is a lift of p.

Proof. Let cl be the minimal geodesic loop based at p that represents γl ∈ π1(M,p).
We estimate the length of cl.

Upper bound: We consider a loop σl at p constructed as follows. First it moves
along a ray from p to distance rl, where rl to be determined later; then it goes
around S1(rl) circle l times; then it moves back to p along the ray. Then

d(γlp̃, p̃) = length(cl) ≤ length(σl) ≤ 2rl + l · L(rl).

We choose rl = l
1

1+2α . Then

d(γlp̃, p̃) ≤ (2 + 2π) · l
1

1+2α .

Lower bound: Let Rl > 0 be the size of cl, that is, the smallest number so that
cl is contained in the closed ball BRl(p). Since h(r) is decreasing in r, we have

l · L(Rl) ≤ length(cl) ≤ 9 · l
1

1+2α .

This yields

Rl ≥ 9−
1
2α l

1
1+2α − 1.

The desired lower bound follows from d(γlp̃, p̃) ≥ 2Rl. �

On the other hand, we show that for s large and suitable l, length of cl at r = s
is still comparable to l · L(s).
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Lemma 1.2. Given any ε ∈ (0, 1), s > 0, let l be any integer between 1
2εs(1 + s2)α

and εs(1 + s2)α (which always exists when s is large). We denote cl the minimal
geodesic loop based at q representing γl ∈ π1(M, q), where q ∈ M satisfies r = s
and γ is a generator of π1(M, q) ∼= Z. Then
(1) ε · Cs ≤ length(cl) ≤ ε · 2πs, where C > 0 only depends on α.

(2) limε→0

(
lim sups→∞

size(cl)

length(cl)

)
= 0, where size(cl) is the smallest number so

that cl is contained in Bdl(q).

Proof. (1) It is clear that

length(cl) ≤ l · 2π(1 + s2)−α ≤ ε · 2πs.
Let dl be the size of cl. Clearly, dl has a rough upper bound

dl ≤
1

2
length(cl) ≤ ε · πs.

Then

length(cl) ≥ l · 2π(1 + (s+ dl)
2)−α

≥ επs
(

1 + s2

1 + (s+ επs)2

)α
≥ επs ·

(
1

1 + επ

)2α

≥ π

(1 + π)2α
εs.

(2) To find a better estimate for dl, we consider a bounded cylinder

W = [0, s+ dl]× S1(s+ dl)

with product metric. The map

F : Bs+dl(p)→W, (r, u, v) 7→ (r, v)

is distance non-increasing, where (r, u, v) corresponds to the coordinate [0,∞) ×f
Sp−1 ×h S1 and Bs+dl(p) is endowed with intrinsic metric. It is clear that F (cl) is
contained in [s, s+ dl]× S1(s+ dl). Note that the loop F (cl) has winding number
l and touches both boundaries {s} × S1(s+ dl) and {s+ dl} × S1(s+ dl). Thus

length(cl) ≥ length(F (cl)) ≥ 2
[
d2l + l2π2(1 + (s+ dl)

2)−2α
]1/2

.

It follows from the upper bound of length(cl) that

4d2l + 4π2l2(1 + (s+ dl)
2)−2α ≤ 4π2l2(1 + s2)−2α,

d2l
s2
≤ ε2π2

[
1−

(
1 + s2

1 + (s+ dl)2

)2α
]
.

For any sequence si →∞ and a sequence of integers li between 1
2εsi(1 + s2i )

α and

εsi(1 + s2i )
α such that lim

i→∞
dli/si = δ ∈ [0, επ], then

δ2 ≤ ε2π2

[
1− 1

(1 + δ)4α

]
.

Thus as ε→ 0, we see that δ/ε→ 0. Together with (1), we conclude that

lim
i→∞

size(cli)

length(cli)
≤ lim
i→∞

dli
Cεsi

=
δ

Cε
→ 0, as ε→ 0.

This proves (2). �
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1.3. Structure of asymptotic cones of N . To better understand the structure
of asymptotic cones of N , we will take the isometric Γ-action on N into account,
where Γ = π1(M,p). We use the notion of pointed equivariant Gromov-Hausdorff
convergence introduced by Fukaya (see [8] and [9, Section 3] for reference). Let
ri → ∞, passing to a subsequence if necessary, we have the following equivariant
Gromov-Hausdorff convergence

(r−1i N, p̃,Γ)
GH−−−−→ (Y, y,G)yπ yπ

(r−1i M,p)
GH−−−−→ (X,x).

One should view the limit orbit G · z̃ as the limit of Γ · q̃i, where z̃ ∈ Y and q̃i ∈ N
such that

(r−1i N, p̃, q̃i)
GH−→ (Y, y, z̃).

Also by [8, Theorem 2.1] (also see [9, Lemma 3.4]), (X,x) is isometric to the quotient
space (Y/G, ȳ), where ȳ is the image of y under the quotient map.

The first author observed that the limit orbit Gy is not geodesic in Y [13]. Here,
we give more detailed description of (Y, y,G) and prove Theorem A.

From the warping functions f and h, we see that (X,x) is a half-line [0,∞) with
x = 0. Since Y/G is isometric to X = [0,∞), we can view Y as attaching the
limit orbit π−1(z) to each z ∈ [0,∞). By construction of M , the limit orbit Gz̃
is homeomorphic to R for any z̃ ∈ Y . Thus Y is homeomorphic to R × [0,∞);
y = (0, 0) and R× {z} corresponds to the orbit π−1(z), where z ∈ [0,∞). Because
the limit orbit Gy is noncompact and connected, we can choose γ∞ ∈ G such that
d(γ∞y, y) = 1. We label the point γ∞y as (1, 0) ∈ R× [0,∞) = Y . Let li →∞ be
a sequence of integers such that

(r−1i N, p̃, γli)
GH−→ (Y, y, γ∞).

Then for any rational number b = m/k,

(r−1i N, p̃, γbblic)
GH−→ (Y, y, g)

with g satisfying gk = γm∞. We label the point gy as (b, 0). By Lemma 1.1, there
are constants C1, C2 > 0, only depending on α such that

C1|b|
1

1+2α ≤ lim
i→∞

r−1i d(γbblicp̃, p̃) ≤ C2|b|
1

1+2α .

Therefore, we can define a coordinate (b, 0), where b ∈ R, for any point in Gy.
Moreover, the coordinate satisfies

d((b1 − b2, 0), (0, 0)) = d((b1, 0), (b2, 0))

for all b1, b2 ∈ R. This proves the estimate below.

Lemma 1.3. The distance on Gy = R× {0} satisfies

C1 · |b1 − b2|
1

1+2α ≤ d((b1, 0), (b2, 0)) ≤ C2 · |b1 − b2|
1

1+2α

for all b1, b2 ∈ R, where C1, C2 > 0 only depend on α.

Proof of Theorem A. Let α = β/2. Let (M, gα) be the open manifold with Ric > 0
constructed in Section 1.1 and let (N, g̃α) be its Riemannian universal cover.
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(1) First note that y is singular. In fact, let (Y ′, y′) be a tangent cone of Y at
y. By a standard diagonal argument, (Y ′, y′) is an asymptotic cone of N ; in other
words, we can find si →∞ such that

(s−1i N, p̃,Γ)
GH−→ (Y ′, y′, G′).

The orbit G′y′ satisfies the distance estimate in Lemma 1.3. Therefore, (Y ′, y′) is
not isometric to any Rk.

Next we apply Lemma 1.2 to show that any point outside Gy is 2-regular. Let
z ∈ X \ {x} and let z̃ ∈ Y be a lift of z such that d(z̃, y) = d(z, x). Since any point
outside Gy is some gz̃, it suffices to show that z̃ is 2-regular.

We choose a sequence of points q̃i such that d(p̃, q̃i) = rit, where t = d(z, x), and

(r−1i N, p̃, q̃i)
GH−→ (Y, y, z̃).

We write si = rit. Let ε ∈ (0, 1) and let li →∞ be a sequence of integers between
1
2εsi(1 + s2i )

α and εsi(1 + s2i )
α. By Lemma 1.2(1),

(r−1i N, q̃i, γ
li)

GH−→ (Y, z̃, g)

with Cεt ≤ d(gz̃, z̃) ≤ εt, where C ∈ (0, 1) only depends on α. Let σi be a minimal
geodesic from q̃i to γli q̃i. After blowing down, σi converges to a minimal geodesic
σ from z̃ to gz̃. Let m be the midpoint of σ and let hz̃ ∈ Gz̃ be a closest point
in the orbit to m. We write δ = d(m,hz̃). Then τ := h−1σ is a segment whose
midpoint has distance δ to z̃. By our construction,

δ

ε
≤ t · d(m,Gz̃)

d(gz̃, z̃)
≤ t · lim sup

i→∞

size(cli)

length(cli)

Now we change ε. To emphasize the dependence on ε, we will write τε and δε
instead of τ and δ, respectively. By Lemma 1.2(2), the minimal geodesics τε satisfy
(i) length(τε) ∈ [Cεt, εt];
(ii) midpoint of τε has distance δε to z̃, where δε/ε→ 0 as ε→ 0.
Together with Cheeger-Colding splitting theorem [2], we see that any tangent cone
at z̃ is isometric to R2, with a direction coming from the lifting of R as the tangent
cone of X at z, and the other direction coming from the limit of τεj for some εj → 0.

(2) This follows directly from the distance estimate in Lemma 1.3. In fact, we
consider the maps

φ : (Gy, d)→ (R, d0), (b, 0) 7→ b,

ψ : (R, d0)→ (Gy, d), b 7→ (b, 0),

where d0 is the Euclidean distance on R. By Lemma 1.3, the maps φ and ψ are
Hölder continuous with exponent 1 + 2α and 1/(1 + 2α), respectively. Thus

dimH(R, d0) ≤ 1

1 + 2α
dimH(Gy, d),

dimH(Gy, d) ≤ (1 + 2α) dimH(R, d0).

We conclude that Gy has Hausdorff dimension 1 + 2α. �

We end our paper with some remarks related to our examples.

Remark 1.4. One can also derive that every point z 6∈ Gy is regular from the
regularity theory. If z is singular, then any point in Gz is also singular; this would
contradict the path-connectedness of the regular set [6].
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Remark 1.5. For any asymptotic cone (Y, y) of (N, p̃), Y is non-polar at y. In fact,
we consider a minimal geodesic σ from y to a point gy 6= y. We claim that σ cannot
be extended further across gy as a minimal geodesic. Suppose that we can extend
σ to σ. First note that the extended part is not contained in Gy; otherwise, it
would have infinite length by Lemma 1.3. Thus the minimal geodesic σ contains
two regular points with a singular point gy in between; this would contradict the
Hölder continuity of tangent cones [6, 7].

Remark 1.6. If the warping function h has logarithm decay ln−α(r) or it decays
to a positive number c > 0, then (Y, y), the corresponding asymptotic cone of the
universal cover, splits isometrically as R× [0,∞); see [13].

Remark 1.7. We suspect that the structure of fundamental group π1(M) is related
to the structure of singular set of Y : if π1(M) contains a torsion-free nilpotent
subgroup of class ≥ 2, is it true that for some asymptotic cone (Y, y,G) of the
universal cover (N, p̃, π1(M,p)), its orbit Gy must be non-rectifiable? The first
author proved that for such a fundamental group, in some (Y, y,G) there is a
geodesic connecting two points in Gy but definite away from Gy; see [13, 14].

Remark 1.8. We can construct a compact Ricci limit space with same feature as
in Theorem A as follows. Let β = 2α, (M, gα), and (N, g̃α) as constructed before.
For a sequence ri →∞, we choose γi = γli ∈ Γ, where li →∞, so that

(r−1i N, p̃, γli ,Γ)
GH−→ (Y, y, γ∞, G),

where γ∞ ∈ G with d(γ∞y, y) = 1. Let (Mi, p̄i) = (N, p̃)/〈γi〉. Then

(r−1i Mi, p̄i)
GH−→ (Y/Z, ȳ),

where Z = 〈γ∞〉 is a discrete subgroup of G and the limit space Y/Z has Hausdorff
dimension 1 + β when β > 1.

Next, we glue two copies of a bounded region in r−1i Mi along the boundary

to obtain a compact Ricci limit space. Let Ki = π−1i (Bri(p)) ⊆ Mi, where πi :

Mi →M is the covering map. The principal eigenvalues of the second fundamental

form of ∂Br(p) are f ′(r)
f(r) ,

h′(r)
h(r) , which decay like r−1 as r → ∞. Thus the second

fundamental forms of r−1i (∂Ki) are uniformly bounded. Now one can extending
the boundary of Ki with definite length to have totally geodesic boundary, then
we can double it to have closed manifolds with Ricci curvature uniformly bounded
from below and diameter uniformly bounded from above. The Hausdorff dimension
of its Gromov-Hausdorff limit is also 1 + β when β > 1.
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