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Abstract

We obtain a fundamental gap estimate for classes of bounded domains with quanti-
tative control on the boundary in a complete manifold with integral bounds on the
negative part of the Ricci curvature. This extends the result of [15] to Lp-Ricci cur-
vature assumptions, p > n∕2. To achieve our result, it is shown that the domains
under consideration are John domains, what enables us to obtain an estimate on the
first nonzero Neumann eigenvalue, which is of independent interest.
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1 INTRODUCTION

Consider a complete Riemannian manifoldM of dimension n ∈ ℕ, n ≥ 2, and Ω ⊂ M open such that Ω is a smooth compact
manifold of dimension n with smooth boundary )Ω. The Dirichlet Laplacian −Δ ≥ 0 has discrete spectrum consisting of an
unbounded increasing sequence of positive reals �i(Ω), i ∈ ℕ, which can be arranged as

0 < �1(Ω) < �2(Ω) ≤ �3(Ω) ≤…→∞

counting multiplicities. For fixed Ω ⊂ M as above, the difference

Γ(Ω) ∶= �2(Ω) − �1(Ω) > 0

is called the mass gap (or fundamental gap) of the Dirichlet Laplacian on Ω. In quantum mechanics, the mass gap represents
the energy needed to jump from the ground state to the next lowest energy state. The subject has a long history and has been a
very active area of research recently, see e.g. the survey article [7].
In the celebrated work [1], Andrews and Clutterbuck proved the fundamental gap conjecture that for bounded and convex

domain Ω ⊂ ℝn,
Γ(Ω) ≥ 3�2 diam(Ω)−2.

This has been generalized to convex domains in Sn in [23, 13, 8], showing the same gap estimate. On the other hand, it was
proven in [3] that given any diameter there are convex domains Ω ⊂ ℍn with arbitrarily small fundamental gap.
For the lower bound estimate on the gap, the convexity condition is essential. In [6] a lower bound on Γ(Ω) was derived for

domains Ω ⊂ ℝn assuming the so-called interior rolling R-ball condition for )Ω, cf. Definition 2, in terms of bounds on the
second fundamental form and volume, where Ω is not necessarily convex. This is generalized to compact manifolds in [15],
showing that the gap is bounded from below in terms of uniform lower bounds on the Ricci curvature, the diameter, sectional
curvature near the boundary, and the interior rolling R-ball condition. The construction in [3] shows that the rolling R-ball
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condition is necessary there and for general manifolds the rolling R-ball condition is more suitable than the convexity condition
in some sense.
The present paper provides a gap estimate for suitable subsets of manifolds assuming only integral bounds on the negative

part of the Ricci curvature. Such integral curvature conditions gathered a lot of attention during the last decades because in
contrast to lower Ricci curvature pointwise bounds they are more stable under perturbations of the metric, see, e.g., [2, 5, 4, 17,
18, 9, 11, 22, 21, 19, 24, 25] and the references therein.
We fix some notation in order to state our main result. Denote by Br(x) the geodesic ball centered at x ∈ M with radius

r > 0. Furthermore, for Ω ⊂ M with smooth boundary )Ω, we let II ∶= II)Ω be its second fundamental form with respect to
the inward pointing normal. Moreover, we denote by Sec the sectional curvatures.
Define

�∶ M → ℝ, x → min spec(Ricx),
where Ric is considered as pointwise endomorphism on the tangent bundle. For x ∈ ℝ we denote x− ∶= max{0,−x}. Let
p > n∕2 and define for x ∈M and r > 0

�(x, p, r) ∶= r2
⎛

⎜

⎜

⎝

⨏
Br(x)

�p−
⎞

⎟

⎟

⎠

1
p

,

measuring the Lp-mean of the negative part of the Ricci curvature in a ball with respect to the Riemannian volume form dvol.
It is convenient to work with the scaling invariant curvature quantity introduced in [17]

�(p, r) = sup
x∈M

�(x, p, r).

In this paper we deal with the following class of subsets.

Definition 1. LetM be a Riemannian manifold of dimension n ∈ ℕ, n ≥ 2, without boundary,H,K > 0, and R > 0. A subset
Ω ⊂ M is called (R,H,K)-regular if

- Ω is open, bounded, and connected,

- Ω ≠M is a smooth Riemannian manifold of dimension n with smooth boundary )Ω,

- )Ω satisfies II)Ω ≤ H and the interior rolling R-ball condition, cf. Definition 2,

- |Sec | ≤ K in the inner R-tubular neighborhood T ()Ω, R) ∶= {x ∈ Ω|d(x, )Ω) < R}.

By an elementary calculation, the rolling R-ball condition implies II)Ω ≥ −1∕R, so in fact we have double sided bounds on
II)Ω for (R,H,K)-regular domains.
Our main result can now be stated as follows.

Theorem 1. Let 2p > n ≥ 2, D > 0, H,K > 0. There exists R0 = R0(K,H) > 0 such that the following holds: for any
0 < R ≤ R0, there exist explicitly computable constants C = C(n, p,D,R,H,K) > 0 and " = "(n, p) > 0 such that ifM is a
complete manifold of dimension n with �(p,D) ≤ ", then for any (R,H,K)-regular Ω ⊂ M with diamΩ ≤ D we have

Γ(Ω) ≥ C(n, p,D,R,H,K).

General criteria for a quantitative lower bound on the gap for compact manifolds have been provided in [15], cf. Theorem 8.
The key ingredients are volume doubling, a Harnack type inequality for the first Dirichlet eigenfunction, weak Neumann-
Poincaré inequalities on interior balls, and Neumann eigenvalue estimates for certain subsets of the manifold. We will show that
all of these conditions are satisfied for (R,H,K)-regular domains with integral Ricci curvature bounds, which in turn yields our
result. The volume doubling condition follows directly from [18, 20], and the Harnack inequality for the first Dirichlet eigen-
function follows from a combination of the results in [9, 15, 17], and [18]. The crucial step to obtain the main result proved in
the present article is the following new Neumann eigenvalue estimate for (R,H,K)-regular domains.

Proposition 1. Let 2p > n ≥ 2, D > 0, and K,H > 0. There exist explicitly computable � = �(n, p) > 0, R0 = R0(K,H) > 0
such that the following holds: for any R ∈ (0, R0] there is an explicitly computable C = C(n,R,D,H,K) > 0 such that for any
Riemannian manifold of dimension n with �M (p,D) ≤ �, any (R,H,K)-regular domain Ω ⊂ M with diamΩ ≤ D, the first
(non-zero) Neumann eigenvalue �1(Ω) of Ω satisfies

�1(Ω) ≥ C.
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To achieve this we prove that (R,H,K)-regular sets are John domains in the sense of [12], cf. Definition 3, which is of
independent interest. Based on techniques in [9] we derive weak Neumann-Poincaré inequalities for balls. The desired Neumann
eigenvalue estimate then follows from the main results in [12]. Prop. 1 also generalizes the recently appeared eigenvalue estimate
in [19, Corollary 1.5] obtained by completely different techniques.
The structure of this paper is as follows: in Section 2 we fix notation and recall the Laplace and volume comparison and

Sobolev constant estimates for integral Ricci curvature. The essential John domain property of (R,H,K)-regular domains will
be proven in Section 3 as well as the weak Neumann-Poincaré inequalities in balls, yielding Prop. 1. We adapt the local Harnack
inequalities for the first Dirichlet eigenfunction from [15] in Section 4 to (R,H,K)-regular domains under integral curvature
conditions, and prove Theorem 6. To derive Theorem 1, global Harnack inequalities for the first Dirichlet eigenfunction are
needed, which are derived in Appendix A.
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2 PRELIMINARIES ON INTEGRAL RICCI CURVATURE

For p ∈ [1,∞), a measurable function f ∶ M → ℝ, and any geodesic ball B ⊂ M we denote as usual

‖f‖p,B =
⎛

⎜

⎜

⎝

∫
B

|f |p
⎞

⎟

⎟

⎠

1
p

, ‖f‖∗p,B =
⎛

⎜

⎜

⎝

1
vol (B) ∫

B

|f |p
⎞

⎟

⎟

⎠

1
p

, and ‖f‖∞,B = esssupB f.

If not explicitly stated differently we integrate w.r.t. the Riemannian volume measure dvol. We will need the Laplacian and
volume comparison estimate for integral curvature from [17, 18]. Given x ∈M , let d(y) = d(x, y) be the distance function and

 (y) ∶=
(

Δd − n − 1
d

)

+
. (1)

The classical Laplacian comparison states that RicM ≥ 0 implies Δd ≤ n−1
d
. The integral curvature version of the Laplacian

and volume comparison estimates we will use here are as follows.

Theorem 2. [17] Let p > n
2
, x ∈M , r > 0. We have

‖ ‖∗2p,Br(x) ≤ C(n, p)
(

‖�−‖
∗
p,Br(x)

)
1
2 ≤ C(n, p)r−1�(p, r)

1
2 ,

where

C(n, p) =
(

(n − 1)(2p − 1)
2p − n

)
1
2

.

Theorem 3 ([17, 18]). Let x ∈ M , p > n
2
. There exists �0 = �0(n, p) > 0 such that if �(x, p, r0) ≤ �0 we have for all

0 < r ≤ s ≤ r0
vol(Bs(x))
vol(Br(x))

≤ 2
(s
r

)n
.

Remark 1. (cf. [9, Remark 2.2] [18, Section 2.3]) If �(x, p, r2) ≤ "0 for "0 as above, Theorem 3 implies for all for all x ∈ M
and 0 < r1 ≤ r2

�(x, p, r1) ≤ 2
1
p

(

r1
r2

)2− n
p

�(x, p, r2) ≤ 2
1
p �(x, p, r2). (2)
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Hence, �(x, p, r1) ≤ "0 if r1 ≤ 2
1

n−2p r2. If �(p, r1) ≤ "0, then for all r2 ≥ r1, we have

�(p, r2) ≤ 2
n+1
p

(

r2
r1

)2

�(p, r1). (3)

Hence when �(p, r) is small for some r, it gives control on �(p, r) for all r. Note that for compact manifolds with diameter D
there is no restriction between working with �(p, 1) and the more global constant �(p,D).

In this paper, we consider bounded and connected domains Ω ⊂ M such that Ω ⊂ M , Ω ≠ M , is a compact Riemannian
manifold with not necessarily convex smooth boundary )Ω. We assume the following boundary regularity instead.

Definition 2. Let Ω be a compact manifold with smooth boundary )Ω and R > 0. )Ω satisfies the interior rolling R-ball
condition if for each point y ∈ )Ω there is a geodesic ball BR(q) ⊂ Ω with BR(q) ∩ )Ω = {y}. R is called the interior rolling
ball radius.

The following relative volume comparison for concentric geodesic balls of compact submanifolds with smooth boundary
satisfying the interior rolling R-ball condition and integral Ricci curvature bounds has been obtained in [20].

Lemma 1 ([20, Lemma 3.3]). Let D > R > 0, n ≥ 2, p > n
2
, and Ω ⊂ Mn a domain with diam(Ω) ≤ D such that Ω ≠ M is a

smooth manifold with boundary )Ω satisfying the interior rolling R-ball condition. There exists an "0 = "0(n, p) > 0 such that
if �(p,D) ≤ �0, then we have for all x ∈ Ω, all 0 < r1 ≤ r2 ≤ D,

vol(BΩr2(x))

vol(BΩr1(x))
≤ C0

(

r2
r1

)n

, (4)

where BΩr (x) ∶= Br(x) ∩ Ω and C0 = 2
(

2D
R

)n
.

Another key tool we will use is the local Sobolev constant estimate in [9]. We denote by Cs(Ω) the normalized local Sobolev
constant of Ω, that is,

⎛

⎜

⎜

⎝

⨏
Ω

f
2n
n−2

⎞

⎟

⎟

⎠

n−2
2n

≤ Cs(Ω)
⎛

⎜

⎜

⎝

⨏
Ω

|∇f |2
⎞

⎟

⎟

⎠

1
2

, ∀f ∈ C∞0 (Ω). (5)

Note that Cs(Ω) scales like diameter. Here is the estimate we will need in Section 4.

Theorem 4 ([9, Corollary 4.6]). For p > n∕2, D > 0, there exists � = �(n, p) > 0 such that ifMn has �(p,D) ≤ �, then for any
x ∈M with )BD(x) ≠ ∅, and any 0 < r ≤ D, the normalized local Sobolev constant of the ball Cs(Br(x)) has the estimate

‖f‖∗2n
n−2

,Br(x)
≤ C(n)r ‖∇f‖∗2,Br(x), ∀ f ∈ C

∞
0 (Br(x)). (6)

3 NEUMANN-POINCARÉ INEQUALITIES FOR JOHN DOMAINS

This section is devoted to the proof of Proposition 1. We show that (R,H,K)−regular domains defined in Definition 1 are John
domains defined below.

Definition 3 ([12, Page 39]). A bounded open subset Ω ⊂ M is called a John domain if there exist x0 ∈ Ω and CJ > 0 such
that for every x ∈ Ω there exists a curve 
 ∶ [0, l]→ Ω parametrized by arclength with 
(0) = x, 
(l) = x0, and

dist(
(t), )Ω) ≥ CJ t.

Clearly, any ball of a geodesic metric space is a John domain with CJ = 1 by taking x0 to be the center of the ball. John
domains are a very general class of subsets of metric spaces possessing strong inclusion properties of function spaces. A key
property is that they satisfy the chain condition. Hence, to obtain a Sobolev inequality for the domain it is suffices to work on
balls inside the domain, see [12, Chapter 9] for details.
Here we prove that (R,H,K)-regular domains are John domains.

Lemma 2. Let Ω ⊂ M be an (R,H,K)−regular domain with diam(Ω) ≤ D and R small enough. Then Ω is a John domain
with CJ = C(n,D,R,H,K) > 0.
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Proof. For � > 0 denote
Ω� = {x ∈ Ω∶ dist(x, )Ω) > �}

and D̃� = diam(Ω�) the intrinsic diameter of Ω� . We want to bound D̃� = diam(Ωδ) from above in terms of D = diam(Ω). The
conclusion of [16, Lemma 3.2.7(a), Page 60] applies in our setting. Notice that even though the result in [16] is stated requiring
sectional curvature bounds in the whole domain, it only uses the bounds on T ()Ω, 2�), since the map Φ in [16, Lemma 3.2.6,
Page 60] is defined as the identity inΩ2� . More precisely, the argument works as follows: for any two points inΩ� with � < R∕2,
let 
 be the minimal geodesic in Ω that connects them, which may lie outside of Ω� . Then the length of 
 ≤ D. Now [16]
considers a curve Φ(
) that lies in Ω� connecting the same points. Φ(
) is obtained by projecting the portion of 
 outside of
Ω� onto )Ω� , see [16, Page 60] for the definition of Φ. We can bound the length of Φ(
) by bounding the Jacobian of Φ, and
since Φ is the identity in Ω� , we only need to bound the Jacobian in T ()Ω, 2�). Since Ω is an (R,H,K)−regular domain, the
sectional curvature is bounded from both sides in T ()Ω, 2�), and −1∕R ≤ II)Ω ≤ H , so applying [16, Lemma 3.2.6, Page 60]
we have that the Jacobian of Φ is bounded. Hence

D̃� = diam(Ω�) ≤ (CK,H,�)n−1D, (7)

where

CK,H,� ∶= 2

(
√

K
H̃

+ H̃
√

K

)

cosh(2
√

K�), H̃ ∶= max
{

H, 1
R

}

.

In particular, we have D̃R∕4 ≤ (CK,H,R∕4)n−1D. Moreover, ΩR∕4 ≠ ∅ since Ω satisfies the rolling R−ball condition. Pick any
fixed x0 ∈ ΩR∕4 and x ∈ Ω. If x ∈ ΩR∕4, let 
 ∶ [0, l] → ΩR∕4 be a minimizing normal geodesic in ΩR∕4 with 
(0) = x and

(l) = x0. Then l, the intrinsic distance between x0 and x in ΩR∕4, will satisfy l ≤ D̃R∕4. For C =

R
4D̃R∕4

we have

dist(
(t), )Ω) ≥ R
4

≥ CD̃R∕4 ≥ Ct.

If x ∈ Ω ⧵ ΩR∕4, let p ∈ )Ω be such that dist(x, p) = dist(x, )Ω), let q ∈ Ω be the center of a rolling R-ball such that
BR(q) ∩ )Ω = {p}, and let 
1 be a distance minimizing normal geodesic from p to q. Since 
1 goes through x, choose the
parametrization so that 
1(0) = x and 
1(dist(x, q)) = q. Notice that q ∈ ΩR∕4, since dist(q, )Ω) = R. Let 
2 be a minimizing
normal geodesic in ΩR∕4 joining q = 
2(0) and x0 = 
2(l). Then consider the curve 
 ∶ [0, l + dist(x, q)]→ Ω defined by


(t) =

{


1(t) if 0 ≤ t ≤ dist(x, q),

2(t − dist(x, q)) if dist(x, q) < t ≤ l + dist(x, q).

For the choice C = R
4D̃R∕4+R

we need to consider the following two cases.

Case 1: t < dist(x, q)

In this case, we have

dist(
(t), )Ω) = dist(
1(t), )Ω) = dist(
(t), p) = dist(x, p) + t ≥ t ≥ Ct.

Case 2: dist(x, q) ≤ t ≤ dist(x, q) + l

In this situation, we have t ≤ R∕4 + D̃R∕4. Since 
2 is a curve in ΩR∕4, we have

dist(
(t), )Ω) = dist(
2(t − dist(x, q)), )Ω) ≥
R
4
= C(D̃R∕4 + R∕4) ≥ Ct.

Hence, we have shown that Ω is a C-John domain for C = R
4D̃R∕4+R

. We conclude the proof by noting D̃R∕4 ≤ C(n,D,R,H,K).

According to [12, Theorem 9.7], to prove Proposition 1 it now suffices to show the following weak Neumann-Poincaré
inequalities for all balls Br in an (R,H,K)-regular Ω with Br ∩ )Ω = ∅:

‖f − fB r
32
‖

∗
1,B r

32

≤ C(n)r‖∇f‖∗1,Br , f ∈ W 1,2(Ω), (8)

where fBs denotes the average of f on Bs.
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We use the technique in [9] for obtaining the Dirichlet Poincaré inequalities for balls (see Theorem 4) to prove the above
estimate. Our start point is the following weak Cheeger’s constant estimate with an error [9, Corollary 4.3].

Lemma 3. If B2r(x) ⊂ Ω, B2r ∩ Ω = ∅, andH is a hypersurface dividing B2r(x) into two parts Ω1 and Ω2, then we have

min
{

vol(Ω1 ∩ Br(x)), vol(Ω2 ∩ Br(x))
}

≤ 2n+1r(H ∩ B2r(x)) + 2n vol(B2r(x))�(x, p, 2r)
1
2 . (9)

If �(x, p, 2r) ≤ �0(n, p), where �0(n, p) is the constant in Theorem 3, then

vol(B2r(x)) ≤ 2n+1 vol(Br(x)).

Assuming additionally �(x, p, 2r) ≤ 2−2(4n+5) and

min(vol(Ω1 ∩ Br(x)), vol(Ω2 ∩ Br(x))) ≥
1

22n+3
vol

(

Br(x)
)

, (10)

we get
vol(Br(x)) ≤ 23n+5r(H ∩ B2r(x)). (11)

Let Ω ⊂ M be a bounded domain and Ω′ ⊂ Ω a subdomain. For convenience we consider the relative isoperimetric constant
of Ω′ relative to Ω as

IR(Ω′,Ω) ∶= sup
min(vol(Ω′1), vol(Ω

′
2))

(H)
,

whereH ranges over all hypersurfaces in Ω dividing Ω into two parts Ω1 and Ω2, and Ω′i = Ωi ∩ Ω
′, i = 1, 2.

Proposition 2. Let r > 0 and x ∈ Ω be such that Br(x) ∩ )Ω = ∅. There exists �(n, p) > 0 such that if �(p, r) ≤ �, then

IR(Br∕32(x), Br(x)) ≤ C(n)r,

where C(n) = 24n+25n.

Proof. LetH be any hypersurface dividing Br(x) into two subsets Ω1, Ω2. Define Ω′i ∶= Ωi ∩Br∕32(x) for i = 1, 2. We assume
w.l.o.g. vol(Ω′1) ≤ vol(Ω

′
2). This implies vol(Ω′2) ≥

1
2
volBr∕32(x). For any y ∈ Ω′1, consider

ry ∶= inf
{

s > 0∶ vol(Bs(y) ∩ Ω2) ≥
1

22n+3
vol(Bs(y))

}

.

We observe that the set of radii on the right hand side is not empty. Indeed, for s = r∕16, we have that Br∕32(x) ⊆ Br∕16(y) ⊆
Br∕8(x), thus using Theorem 3

vol(Br∕16(y) ∩ Ω2) ≥ vol(Ω′2) ≥
1
2
vol(Br∕32(x)) ≥

1
22n+3

vol(Br∕8(x)) ≥
1

22n+3
vol(Br∕16(y)).

Notice also that ry > 0, because the ratio
vol(Bs(y)∩Ω2)
vol(Bs(y)

is continuous in s and becomes 0 for s small enough. Thus for any y ∈ Ω′1
we have that 0 < ry ≤

r
16
.

The set {B2ry(y)}y∈Ω′1 gives an open cover for Ω′1. Then, by the Vitali covering lemma, there exists a subfamily of disjoint
balls {B2ri(yi)}i∈I , ri = ryi , such that

Ω′1 ⊆
⋃

i∈I
B10ri(yi).

Notice that, since ry ≤
r
16

and y ∈ Br∕32(x), we have that B10ri(yi) ⊆ Br(x). In particular, B10ri(yi) ∩ )Ω = ∅ and 10ri ≤ r, so
we can use Theorem 3 on these balls to get

vol(Ω′1) ≤
∑

i∈I
vol(B10ri(yi)) ≤ 2 ⋅ 10

n
∑

i∈I
vol(Bri(yi)).

On the other hand, by definition vol(Bri(yi) ∩ Ω2) =
1

22n+3
vol(Bri(yi)), so vol(Bri(yi) ∩ Ω1) =

(

1 − 1
22n+3

)

vol(Bri(yi)) >
vol(Bri(yi) ∩ Ω2). Thus, choosing �(n, p) small enough, we can use (11). Since the balls {B2ri(yi)}i∈I are disjoint, we have

(H) ≥
∑

i∈I
(H ∩ B2ri(yi)) ≥ 2

−(3n+5)
∑

i∈I
r−1i vol(Bri(yi)).

Combining the two estimates together, we get
vol(Ω′1)
(H)

≤ 23n+5(2 ⋅ 10n)
∑

i∈I vol(Bri(yi))
∑

i∈I r
−1
i vol(Bri(yi))

≤ 23n+610n sup
i∈I

ri ≤ 24n+25nr.
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By the equivalence of the isoperimetric constant and the Sobolev constant (the same proof as [14, Theorem 9.6] applies to
the weak version), we have

‖f − fB r
32
‖1,B r

32
≤ 2 inf

a∈ℝ
‖f − a‖1,B r

32
≤ 2IR(Br∕32(x), Br(x))‖∇f‖1,Br . (12)

Proposition 2 and volume doubling, i.e., Theorem 3, give (8) when �(p, r) ≤ �(n, p).
Finally, we are ready to prove Proposition 1.

Proof of Proposition 1. By (2), we have �(p, r) ≤ 21∕p�(p,D). Choosing �(n, p) smaller we get (8) if �(p,D) ≤ �(n, p). Since
we have volume doubling (4), the weak Neumann-Poincaré inequality (8), and Lemma 2, we can apply [12, Theorem 9.7] (for
p = 1, s = n) to obtain

inf
a∈ℝ

‖f − a‖∗ n
n−1

,Ω
≤ C(n, C0, CJ ) diam(Ω) ‖∇f‖∗1,Ω f ∈ W 1,2(Ω),

where C0, CJ are constants from Lemmas 1 and 2. Hölder’s inequality yields

‖f − a‖∗1,Ω ≤ ‖f − a‖∗ n
n−1

,Ω
.

Hence
inf
a∈ℝ

‖f − a‖∗1,Ω ≤ C(n, C0, CJ ) diam(Ω) ‖∇f‖∗1,Ω f ∈ W 1,2(Ω). (13)

Applying Cheeger’s inequality (see e.g. [14, Page 92]) gives the Neumann eigenvalue estimate (1).

Now when Ω is a ball Br(x), then CJ = 1, R = r,D = 2r, so C0 = 2 ⋅ 4n. Therefore applying the estimate (13) to the ball, we
have

inf
a∈ℝ

‖f − a‖∗1,Br ≤ C(n)r‖∇f‖∗1,Br , f ∈ W 1,2(Br).

Again applying Cheeger’s inequality immediately gives the Neumann-Poincaré inequality for the ball, with the following explicit
dependence which we will also need.

‖f − fBr‖2,Br ≤ C(n)r‖∇f‖2,Br , f ∈ W 1,2(Br). (14)

In fact we only need the weak L2 version of the Neumann-Poincaré inequality. While it is automatic to get the L2 version from
the L1 version for the usual Neumann-Poincaré inequality, this is not the case for the weak version. The estimate (14) has been
pointed out in [10, Remark 1.7].

4 LOCAL HARNACK INEQUALITY FOR THE FIRST DIRICHLET EIGENFUNCTION

In this section, we will prove a local Harnack inequality for the first Dirichlet eigenfunction via a gradient estimate. For pointwise
curvature bounds, one can prove it using the maximum principle, see e.g. [14, Theorem 6.1]. For integral curvature conditions,
the gradient estimate can be established via the Nash-Moser iteration. The essential tools are the local Sobolev inequality in
Theorem 4 and the Laplacian comparison estimate in Theorem 2.
We have the following gradient estimate for the first eigenfunction of ball depending on integral Ricci curvature bounds.

Theorem 5. Let p > n∕2, x ∈M , r > 0, and � ≥ 0. If u is a positive solution of

Δu = −�u

on Br(x), then

sup
B r
2
(x)
|∇ ln u|2 ≤ C(n, p)

⎛

⎜

⎜

⎜

⎝

r−2
vol

(

Br(x)
)

vol
(

B 7
8
r(x)

) + �

⎞

⎟

⎟

⎟

⎠

⋅
[

r−2C2s
(

Br(x)
) (

1 + r−2C2s �(p, r)
)

+
(

r−2C2s
(

Br(x)
)

�(p, r)
)

2p
2p−n

]
n2

2

.

The proof is a modification of the argument in [9, Theorem 5.2].
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Proof. Let ℎ = ln u and v = |∇ℎ|2+�, such thatΔℎ = −v. By scaling we assume that r = 1. We infer from the Bochner formula

Δv = Δ|∇ℎ|2 = 2|Hessℎ|2 + 2⟨∇ℎ,∇Δℎ⟩ + 2Ric(∇ℎ,∇ℎ) ≥ 2
n
v2 − 2⟨∇ℎ,∇v⟩ − 2�−v. (15)

We abbreviate Br ∶= Br(x). All integrals below are on B1 which we omit. Given � ∈ C∞0 (B1) and l > 1, integration by parts
yields

∫ |∇(�vl)|2 = −∫
(

�vl
) [

vlΔ� + 2⟨∇�,∇vl⟩ + �Δvl
]

= ∫ v2l (−�Δ�) − 2∫ vl⟨∇�, �∇vl⟩ − ∫ �2vl
(

lvl−1Δv + l(l − 1)vl−2|∇v|2
)

= ∫ v2l
(

−�Δ� + 2|∇�|2
)

− 2∫ vl⟨∇�,∇
(

�vl
)

⟩ − l ∫ �2v2l−1Δv − l − 1
l ∫ �2|∇vl|2. (16)

We have

− l − 1
l ∫ �2|∇vl|2 = − l − 1

l ∫ |∇(�vl) − vl∇�|2

= − l − 1
l ∫ |∇(�vl)|2 +

(

2 − 2
l

)

∫ vl⟨∇�,∇(�vl)⟩ − l − 1
l ∫ v2l|∇�|2.

Inserting the above equality into (16), using −2⟨a∇�, b∇
(

�vl
)

⟩ ≤ a2|∇�|2 + b2|∇
(

�vl
)

|

2 with a = vl
√

l(l−1)
and b =

√

l−1
√

l
, and

(15) gives

∫ |∇(�vl)|2 = −∫ v2l�Δ� + l + 1
l ∫ v2l|∇�|2 − 2

l ∫
vl⟨∇�,∇

(

�vl
)

⟩

− l ∫ �2v2l−1Δv − l − 1
l ∫ |∇(�vl)|2

≤ −∫ v2l�Δ� + l + 1
l ∫ v2l|∇�|2 + l − 1

l ∫ |∇(�vl)|2 + 1
l(l − 1) ∫

v2l|∇�|2

− 2l
n ∫ �2v2l+1 + 2l ∫ �2v2l−1⟨∇ℎ,∇v⟩ + 2l ∫ �2v2l�− −

l − 1
l ∫ |∇(�vl)|2

= −∫ v2l�Δ� + l
l − 1 ∫

v2l|∇�|2

− 2l
n ∫ �2v2l+1 + 2l ∫ �2v2l−1⟨∇ℎ,∇v⟩ + 2l ∫ �2v2l�−.

(17)

We infer from Δℎ = −v and |∇ℎ| ≤ v
1
2

2l ∫ �2v2l−1⟨∇ℎ,∇v⟩ = ∫ ⟨�2∇ℎ,∇v2l⟩ = −∫ (Δℎ)�2v2l − 2∫ ⟨∇ℎ, �∇�⟩v2l

≤ ∫ �2v2l+1 + ∫ �2v2l+1 + ∫ v2l|∇�|2.

Combining (17) with above inequality leads to

∫ |∇(�vl)|2 ≤ −∫ v2l�Δ� + 2l − 1
l − 1 ∫ v2l|∇�|2 + (2 − 2l

n
)∫ �2v2l+1 + 2l ∫ �2v2l�−.

Let d(y) = d(x, y) be the distance function from x. We choose �(y) = '(d(y)), where ' ∶ [0,∞) → [0, 1] satisfying '(t) ≡ 0
for t ≥ 1 and '(t) ≡ 1 for t ∈ [0, t0] with t0 ∈ (0, 1), and '′ ≤ 0. Thus,

|∇�| = |'′| and Δ� = '′′ + '′Δd ≥ '′′ + '′
(

 + n − 1
d

)

≥ −|'′′| − |'′| − n − 1
d

|'′|,

where  =
(

Δd − n−1
d

)

+
. Hence, for l ≥ n, we have

∫ |∇(�vl)|2 ≤ C(n)l ∫

[(

|'′′| + |'′| +
|'′|
d

)

�v2l + |'′|2v2l + �2v2l�−

]

≤ C(n)l ∫

[(

|'′′| +
|'′|
d

)

�v2l + |'′| �v2l + |'′|2v2l + �2v2l�−

]

.
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Choose � = n
n−2

. Apply the Sobolev inequality (5) to get
(

⨏
(

�2v2l
)�
)

1
�

≤ C2s
(

B1(x)
)

⨏
|

|

|

∇
(

�vl
)

|

|

|

2

≤ C2s
(

B1(x)
)

C(n)l⨏

[

(

|'′′| +
|'′|
d

)

�v2l + |'′| �v2l + |'′|2v2l + �2v2l�−
]

(18)

To control the  -term, applying Hölder’s inequality and the Laplacian comparison estimate Theorem 2, we have

C(n)lC2s ⨏ |'′| �v2l ≤ C(n)lC2s ‖ ‖
∗
2p‖�'

′v2l‖∗2p
2p−1

≤ C(n)lC2sC(n, p) (�(p, 1))
1
2
‖�'′v2l‖∗2p

2p−1

. (19)

Set � = p(n−2)
n(2p−1)

= 1
�

p
2p−1

< 1. Since � ∈ C∞0 (B1) we get

‖�'′v2l‖∗2p
2p−1

=
[

⨏
(

�2v2l
)�� (

|'′|2v2l
)

p
2p−1

]
2p−1
2p

≤

[

(

⨏
(

�2v2l
)�
)� (

⨏
(

|'′|2v2l
)

np
np+2p−n

)
np+2p−n
n(2p−1)

]

2p−1
2p

≤

[

(

⨏
(

�2v2l
)�
)� (

⨏ |'′|2v2l
)

p
2p−1

]
2p−1
2p

≤ �
(

⨏
(

�2v2l
)�
)

1
�

+ 1
4� ⨏

|'′|2v2l,

(20)

where we used Hölder inequality and np
np+2p−n

< 1 due to p > n
2

in the second inequality. By setting " =
(

3C2sC(n)lC(n, p) (�(p, 1))
1∕2)−1 and inserting (20) into (19) we obtain

C(n)lC2s ⨏  �|'′|v2l ≤ 1
3

(

⨏
(

�2v2l
)�
)

1
�

+ C(n)l2C4sC
2(n, p)�(p, 1)⨏ |'′|2v2l. (21)

Setting a = a(n, p) = 2p−n
2(p−1)

> 0 and using Young’s inequality

xy ≤ "xb + "−
b∗

b yb∗ ,∀x, y ≥ 0, b > 1, 1
b∗
+ 1
b
= 1,

where
b =

p
(1 − a)(p − 1)�

, b∗ =
p

(p − 1)a
we estimate the �-term by

⨏ �2v2l�− ≤ ‖�−‖
∗
p

(

⨏ (�2v2l)
p
p−1

)
p−1
p

≤ �(p, 1)
(

⨏ �2v2l
)

p−1
p
a(

⨏ (�2v2l)�
)

p−1
p
(1−a)

≤ �(p, 1)

[

"
(

⨏ (�2v2l)�
)

1
�

+ "−
(1−a)�
a

(

⨏ �2v2l
)

]

.

By choosing " =
(

3C(n)lC2s �(p, 1)
)−1, we obtain

C2sC(n)l⨏ �2v2l�− ≤ 1
3

(

⨏ (�2v2l)�
)

1
�

+ C(n, p)
(

lC2s �(p, 1)
)

2p
2p−n

(

⨏ �2v2l
)

. (22)

Inserting (21) and (22) into (18) gives
(

⨏
(

�2v2l
)�
)

1
�

≤ 3C(n)lC2s
[

⨏

(

|'′′| +
|'′|
d

)

�v2l +
(

1 + C2(n, p)lC2s �(p, 1)
)

⨏ |'′|2v2l
]

+ C(n, p)
(

lC2s �(p, 1)
)

2p
2p−n

(

⨏ �2v2l
)

. (23)
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Define l = �i

2
≥ n, ri = � −

∑i
j=0 2

−j−1� with � ∈ [ 1
2
+ �, 1] and � ∈ (0, 1

2
], Bi ∶= Bri(x). Choose cut-off functions

�i = 'i(d) ∈ C∞0
(

Bi
)

such that
�i ≡ 1 on Bi+1; |'′i| ≤ 2

i+1, |'′′i | ≤ 2
2i+2.

Substituting �i into (23) gives

‖v‖∗�i+1,Bi+1 ≤
[

C(n)�iC2s
[

2 +
(

1 + C2(n, p)�iC2s �(p, 1)
)]

4i+1 + C(n, p)
(

�iC2s �(p, 1)
)

2p
2p−n

]
1
�i
‖v‖∗�i,Bi

≤
[

C(n, p)22i (�q)i
(

C2s
(

1 + C2s �(p, 1)
)

+
(

C2s �(p, 1)
)

2p
2p−n

)]
1
�i

‖v‖∗�i,Bi

≤ (4 ⋅ �q)
i
�i (C(n, p)A)

1
�i
‖v‖∗�i,Bi ,

where
q = max

{

2,
2p

2p − n

}

, A = C2s
(

1 + C2s �(p, 1)
)

+
(

C2s �(p, 1)
)

2p
2p−n .

Iterating from i0 such that n + 1 > �i0 ≥ n to∞, since
∑∞
i=0

1
�i
= n

2
and

∑∞
i=0

i
�i
are finite, we obtain for k < n

‖v‖∗∞,B�−� ≤ C(n, p)A
n
2
‖v‖∗n,B� ≤ C(n, p)A

n
2

(

‖v‖∗k,B�

)
k
n
(

‖v‖∗∞,B�

)1− k
n .

Let
�i = 2−i−3, �0 =

1
2
+ �0, �i+1 = �i + �i, i = 0, 1, 2,… .

Iterating from 0 to i, we have

‖v‖∗∞,B�0−�0
≤ C(n, p)A

n
2

(

‖v‖∗k,B�0

)
k
n
(

‖v‖∗∞,B�0

)1− k
n

≤
i

∏

j=0

[

C(n, p)A
n
2

(

‖v‖∗k,B�j

)
k
n

]

(

1− k
n

)j

(

‖v‖∗∞,B�i

)

(

1− k
n

)i+1

.

Let i→∞, then
(

1 − k
n

)i+1
→ 0 and

∑∞
j=0

(

1 − k
n

)j
= n

k
. Hence,

‖v‖∗∞,B 1
2

≤
(

C(n, p)A
n
2

)
n
k
‖v‖∗k,B�∞

≤ C
n
k (n, p)A

n2

2k
‖v‖∗k,B 7

8

.

Thus, we get

sup
B 1
2

|∇ℎ|2 ≤ sup
B 1
2

v ≤ C(n, p)A
n2

2
⨏
B 7
8

v (24)

by setting k = 1 and using v = |∇ℎ|2 + �. Choosing � ∈ C∞0 (B1) with � ≡ 1 in B 7
8
and |∇�| ≤ 8, we have

⨏ �2|∇ℎ|2 = ⨏ �2 (−Δℎ − �) ≤ 2⨏ �⟨∇ℎ,∇�⟩ ≤ 1
2 ⨏

�2|∇ℎ|2 + 2⨏ |∇�|2 ≤ 1
2 ⨏

�2|∇ℎ|2 + 128.

Thus,

⨏ �2|∇ℎ|2 ≤ 256,

and hence

⨏
B 7
8

(v − �) = ⨏
B 7
8

|∇ℎ|2 ≤
vol

(

B1
)

vol
(

B 7
8

) ⨏
B1

�2|∇ℎ|2 ≤ 256
vol

(

B1
)

vol
(

B 7
8

) .

Inserting above inequality into (24) gives

sup
B 1
2

|∇ℎ|2 ≤ C(n, p)

⎛

⎜

⎜

⎜

⎝

vol
(

B1
)

vol
(

B 7
8

) + �

⎞

⎟

⎟

⎟

⎠

[

C2s
(

B1
) (

1 + C2s
(

B1
)

�(p, 1)
)

+
(

C2s
(

B1
)

�(p, 1)
)

2p
2p−n

]
n2

2

.

The desired result can be obtained by scaling.
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With volume doubling the following upper bound for the first Dirichlet eigenvalue of the ball follows easily from a simple
test-function argument.

Lemma 4. Let (Mn, g) be a complete Riemannian manifold. Given p > n
2
, D > 0, there exists � = �(n, p) > 0 andC = C(n) > 0

such that if �(p,D) < �, then for any x ∈M, 0 < r ≤ D

�1(Br(x)) ≤ C r−2.

This is well known to the experts. For completeness we present a proof.

Proof. Let ' ∶ [0, r] → [0, 1] be the cut off function with '|[0, r
4
] = 1, '|

[
3
4
r,r]

= 0, and |'′| ≤ 2
r
. Let d(y) = d(x, y) be the

distance function from x. Using the test function f (y) = '(d(y)) we have

�1(Br(x)) ≤
∫Br(x) |∇f |

2

∫Br(x) f
2

≤ 4r−2
vol(Br)
vol(B r

4
)
≤ 2 ⋅ 4n+1r−2.

Here in the last step we use the volume doubling estimate Theorem 3.

Now using the local Sobolev estimate Theorem 4, Theorem 5 gives the following Harnack estimate for the first eigenfunction
of Ω on a ball.

Theorem 6. Let p > n
2
and Ω ⊂ M be a bounded with )Ω ≠ ∅. Assume that u1 is the positive first Dirichlet eigenfunction of

Ω with diamΩ = D. For Br(x) ⊂ Ω satisfying Br(x) ∩ )Ω = ∅, there exist " = "(n, p) > 0 and C = C(n, p) > 0 such that if
�(p,D) ≤ ", we have

sup
Br∕2(x)

u1 ≤ C(n, p) inf
Br∕2(x)

u1. (25)

Proof. Let �1 > 0 be the first Dirichlet eigenvalue of Ω. Then

Δu1 = −�1u1.

By domain monotonicity of eigenvalues, �1 ≤ �1(Br(x)).
Combining Lemma 4, volume doubling (cf. Theorem 3), Theorem 5, and Theorem 4, we obtain

sup
B r
2
(x)
|∇ ln u1|2 ≤ C1(n, p)r−2. (26)

For any y, z ∈ B r
2
(x), let 
(s) ∶ [0, l] → Ω be a distance minimizing geodesic joint y and z parametrized by arc length. By

(26), we have

ln
u1(z)
u1(y)

=

l

∫
0

d
ds
ln u1 (
(s)) ds =

l

∫
0

⟨∇ ln u1, 
 ′(s)⟩ds ≤
√

C1(n, p)r−1l ≤
√

C1(n, p).

where we used l ≤ r. Hence,
u1(z) ≤ exp

(

√

C1(n, p)
)

u1(y). (27)

According to the arbitrariness of y and z, we have

sup
Br∕2(x)

u1 ≤ C(n, p) inf
Br∕2(x)

u1.

This completes the proof of the theorem.

5 GLOBAL HARNACK INEQUALITY AND THE FUNDAMENTAL GAP ESTIMATE

In this section we derive a global Harnack inequality for the first eigenfunction, therefore getting an estimate on the fundamental
gap. The proofs are the same as in [15], so we omit the proofs.
Let d(x) = d(x, )Ω) and Ωt = {x ∈ Ω|d(x) ≥ t}. Denote T ()Ω, t) = Ω ⧵Ωt.
With the assumption that Ω is (R,H,K)-regular, namely the geometry of the boundary and near the boundary are well

controlled, and the local Harnack estimate Theorem 6 proved in the last section, the argument in [15, Section 2] shows that the
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first positive eigenfunction u1 of Ω is uniformly bounded from below in Ω� and is quasi-isometric to d(x) near the boundary,
where � = �(n,K,H,R) is given by (A1). More precisely, there exist �(n, p) > 0, �(n,H,K,R) > 0, C1(n, p,H,K,R,D) >
0, C2(n,H,K,R) > 0 such that if �(p,D) < � and we normalize u1 so that supΩ u1 = 1, then

u1(x) ≥ C1(n, p,H,K,R,D) x ∈ Ω�
2
3�
C1(n, p,H,K,R,D) d(x) ≤ u1(x) ≤ C2(n,H,K,R) d(x) x ∈ T ()Ω, �).

The proofs of these estimates follow as in [15], see Lemmas 6-8. From these estimates we can derive the global Harnack
inequality that we need, Theorem 7. The details are provided in the appendix for completion. Namely, we have

Theorem 7. Let p > n
2
,D > 0,H,K ≥ 0. There exist explicitly computable R0 = R0(H,K) > 0 and " = "(n, p) > 0 such that

the following holds (R0 is given in Remark 2). If
�(p,D) ≤ ",

then for any 0 < R ≤ R0 there exists a computable constant C3 = C3(n, p,D,R,H,K) > 0 such that the first positive Dirichlet
eigenfunction u1 of an (R,H,K)-regular domain Ω ⊂ Mn satisfies

u1(x) ≤ C3u1(y)

for all x, y ∈ Ω with 0 < d(x) ≤ 2d(y).

Remark 2. The constant R0 ∈ (0, 1) is chosen to satisfy
√

K tan(R0
√

K) ≤ H
2
+ 1
2
, H

√

K
tan(R0

√

K) ≤ 1
2
, and H

√

K
tanh(R0

√

K) ≤ 1
2
.

We are now in the position to prove Theorem 1. Recall the following fundamental gap estimate obtained in [15] which will
serve as the basis for the proof.

Theorem 8. [15, Theorem 1.2] LetM be an n-dimensional compact Riemannian manifold with )M ≠ ∅ and diamM ≤ D.
Suppose

- the first nonzero Neumann eigenvalue �1 ofMR∕2 is bounded below by C� > 0,

- the volume doubling property holds onM with volume doubling constant C0,

- the weak Neumann-Poincaré inequality holds on all balls B = Br(x) with 2B ⊂ Ω, 2B ∩ )Ω = ∅ with weak Neumann-
Poincaré constant CP r, where CP is independent of x and r,

- )M satisfies the interior rolling R-ball condition,

- the first Dirichlet eigenfunction onM , u1, satisfies u1(x) ≤ C3u1(y) for all x, y ∈M with 0 < d(x, )M) ≤ 2d(y, )M).

Then
�2 − �1 ≥ C(C0, CP , C3, R, C� , D).

We apply Theorem 8 to our setting to obtain our main result. In the above sections we showed that the volume doubling
property, local Neumann-Poincaré inequality (14), and Harnack inequality for the first Dirichlet eigenfunction (7) are satisfied.
What is left is deriving a lower bound for the first Neumann eigenvalue of ΩR∕2 where Ω is (R,H,K)-regular. As in [15, Page
3543] we can show ΩR∕2 is

(

R∕4, 2(
√

K +H), K
)

-regular. By (7) diamΩR∕2 ≤ C(n,H,K,R,D). Applying Proposition 1
then gives

�1 ≥ C(n, p, R,D,H,K).
Then we obtain the desired fundamental gap estimate by applying Theorem 8.
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APPENDIX

A GLOBAL HARNACK INEQUALITY OF THE FIRST DIRICHLET EIGENFUNCTION

In this appendix we include, for completeness, the estimates needed in Section 5, which follow directly from the proofs in [15,
Section 2]. The main goal is to prove Theorem 7.
Let d(x) = d(x, )Ω) and Ωt = {x ∈ Ω|d(x) ≥ t}. Denote T ()Ω, t) = Ω ⧵ Ωt. To obtain Theorem 7, on Ω� we will use the

local Harnack inequality, while on the tubular neighborhood of )Ω, we will use that d(x) and the first Dirichlet eigenfunction
are comparable in that region. Essential for the comparison is a bound on Δd(x). The Laplacian comparison estimate for d has
the following form.

Proposition 3. Let Ω ⊂ Mn be a (R,H,K)-regular domain. Then we have

− 1
2�

≤ Δd ≤ 1
2�

and Δd2 ≥ 1

on T ()Ω, �) with
� = 1

4(n − 1)(
√

K +H + 1
R
)
. (A1)

The proof of Prop. 3 follows from the following lemma.

Lemma 5. [16, Lemma 3.2.3] [15, Lemma 2.1] LetN be a compact Reimannnian manifold with boundary )N , and a, b be two
constants such that b ≥ a > 0, b ≥ 1 and the sectional curvature satisfies that −a2 ≤ KN ≤ b2. Then d(x) = d(x, )N) is at least
C2 onN ⧵N� if )N is Ck−1 and

n−1
∑

i=1

−b tan(bd) − ki(y)

1 − ki(y)
b
tan(bd)

≤ Δd ≤
n−1
∑

i=1

−a tanh(ad) − ki(y)

1 − ki(y)
a
tanh(ad)

,

where ki(y) is the i-th principal curvature with respect to the inward pointing unit normal at the unique point y ∈ )N such that
d(x) = d(x, y) and � is as in (A1).

Proof of Proposition 3. Since � < R, T ()Ω, �) ⊂ T ()Ω, R). For any x ∈ T ()Ω, �) and y ∈ )Ω such that d(x) = d(x, y), using
Lemma 5, we have

Δd ≥
n−1
∑

i=1

−
√

K tan(
√

Kd) − ki(y)

1 − ki(y)
√

K
tan(

√

Kd)
and Δd ≤

n−1
∑

i=1

−
√

K tanh(
√

Kd) − ki(y)

1 − ki(y)
√

K
tanh(

√

Kd)
, (A2)

where ki(y) is the principal curvature at y with respect to the unit inward-pointing normal vector. Since II ≤ H , we have
ki(y) ≤ H , and since R ∈ (0, R0]

1 −
ki(y)
√

K
tan

(
√

Kd
)

≥ 1 − H
√

K
tan

(
√

KR
)

≥ 1
2

(A3)

and

1 −
ki(y)
√

K
tanh

(
√

Kd
)

≥ 1 − H
√

K
tanh

(
√

KR
)

≥ 1
2
.

Combining (A3) with (A2) and −1 < tanh x < 1, we obtain

Δd ≤ 2(n − 1)
(
√

K +H
)

≤ 1
2�
.

Since ki(y) ≤ H , and
√

Kd ≤
√

K� ≤ �
4
, we have

Δd ≥
n−1
∑

i=1

−
√

K tan(
√

Kd) − ki(y)

1 − ki(y)
√

K
tan(

√

Kd)
≥ −2

n−1
∑

i=1
(
√

K +H) ≥ − 1
2�
.
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Hence, we obtain
Δd2 = 2dΔd + 2|∇d|2 ≥ −d

�
+ 2 ≥ 1.

Proposition 3 enables us to replace sup
Ω
u1 by d near the boundary, as the following lemmas show.

Lemma 6. Let Ω ⊂ Mn be a (R,H,K)-regular domain. Suppose u1 is the first Dirichlet eigenfunction on Ω. Then there exists
" = "(n, p) > 0 such that if �(p,D) < ", we have

u1(x) ≤
4C(n)
�3

d(x), x ∈ T ()Ω, �),

where C(n) is the constant from Lemma 4. If x0 ∈ Ω with u1(x0) = sup
x∈Ω

u1(x), we have d(x0) ≥
�3

4C(n)
.

Proof. W.l.o.g., sup
Ω
u1 = 1. Let �1 and �2 be positive constants to be chosen later. By Lemma 5, we have on Ω ⧵Ω�

Δ
(

u1 − �2(d − �1d2)
)

= −�1u1 − �2
(

Δd − �1Δd2
)

≥ −�1 − �2
( 1
2�
− �1

)

. (A4)

Since � < R and )Ω satisfies the interior rolling R-ball condition, there exists a geodesic ball B�(x) ⊂ Ω. We infer from
Lemma 4 that there exists � = �(n, p) such that if �(p,D) < � then �1(Ω) ≤ �1(B�(x)) ≤ � with

� = C(n)�−2. (A5)

Choose �1 =
3
4�

and �2 =
4�
�
. Since R ≤ R0 < 1, then � < 1, so from (A4) we get

Δ
(

u1 − �2(d − �1d2)
)

≥ −�1 −
4�
�

( 1
2�
− 3
4�

)

≥ −� + �
�2

≥ 0. (A6)

Since � > 1, we have on )Ω�
u1 − �2(d − �1d2) = u1 −

4�
�

(

� − 3
4�
�2
)

≤ 1 − � ≤ 0. (A7)

(A6), (A7), u1 − �2(d − �1d2) = 0 on )Ω, and the maximum principle imply

u1 ≤ �2(d − �1d2) ≤ �2d =
4�
�
d (A8)

on T ()Ω, �) ∩ Ω. Since u1(x0) = sup
Ω
u1, (A8) yields

d(x0) ≥
�
4�
u1(x0).

In order to bound u1 from below using the maximum principle, it is necessary to bound u1 from below on {d = t} for suitable
t.

Lemma 7. Assume the setting of Theorem 7 and let u1 be the first Dirichlet eigenfunction on Ω. Let u1(x0) = sup
Ω
u1 = 1. Then

on Ω�∕4� we have

u1 ≥ C(n, p)−
8�Cn−1H,K,�∕4�D

� ,

where C(n, p) is given in Theorem 6, � by (A5), and CH,K,�∕4� by

CH,K,�∕4� ∶= 2

(
√

K
H

+ H
√

K

)

cosh

(
√

K�
2�

)

. (A9)

Proof. Let t = �
4�
. For any x ∈ Ωt, Bt(x) ⊂ Ω. Theorem 6 yields that

sup
Bt∕2(x)

u1 ≤ C(n, p) inf
Bt∕2(x)

u1. (A10)

Since � < R, � > 4�2

�2
≥ 4�2, t < R

2
. Hence, Ωt is connected. It follows as in [16, Lemma 3.2.7,p. 60] that we have

diam(Ωt) ≤ Cn−1
H,K,tD.
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The closed set Ωt is compact, so the Hopf-Rinow Theorem implies that through the two points y, z ∈ Ωt satisfying u1(y) =
supΩt u1 and u1(z) = infΩt u1, there exists a minimizing geodesic 
yz ⊂ Ωt joining y and z. Thus the length of 
yz is at most
diam(Ωt). Using (A10) repeatedly along 
yz gives

1 = sup
Ωt
u1 = u1(y) ≤ C(n, p)

2 diam(Ωt)
t u1(z) = C(n, p)

2 diam(Ωt)
t inf

Ωt
u1 ≤ C(n, p)

8�Cn−1H,K,tD

� inf
Ωt
u1.

Lemma 8. Assume the setting of Theorem 7 and let u1 be the first Dirichlet eigenfunction on Ω with u1(x0) = sup
Ω
u1 = 1. We

have
u1(x) ≥

2
3�
C(n, p)−

8�Cn−1H,K,�∕4�D

� d(x), x ∈ T ()Ω, �),

where CH,K,�∕4� is given by (A9).

Proof. Let 
1 > 0, 
2 > 0 be two constants to be chosen later. We infer from Proposition 3 that

Δ
(

u1 − 
2
(

d + 
1d2
))

≤ −�1u1 − 
2
(

− 1
2�
+ 
1

)

(A11)

holds on T ()Ω, �). Hence, the right hand of (A11) is less than or equal to zero if we choose 
1 =
1
2�
. We will apply the maximum

principle on )T ()Ω, �). By Lemma 7, if 
2 =
2
3�
C(n, p)−

8�Cn−1H,K,�∕4�D

� , we have for x ∈ )Ω� ,

u1(x) − 
2
(

d + 
1d2
)

≥ C(n, p)−
8�Cn−1H,K,�∕4�D

� − 
2
(

� + 1
2�
�2
)

= C(n, p)−
8�Cn−1H,K,�∕4�D

� − 3
2

2�

= 0.

For any x ∈ )Ω, u1(x) − 
2
(

d + 
1d2
)

= 0. Hence, the maximum principle yields

u1(x) ≥ 
2
(

d + 
1d2
)

≥ 2
3�
C(n, p)−

8�Cn−1H,K,�∕4�D

� d(x).

The above lemmas yield the desired Harnack inequality for the first Dirichlet eigenfunction.

Proof of Theorem 7. For x ∈ T ()Ω, �) ∩ Ω, we infer from Lemma 6 and Lemma 8
2
3�
C0d(x) ≤ u1(x) ≤

4�
�
d(x), (A12)

where C0 = C(n, p)
−
8�Cn−1H,K,�∕4�D

� . Since � > �
4�
, Lemma 7 implies

C0 ≤ u1(x) ≤ 1, x ∈ Ω� . (A13)

For x, y ∈ Ω with 0 < d(x) ≤ 2d(y), we distinguish several cases.
Case 1. x, y ∈ T ()Ω, �). (A12) yields

u1(x) ≤
4�
�
d(x) ≤ 8�

�
d(y) ≤ 12�

C0
u1(y).

Case 2. x, y ∈ Ω� . (A13) yields
u1(x) ≤ 1 ≤ C−10 u1(y).

Case 3. x ∈ T ()Ω, �) ∩ Ω and y ∈ Ω� . (A12) and (A13) imply

u1(x) ≤
4�
�
d(x) ≤ 4� ≤ 4�

C0
u1(y).

Case 4. x ∈ Ω� and y ∈ T ()Ω, �) ∩ Ω. We infer from (A12) and (A13)

u1(x) ≤ 1 ≤
d(x)
�

≤ 2d(y)
�

≤ 2
�
⋅
3�
2C0

u1(y) =
3
C0
u1(y).

The claim follows by setting C3 = 12�C−10 .
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