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Abstract We give a survey on authors’ resent works on the geometry and

topology of manifolds with Ricci curvature lower bounds or Ricci limit spaces.

The topics include the Busemann functions and fundamental groups on com-

plete manifolds with nonnegative Ricci curvature, as well as the Hausdorff

dimension and local topology of Ricci limit spaces.
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1. Busemann function of manifolds with nonnegative Ricci

curvature

1.1 Busemann function

Let Mn be a complete noncompact manifold. For any p ∈ M , there exists a unit

speed ray γ(t) : [0,+∞) → M , i.e. d(γ(t), γ(s)) = |t− s| for all t, s ∈ [0,∞). The

Busemann function associated to γ is a renormalized distance function to infinity

along γ, which plays an important in the study of noncompact manifolds.
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Definition 1. The Busemann function associated to a ray γ is a function bγ :

M → R defined by

bγ(x) = lim
t→∞

(
t− d(x, γ(t)

)
.

Note that the sequence is monotone and bounded so the limit exists.

Remark 2. • bγ is Lipschitz with Lipschitz constant 1.

• Along γ, bγ(γ(t)) = t is linear in t.

Example 3. Let M = Rn with the usual Euclidean metric. Then all rays are of

the form γ(t) = γ(0) + tγ′(t), and bγ(x) = ⟨x− γ(0), γ′(0)⟩.

Theorem 4 (Cheeger-Gromoll, 71’, 72’).

• [8] If the sectional curvature KM ≥ 0, then Hess bγ ≥ 0.

• [7] If the Ricci curvature RicM ≥ 0, then ∆bγ ≥ 0.

(both in barrier sense)

Remark 5. 1. The first result plays an important role in the proof of Soul’s

theorem, while the second one leads to the splitting theorem.

2. By Laplacian comparison we have ∆r ≤ ∆Rn r̄ = n−1
r . So intuitively, ∆

(
t−

d(x, γ(t))
)
≥ − n−1

d(x,γ(t)) → 0 as t → ∞.

Definition 6 (Busemann function of a point). bp(x) := supγ bγ(x), where the

supremum is taken among all rays γ starting from p.

When Mn is polar with pole at p, then bp(x) = d(p, x). Still bp(x) is convex

when KM ≥ 0, and subharmonic when RicM ≥ 0 in barrier sense.

The convexity of bp implies bp(x) is proper. In fact, it implies that the sublevel

set b−1
p (−∞, a] = ∩γb

−1
γ (−∞, a] is compact.

Question 7 (Open problem since 70’s). Is bp proper when RicM ≥ 0?

It has been shown that the answer is yes in many special cases:

• When M is polar with pole at p, we have bp(x) = d(p, x), proper.

• If limr→∞ sup
diam

(
∂B(p,r)

)
r = ϵ < 1, then limx→∞ inf

bp(x)
d(p,x) ≥ 1 − ϵ > 0,

which implies bp is proper.



Spaces with Ricci curvature lower bounds 25

• Shen, 1996 [25]: When Mn has Euclidean volume growth, bp is proper.

• Sormani 1998 [26]: When Mn has linear volume growth, i.e.,

Cr ≤ volB(x, r) ≤ C ′r, then bp is proper.

In Section 1.3, we will see that the answer in general is negative.

1.2 Nabonnand’s example of manifolds with positive Ricci curvature

We first recall Nabonnand’s example [15], which is the first example of a man-

ifold with positive Ricci curvature and infinite fundamental group π1.

Example 8. Let M = Rk × S1 equipped with the doubly warped metric

[0,∞)×f Sk−1 ×h S1, g = dr2 + f2(r) ds2k−1 + h2(r) ds21

with f(0) = 0, f ′(0) = 1, f ′′(0) = 0, h(0) > 0, h′(0) = 0. Denote H = ∂
∂r , u a unit

vector tangent to Sk−1, and v a unit vector tangent to S1. Then one can compute

Ric(H,H) = −(k − 1)
f ′′

f
− h′′

h
(1.1)

Ric(u, u) = −f ′′

f
− k − 2

f2

(
1− (f ′)2

)
− f ′h′

fh
(1.2)

Ric(v, v) = −h′′

h
− (k − 1)

f ′h′

fh
. (1.3)

When 0 < f ′ < 1, f ′′ < 0, h′ < 0, and k ≥ 2, it is easy to see that Ric(u, u) > 0.

Choose h = f ′, then Ric(v, v) = Ric(H,H). Let f be the solution of the ODE:f ′ = (1− φ(f))
1
2

f(0) = 0,

where φ(x) =
√
3

π

∫ x

0
arctanu3

u2 du. Here we choose an explicit φ, there are many other

choices of φ for the construction. As
∫∞
0

arctanu3

u2 du = π√
3
, we have 0 < φ(x) < 1

for x ∈ (0,∞). Note that h → 0 and h ∼ r−1/3, f ∼ r2/3 as r → +∞.

Then one computes that Ric(H,H) > 0 when k ≥ 3.

Same construction works for Rk×Mq, whereM has nonnegative Ricci curvature

by modifying with h = (f ′)1/q [1].
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Example 9. In [33] the second-named author constructed a metric with positive

Ricci curvature on Rk × N , where N is a nilmanifold and k is large, as warped

products

[0,∞)×f Sk−1 × (N, gr), g = dr2 + f2(r) ds2k−1 + gr.

This is the first example of manifolds with positive Ricci curvature with nilpotent

fundamental group. See [2, 3] for more constructions along the line.

1.3 Example of manifolds with positive Ricci curvature and non-proper

Busemann function

Theorem 10. [22][Pan-Wei 2022] Given any integer n ≥ 4, there is an open

n-manifold with positive Ricci curvature and a non-proper Busemann function.

Proof. First we study the geodesics in Nabonnand’s example. Note that for each

x ∈ Sk−1, the subset

C(x) = {(r,±x, v)|r ≥ 0, v ∈ S1}

is a totally geodesic and geodesically complete submanifold in M . Given any fixed

point p at r = 0 in M , there are three types of geodesics starting at p:

(i) moving purely in Rk, that is, γ(t) = (t, x, y), where x ∈ Sk−1 and y ∈ S1

are independent of t.

(ii) moving purely in the S1 direction, that is, γ(t) = (0, x, c(t)), where x ∈ Sk−1

and c(t) goes around the circle.

(iii) a mixture of both, that is, γ(t) = (r(t), x, y(t)), where x ∈ Sk−1.

In case (i), the geodesic is a ray and in case (ii), the geodesic is a closed circle.

In case (iii), by Clairaut’s relation h(r(t)) · (cos θ(t)) = const = cos θ(0), where θ(t)

is the angle between γ and the parallel circle at γ(t). Since h goes to zero as r

increases and cos θ is bounded, the geodesic stays in a bounded region and crosses

{r = 0} transversely infinite many times.

On the universal cover M̃ ofM , a geodesic γ̃ starting at p̃ is a ray precisely when

the projection π(γ̃) is case (i). This is because in cases (ii) and (iii), the geodesics

are bounded in M , then they cannot lift to rays. Otherwise, the π1-action would

give a line in M̃ , contradicting Ric > 0.

Let g be a generator of π1(M,p) = Z. We claim bp̃(g
lp̃) = 0 for all l ∈ Z. Since

the orbit at p̃ is noncompact as Z = ⟨g⟩ is an infinite group, bp̃ is not proper.
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To show the claim, we prove that bγ̃(g
lp̃) = 0 for any ray γ̃ at p̃. Note that we

have shown that γ̃ must be the the lift of a geodesic described in case (i). Now

bγ̃(g
lp̃) = lim

t→∞
(t− d(γ̃(t), glp̃)).

Let α̃ be a minimal geodesic connecting γ̃(t) and glp̃, then

d(γ̃(t), glp̃) =l(α̃) = length of the shortest curve in the homotopy class

≤t+ l · 2πh(t).

Covering map is distance non-increasing, hence

d(γ̃(t), glp̃) ≥ d(γ(t), p) = t.

Therefore

−2πl · h(t) ≤ t− d(γ̃(t), glp̃) ≤ 0.

Since h(t) → 0 as t → ∞, we have bγ̃(g
lp̃) = 0 and proved the claim.

Question 11. What about n = 3?

Bruè-Naber-Semola [4] recently gave examples of manifolds Mn with nonnega-

tive Ricci curvature and π1 not finitely generated for n ≥ 7.

Question 12. Is the properness of the Busemann function related to the finitely

generation of the π1?

2. Hausdorff dimension of Ricci limit spaces

2.1 Hausdorff dimension

Recall that the Hausdorff measure is an outer measure on subsets of a general

metric space (X, d).

Definition 13 (Hausdorff Measure). Let 0 ≤ α < ∞ and 0 < δ < ∞. Let A ⊂ X.

Define an outer measure

Hα
δ (A) := ωα · inf

{ ∞∑
i=1

(
diamCi

2

)α ∣∣∣∣∣A ⊂
∞⋃
i=1

Ci, with diamCi ≤ δ for all i ∈ N

}
,

the infimum is taken over all countable covers of A.

The α-dimensional Hausdorff measure of A ⊂ X is the outer measure

Hα(A) := lim
δ→0

Hα
δ (A).
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Definition 14. The quantity

dimH(A) := inf{0 ≤ s < ∞ | Hs(A) = 0} = inf{0 ≤ s < ∞ | Hs(A) ̸= ∞}

is called the Hausdorff dimension of A.

Example 15. Let α ≥ 1 and let (R, dα) be defined by

dα(t1, t2) = |t1 − t2|1/α.

One can see that dimH(R, dα) = α.

If (Mn
i , pi, µi)

mGH→ (Y, p, µ) and each Mi has Ric ≥ −(n − 1)H, where µi =

vol(·)/vol(B(pi, 1)) is the renormalized measure on Mi, then under the limit renor-

malized limit measure µ we have r1 ≥ r2 implying

µ(B(y, r1))

µ(B(y, r2))
≥ v(n,H, r1)

v(n,H, r2)
, (1.4)

where v(n,H, r) means the volume of an r-ball in the n-dimensional space form

with constant curvature H. This relative volume comparison implies the following.

Proposition 16. [6] Any such space Y has dimH(Y ) ≤ n.

Let (Mn
i , gi, pi) be a sequence of Riemannian manifolds with RicMi

≥ (n−1)H

and Mn
i

GH→ Y . Recall that Y is called a non-collapsed limit if

vol(B(pi, 1)) ≥ v > 0,

and collapsed if

vol(B(pi, 1)) → 0.

Let µ be a renormalized measure on Y . We have the following result

Proposition 17. [6] If Y is a non-collapsed limit, then µ = cHn for some constant

c > 0 and dimH(Y ) = n.

If Y is a collapsed limit, then dimH(Y ) ≤ n − 1. In particular, the Hausdorff

dimension of Y cannot be between n and n− 1.

2.2 Rectifiable dimension of Ricci limit spaces

Definition 18 (tangent cone at a point). Let (X, d) be a metric space. Let p ∈ X.

We take the pGH limit of (X, p, λnd) where λn → ∞. If such a limit exists, then

it is called a tangent cone of X at p.
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Remark 19. Note that the limit may depend on the choice of sequence λn, i.e.

tangent cones may not be unique. If it is unique, we denote the tangent cone at p

as Cp(X). The intuition is that we are zooming in the space at p.

Definition 20 (asymptotic cone). Let (X, d) be a (non-compact) metric space.

Let p ∈ X. We take the pGH limit of (X, p, λnd) where λn → 0. If such a limit

exists, then it is called a asymptotic cone of X.

Remark 21. The asymptotic cone does not depend on p ∈ X, but may depend on

λn.The intuition is that we are zooming out the space, looking from somewhere far

away. Asymptotic cone is especially useful when study spaces with Ric ≥ 0.

Definition 22 (Regular and singular points). A point p ∈ X is called a regular

point if the tangent cone at p exists, and is unique and isometric to Rk for some

integer k. We denote R = {p ∈ X|p is regular}, the collection of all regular points

in X, S = X \ R, the set of singular points.

Remark 23. In general, different regular points in X may have different k. For

example, consider a suitable CW complex.

Denote the k-regular set,

Rk = {y ∈ Y | Cy(Y ) is unique and isometric to Rk}.

We have the following general result for Ricci limit space Y by Colding-Naber.

Theorem 24. [9] There exists a unique integer k, 0 ≤ k ≤ n such that Rk has

full µ-measure for any limit renormalized measure µ, i.e., µ(Y \ Rk) = 0.

This k is called the rectifiable dimension or essential dimension. In general, k

is not equal to the Hausdorff dimension of Y , see Section 2.3 below. However, in

the non-collapsed case, we indeed have [6]

k = dimH(Y ) = dim(Mi).

In general dimH Rk = k.

2.3 Examples of Ricci limit space with Hausdorff dimension different

from the rectifiable dimension

Consider the doubly warped product

M = [0,∞)×f Sk−1 ×h S1, g = dr2 + f2(r) ds2k−1 + h2(r) ds21
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again as in Section 1.2, but with warping functions as in [33]. Namely, let f(r) =

r(1 + r2)−
1
4 ∼

√
r and h(r) = (1 + r2)−α ∼ r−2α, where α > 0.

From the curvature formulas (1.1)-(1.3) one can check that Ric > 0 if k ≥
max{4α+ 3, 16α2 + 8α+ 1}.

Let M̃ be its universal cover, which is diffeomorphic to Rk+1. We denote the

asymptotic cone, singular set, regular set of M̃ by Y,S,R2, respectively.

Theorem 25. [21] [Pan-Wei, 2022]

1. Y = [0,+∞)× R, S = {0} × R, R2 = (0,+∞)× R

2. dimH(S) = 1 + 2α, dimH(R2) = 2

Theorem 26 ( [10]). Y is the metric completion of an incomplete Riemannian

metric gY = dr2 + r−4α dv2 on (0,+∞)× R.

Remark 27. Y with this metric is called 2α-Grushin halfplane, an almost Rie-

mannian and RCD space at the same time. We remark that the whole Grushin

plane is not an RCD space as the singular set cuts the plane into two disjoint parts

but the regular set of RCD space should be path connected.

Theorem 26 has some immediate interesting consequences.

For λ > 0, consider Fλ(r, v) = (λr, λ1+2αv). Then we have F∗gY = λ2gY , there-

fore d
(
Fλ(y1), Fλ(y2)

)
= λ d(y1, y2). In other words, {Fλ} are metric dilations of

Y . Apply above with λ = v
1

1+2α . Then

d
(
(0, v), (0, 0)

)
= d

(
Fλ(0, 1), Fλ(0, 0)

)
= v

1
1+2α d

(
(0, 1), (0, 0)

)
.

This implies dimH(S) = 1 + 2α from Example 15.

Proof of Theorem 26. We have M̃ = Rk × R1, with doubly warped metric

g = dr2 + r2(1 + r2)−
1
2 ds2k−1 + (1 + r2)−2αdv2.

Given any λ > 1, let s = λ−1r, w = λ−2αv. Then we get

λ−2gM̃ =λ−2
[
dr2 + r2(1 + r2)−

1
2 ds2k−1 + (1 + r2)−2αdv2

]
=ds2 +

s2

1 + λ2s2
ds2k−1 + (1 + λ2s2)−2αλ4αdw2

As we take the limit λ → ∞, this metric approaches ds2 + s−4αdw2.
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Question 28. Given α > 1, what is the smallest dimension n such that a Ricci

limit space X ∈ M(n,−1) admits an isometric R-orbit with Hausdorff dimension

α?

3. Characterizing virtual abelianness / nilpotency of π1(M)

3.1 Small escape rate and virtual abelianness

We have mentioned in Section 1.2 that Rk × N , where N is a nilmanifold,

admits a metric with positive Ricci curvature when k is large. This is distinct from

open manifolds with nonnegative sectional curvature, whose fundamental groups

are virtually abelian (i.e., contains an abelian subgroup of finite index). In fact,

if M has secM ≥ 0, then it follows from Cheeger-Gromoll soul theorem that M is

homotopic to a closed submanifold S with secS ≥ 0 in M , thus π1(M) = π1(S) is

virtually abelian.

Therefore, it is natural to investigate on what additional conditions π1(M) is

virtually abelian for nonnegative Ricci curvature; or equivalently, we can ask how

virtual abelianness or nilpotency of π1(M) is related to the geometry of M .

It follows from Cheeger-Gromoll splitting theorem that we have the following

result on virtual abelianness.

Proposition 29. Let (M,x) be an open manifold of Ric ≥ 0. If supγ∈Γ dH(x, cγ) <

∞, where cγ is a minimal representing loop of γ ∈ π1(M,x) at x, then π1(M,x) is

virtually abelian.

The assumption in Proposition 29 always holds when sec ≥ 0. This follows from

Cheeger-Gromoll soul theorem and Sharafutdinov retraction [8, 24]. On the other

hand, the assumption in Proposition 29 is quite restrictive for manifolds with non-

negative Ricci curvature. In fact, if M has positive Ricci curvature and an infinite

fundamental group, then it follows from the Cheeger-Gromoll splitting theorem

that the representing geodesic loops cγ will always escape from any bounded sets

as γ exhausts π1(M,x).

To study this escape phenomenon and its relation to π1(M), the first-named

author introduced the notion of escape rate in [16].

Definition 30. Let (M,x) be an open manifold with an infinite fundamental
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group. We define the escape rate of (M,x), a scaling invariant, as

E(M,x) = lim sup
|γ|→∞

dH(x, cγ)

|γ|
,

where γ ∈ π1(M,x), |γ| = length(cγ), and dH is the Hausdorff distance. If π1(M)

is finite, then we set E(M,x) = 0 as a convention.

By definition, the escape rate takes value within [0, 1/2]. It is known that

E(M,p) < 1/2 implies the finite generation of π1(M) by Sormani’s halfway lemma

[27]. It is unclear whether its converse holds.

Question 31. Let (M,p) be an open n-manifold with Ric ≥ 0 and a finitely gen-

erated fundamental group. Is it true that E(M,p) < 1/2?

Regarding examples as doubly warped products [0,∞) ×f Sp−1 ×h S1, their

escape rates are determined by the warping function h. As h(r) decreases to 0

as r → ∞, the representing geodesic loop will take advantage of the thin end to

shorten its length, which will in turn enlarge its size. In other words, one should

expect that the faster h decays, the larger the escape rate is. In fact, if h(r) has

polynomial decay, then E(M,x) is positive; if h(r) has logarithm decay or converges

to a positive constant, then E(M,x) = 0.

As the main result in [17], small escape rate implies virtual abelianness. Note

that this greatly generalized Proposition 29.

Theorem 32. [Pan 2022] Given n, there exists a constant ϵ(n) > 0 such that if

(M,x) is an open n-manifold with Ric ≥ 0 and E(M,x) ≤ ϵ(n), then π1(M,x) is

virtually abelian.

In other words, if π1(M,x) contains a torsion-free nilpotent subgroup of nilpo-

tency step ≥ 2, then its minimal representing loops must escape any bounded

subsets at a relatively fast rate compared to their lengths.

The proof of Theorem 32 depends on the equivariant asymptotic geometry of

(M̃, π1(M,x)). The key is to show that any asymptotic π1-orbit at x̃ is Gromov-

Hausdorff close to a Euclidean factor. See [16,17] for details.

3.2 Nilpotency step and Hausdorff dimension

Given Theorem 32, it is naturally to further study the equivariant asymptotic

geometry without the smallness of escape rate.
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To better motivate the next result, we recall the structure of Carnot groups [23].

Let Γ be a finitely generated virtually nilpotent group with nilpotency step l. Any

finite generating set S of Γ defines a word length metric dS on Γ. The asymptotic

structure of (Γ, dS) was studied by Gromov [13] and Pansu [23]. For any sequence

ri → ∞, Gromov-Hausdorff convergence holds:

(r−1
i Γ, e, dS)

GH−→ (G, e, d).

The unique limit space (G, d) is a Carnot group, that is, a simply connected strat-

ified nilpotent Lie group G with nilpotency step l and a distance d induced by a

left-invariant subFinsler metric. Moreover, dimH(Ly) = l for any one-parameter

subgroup L in ζl−1(G), the last nontrivial subgroup in the lower central series. This

structure also applies to closed manifolds. For a closed Riemannian manifold (M, g)

with a virtually nilpotent fundamental group Γ, although g cannot have nonnega-

tive Ricci curvature when Γ has nilpotency step ≥ 2, the blow-down sequence of the

universal cover (r−1
i M̃, p̃, g̃) actually converges in the Gromov-Hausdorff topology

to a limit space (G, e, d) as described above.

When it comes to open manifolds with Ric > 0 and torsion-free nilpotent funda-

mental groups mentioned in Example 9, the asymptotic cone of the universal cover

always has an isometric R-orbit with Hausdorff dimension ≥ 2; see [19, Section 3]

for details.

There is indeed a relation between the nilpotency step of π1(M) and the Haus-

dorff dimension of R-orbits in asymptotic cones [19]:

Theorem 33. [Pan 2023] Let (M,p) be an open n-manifold with Ric ≥ 0 and

E(M,p) ̸= 1/2. Let N be a torsion-free nilpotent subgroup of π1(M,p) with

nilpotency step l and finite index. Then there exists an asymptotic cone (Y, y)

of M̃ , the universal cover of M , and a closed R-subgroup L of Isom(Y ) such that

dimH(Ly) ≥ l.

We say that M̃ is conic at infinity, if any asymptotic cone (Y, y) of M̃ is a

metric cone with vertex y. For a metric cone (Y, y), any isometric R-orbit at y

must have Hausdorff dimension exactly 1. Thus Theorem 33 implies the virtual

abelianness of π1 in this case. When M̃ has Euclidean volume growth, by a result

of Cheeger-Colding, it is conic at infinity. We can also control the index of the

abelian subgroup by the dimension and volume growth rate [18].
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Theorem 34. [Pan 2022] Let (M,p) be an open n-manifold with Ric ≥ 0 and

E(M,p) ̸= 1/2.

(1) If its Riemannian universal cover is conic at infinity, then π1(M) is virtually

abelian.

(2) If its Riemannian universal cover has Euclidean volume growth of constant at

least L, then π1(M) has an abelian subgroup of index at most C(n,L), a constant

only depending on n and L.

We close this section with a question below, which may be related to Question

28 in the light of Theorem 33.

Question 35. What is the smallest dimension n such that there is an open n-

manifold with Ric ≥ 0 and a torsion-free nilpotent fundamental group?

4. Topology of Ricci limit/RCD spaces

This chapter concerns the universal covers and semi-local simple connected-

ness of Ricci limit spaces or RCD spaces. In general, a Ricci limit space, even

non-collapsing, may have infinite second or higher Betti number locally [12]. Re-

cently, Hupp, Naber, and Wang have constructed a collapsing Ricci limit space

such that any open set U has infinitely generated H2(U) [11]. Thus it is natural to

ask whether a Ricci limit space is semi-locally simply connected, or equivalently,

whether it has a simply connected universal cover.

4.1 Relative δ-covers

The universal cover is often defined as the simply connected cover. Here we do

not assume it is simply connected, instead as the cover of all covers.

Definition 36. [30, Page 82] We say X̃ is a universal cover of a path-connected

space X if X̃ is a cover of X such that for any other cover X̄ of X, there is a

commutative triangle formed by a covering map f : X̃ → X̄ and the two covering

projections as below:

X̃
f−→ X̄

↘ ↙
X

Let U be any open covering of X. For any x ∈ X, by [30, Page 81], there is

a covering space X̃U of X with covering group π1(X,U , p), where π1(X,U , x) is a
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normal subgroup of π1(X, p) generated by homotopy classes of closed paths having

a representative of the form α−1 ◦ β ◦ α, where β is a closed path lying in some

element of U and α is a path from x to β(0).

Now we recall the notion of δ-covers introduced in [28] which plays an important

role in studying the existence of the universal cover.

Definition 37. Given δ > 0, the δ-cover, denoted X̃δ, of a length space X is

defined to be X̃Uδ
, where Uδ is the open covering of X consisting of all balls of

radius δ.

Intuitively, a δ-cover is the result of unwrapping all but the loops generated by

small loops in X. Clearly X̃δ1 covers X̃δ2 when δ1 ≤ δ2.

Definition 38 (Relative δ-cover). Suppose X is a length space, x ∈ X and 0 <

r < R. Let

πδ : B̃R(x)
δ → BR(x)

be the δ-cover of the open ball BR(x). A connected component of

(πδ)−1(B(x, r)),

where B(x, r) is a closed ball, is called a relative δ-cover of B(x, r) and is denoted

B̃(x, r,R)δ.

4.2 Universal cover of Ricci limit/RCD space exists

In [29, Lemma 2.4, Theorem 2.5] it is shown that if the relative δ-cover stabilizes,

then universal cover exists. This is the key tool for showing the existence of the

universal cover in the works of Sormani and the second-named author.

Theorem 39. [28,29] Let (X, d) be a length space and assume that there is x ∈ X

with the following property: for all r > 0, there exists R ≥ r, such that B̃(x, r,R)δ

stabilizes for all δ sufficiently small. Then (X, d) admits a universal cover X̃. More

precisely X̃ is obtained as covering space X̃U associated to a suitable open cover U
of X satisfying the following property: for every x ∈ X there exists Ux ∈ U such

that Ux is lifted homeomorphically by any covering space of (X, d).

Theorem 40. [28,29] If X is the Gromov-Hausdorff limit of a sequence of complete

Riemannian manifolds Mn
i with Ricci curvature ≥ K, then X has a universal cover.

These results on Ricci limit spaces were later generalized to RCD spaces by

Mondino and the second-named author.
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Theorem 41 ( [14]). Any RCD∗(K,N) space (X, d,m) admits a universal cover

(X̃, d̃, m̃), which is itself RCD∗(K,N), where K ∈ R, N ∈ (1,+∞).

By Theorem 39, in order to prove that the universal exists, it is enough to show

the relative covers stabilize. See [14, Theorem 4.5].

Theorem 42. [14] Let (X, d,m) be an RCD∗(K,N) space for some K ∈ R, N ∈
(1,∞). For all R > 0 and x ∈ X, there exists δx,R depending on X,x,R such that

B̃(x, R
10 , R)δx,R = B̃(x, R

10 , R)δ, ∀δ < δx,R.

Theorem 42 plays an important role in the work of Wang [32] showing that

RCD spaces are semi-locally simply connected.

4.3 Ricci limit/RCD spaces are semi-locally simply connected

Recall that the universal cover X̃ is simply connected iffX is semi-locally simply

connected, which means that there exists a neighbourhood such that every loop is

contractible in X.

Definition 43 (1-contractibility radius).

ρ(t, x) = inf{∞, ρ ≥ t| any loop in Bt(x) is contractible in Bρ(x)}.

X is semi-locally simply connected if for any x ∈ X, there is T > 0 such that

ρ(T, x) < ∞.

In [20], for noncollapsing Ricci limit spaces, we show they are essentially locally

simply connected.

Theorem 44. [20] Any non-collapsing Ricci limit space is semi-locally simply

connected. Therefore the universal cover is simply connected. In fact

lim
t→0

ρ(t, x)

t
= 1.

In the paper, we illustrate several ways of constructing homotopy. One way is

to construct a homotopy by defining it on finer and finer skeletons of closed unit

disk, see [20, Lemma 4.1].

The case for general Ricci limit spaces and RCD spaces are resolved by Wang

[31,32]. A key step by Wang shows that the stablity of local δ-covers indeed implies

semi-local simple connectedness.
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Theorem 45. [32] For a locally compact length metric space X, if any local relative

δ-cover is stable, then X is semi-locally simply connected.

Combining this with Theorem 42 it shows that the universal cover of RCD(k,N),

where N < ∞, is simply connected.

To prove Theorem 45, the key is to use stability of the local relative δ-cover

to show any loop in a small neighborhood of an RCD(K,N) space is homotopic to

some loops in very small balls by a controlled homotopy image.

Lemma 46. [32] For any x ∈ (X, d,m), an RCD(K,N), any l < 1/2, and small

δ > 0, there exists ρ < l and k ∈ N so that any loop γ ⊂ Bρ(x) is homotopic to the

union of some loops γi (1 ≤ i ≤ k) in δ-balls and the homotopy image is in B4l(x).

Applying the above lemma iteratively, one can construct the needed homotopy

by using a similar method in [20, Lemma 4.1]. Namely, first shrink γ to smaller

loops in δ1-balls, then the second step is to shrink each new loops to even smaller

loops in δ2-balls, etc. Since the homotopy to shrink each loop is contained in a

li-ball in the i-th step, this process converges to a homotopy map which contracts

γ while the image is contained in a ball with radius
∑∞

i=1 li ≤ R.

In terms of the 1-contractibility radius, the above argument indeed proves that

ρ(t, x) → 0 as t → 0. It is unclear whether a stronger estimate ρ(t, x)/t → 1 in the

non-collapsing case holds in general.

Question 47. limt→0
ρ(t,x)

t = 1?
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Ricci positive. C. R. Acad. Sci. Paris Sér. A-B, 291(10):A591–A593, 1980.

[16] Jiayin Pan. On the escape rate of geodesic loops in an open manifold with

nonnegative Ricci curvature. Geom. & Topol., 25(2):1059–1085, 2021.

[17] Jiayin Pan Nonnegative Ricci curvature and escape rate gap. J. Reine Angew.

Math., 782, 175-196, 2022.

[18] Jiayin Pan Nonnegative Ricci curvature, metric cones, and virtual abelianness.

To appear inGeom. & Topol., arXiv:2201.07852.

[19] Jiayin Pan Nonnegative Ricci curvature, nilpotency, and Hausdorff dimension.

arXiv:2309.01147

[20] Jiayin Pan and Guofang Wei. Semi-local simple connectedness of noncollapsing

Ricci limit spaces. J. Eur. Math. Soc., 24, no. 12, 4027-4062, 2022.

[21] Jiayin Pan and Guofang Wei. Examples of Ricci limit spaces with non-integer

Hausdorff dimension. Geom. Funct. Anal. 32 (2022), no. 3, 676-685.



REFERENCES 39

[22] Jiayin Pan and Guofang Wei. Examples of open manifolds with positive Ricci

curvature and non-proper Busemann functions. arXiv:2203.15211.

[23] Pierre Pansu. Croissance des boules et des géodésiques fermées dans les nil-
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