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1. Introduction. A closed riemannian manifold M has almost nonnegative
Ricci curvature if the diameter diam M and the Ricci curvature Ric(M) satisfy
diam(M)?Ric(M) > —e(n) for a sufficiently small number e(n) > 0 depending
only on n = dim M. It was proved in [CG1], [CG2] that any closed n-manifold M
with nonnegative Ricci curvature is up to finite cover diffeomorhpic to a direct
product V x T*, where V is simply connected manifold and T* is a k-torus. This
theorem is not valid for manifolds of almost nonnegative Ricci curvature (see
Example 1 below). T. Yamaguchi [Y1] proved that there is a constant e(n,D) >
0, such that if an n—manifold M has Ricci curvature Ric(M) > —e(n,D), and
sectional curvature |Kjs| < 1, diameter diam(M) < D, then M fibers over a
by (M )-torus; here b; (M) denotes the first Betti number of M. In [Y2] he proved
the same result, up to finite cover, for almost nonnegatively curved manifolds M,
i.e. diam(M)2Kjys > —e(n). With an additional assumption on the injectivity
radius, we can prove the following:

Theorem 1. Given n, ig > 0, there is a positive number £(n,ig) depending
only onn and ig such that if the diameter, the injectivity radius and the curvature
of a compact riemannian manifold M satisfy diam(M) = 1, inj(M) > io and
K > —e(n,io), respectively, then M is up to finite cover C* —diffeomorphic to a
direct product V x T*, where V is a simply connected (n — k)-manifold of class
c.

Example 1 (Almost flat manifolds [G2]). A closed almost flat manifold,
in general, is not a direct product of a simply connected manifold with a torus,
e.g. almost flat n—manifolds with fundamental groups of polynomial growth with
degree > n + 1. Hence the above results are not true without assumption on the
injectivity radius.

Example 2 (Almost flat manifolds [G2][BK]). Given n > 0, and 0 < ip <

1, there exists a positive number ¢(n) depending only on n, such that if the
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diameter, the injectivity radius and the curvature of a closed riemannain n—
manifold M satisfy the bounds

diam(M) =1, inj(M) >io, |Kn|<c(n)id,

then a finite covering of M is diffeomorphic to T™.

Proof. Let M be a closed n—manifold with diameter diam(M) = 1. It follows
from Corollary 1.5.1 in [BK] that there is a constant e(n) depending only on n
such that if M satisfies

(1) |Kn| < e < e(n),
(2) inj(M) > 27" (;55)"%,

en
then M is covered by a torus. ]

On the other hand, the fundamental group of a closed manifold M with
nonnegative Ricci is almost abelian, hence has polynomial growth with degree
< n =dim M. It is generally believed that the fundamental groups of almost
nonnegatively curved manifolds have polynomial growth. The sectional curva-
ture case is conjectured by M. Gromov. The authors have been informed recently
that K. Fukaya and T. Yamaguchi had an affirmative answer in this case. In
Section 5, with additional assumptions on the volume or the 1-systole sys, (M)
of M, we will study the fundamental groups of manifolds M with almost non-
negative Ricci curvature.

The proof of Theorem 1 goes roughly as follows. By passing to the limit
for the manifolds satisfying the bounds in Theorem 1 with the lower bound
of sectional curvature converging to zero, one obtains a metric space My, with
nonnegative sectional curvature in a generalized sense. For the universal cover of
such space a splitting theorem has been shown to hold in the sense of distance,
cf. [GP), [Y2]. To show that M, is then, up to finite cover, diffeomorphic
to the product of a simply-connected manifold and a torus, however, is more
involved. One needs certain regularity to conclude that the isometry group is a
Lie group (Section 2) and that such regularity persists after the splitting (Section
3). Anderson-Cheeger’s convergence theorem provides the desired regularity to
work with.

Anderson-Cheeger [AC] proved the following convergence theorem: given
any p > n, o = 1— %, suppose a sequence of pointed complete n-manifold

(Mj,h;,0;) satisfying the bounds
(1) Ric(M;) > —(n—1)A%, inj(M;) > io.

Then there is a subsequence of (M;,h;,0;), which have pointed L' bound,
and converge, in the pointed co topology for o/ < a, to a pointed complete
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L'? riemannian n-manifolds (Muo,g00,0) With respect to the fixed L?P atlas of
harmonic coordinate charts for My,. This is done by proving a LP version of
Theorem 0.1 in [AC] and using the method in [C].

By definition, an n—-dimensional manifold M is of class L?P?, for p > n, if it
admits an atlas of coordinate charts F, : U, — B(r,) C R"™ for M, such that
the overlaps F,, = Fj,o0F,; ! are controlled in L*?, ie. ||Fu|t2» < Cy. A
riemannian metric g on M is of class L!?, if in each coordinate chart F, = (%),
the riemannian metric coefficients gq, := g((0/0z°), (8/0z®)) satisfy

(2) Q;laab < gab < Qu6aba
(3) l9asllLrr(B(r)) < Qus

for some constant @, > 1. In this case (M,g) is called an L!? riemannian
n-manifold. Here || - || ¢.»(q), k > 1 denotes the L¥P-norm for a bounded open
subset 2 C R™. Notice that the Sobolev embedding theorem says that for any
bounded domain £ of class C%! in R, L¥?(Q) c C*~11-(n/p)(Q)). In particular,
an L1? riemannian n-manifold must be a C® riemannian manifold for a = 1 — -:;.

We say (Mj,g;,0;) have the pointed L7 bound, and converge, in the
pointed c* topology for o/ < a := 1— %, to a pointed LYP riemannian n-
manifold (Myo, goo;0) if, with respect to the fixed L?P atlas of coordinate charts
for My, for any r > 0, there are C1*NL?? diffeomorphisms f;‘ from the
geodesic ball B, (0, M) for M, to a pointed open subset (Uj,0;) of Mj;, such
that in each coordinate chart F,, = () for which U, C B,(0, M), the rieman-
nian metric coefficients (g)ab of g := (f7)*g; satisfy (2) and (3) above for some
constant @!, > 1 independent of j, and

4) jlilgo”(g;)ab - (goo)ab“c-a' =0.

Stronger convergence theorems can be obtained if instead of Ric(M;) >
—(n—1)A%, in (1), one assumes |Kps,| < A%. In this case, one can prove that
given any 0 < a < 1, (Mj,g;,0;) sub-converge, in the pointed C1e' topology for
o' < a, to a pointed complete C1'® riemannian manifold. We refer the reader
to [C], [G1], [P], [GW], [K]. This so-called C1'* convergence theorem is actually
valid under the weaker hypothesis |Ric(M;)| < (n—1)A? [A1].

Acknowledgement. The authors would like to thank D. Gromoll for his
advice and encouragement. They also would like to thank M. Anderson, J.
Cheeger, K. Grove and P. Petersen V. for many discussions and valuable sugges-
tions.
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2. The Isometry Groups. We begin with some basic facts for metric spaces.
Let (X, p) be a connected locally compact, complete inner metric space. Here a
metric space is called an inner metric space if the distance between any two points
is the infimum of the metric lengths of rectifiable curves joining them (where
metric length is defined as usual). A rectifiable curve can be parameterized
by arclength. A rectifiable curve v : [a,b] — X, parameterized proportionally
to arclength, is called a minimal geodesic, if it realizes the distance, which is
equivalent to that for some ¢ > 0, p(v(s1), ¥(82)) = c|s1 — 2|, 81, 82 € [a,b]. A
geodesic v will always be a locally minimal geodesic parameterized proportionally
to arclength. In this case, the Hopf-Rinow theorem holds in X, i.e. for any points
x, y € X, there is a minimal geodesic joining them. A normal minimal geodesic
v : [0,400) — X is called a ray. The Busemann function b, associated with «y
is defined as by(z) = lim¢— 400t — p(2,7(t)), = € X. A normal minimal geodesic
£: R — X is called a line through x = £(0). £* will always denote the rays
£%(t) := £(£t), t > 0. The following lemma is basic, and it is well-known in the
case of smooth riemannian manifolds.

Lemma 1. Let (X;,p;), i = 1,2, be locally compact, complete inner metric
spaces. Let X = X1 x Xy be the metric product with the natural induced metric
p = p1® p2. Then for any geodesic v = (y1,72) : [a,b] = X, each; is a geodesic
m X;,1=1,2.

Proof. Without loss of generality, we assume 7 is a normal minimal geodesic.
We will prove each ~; is a minimal geodesic, i.e. for some ¢; > 0, p; ('y,:(t),fy,'(t’ )) =
cilt—t'|, t, t' € [a,b]. For any subdivision T of [a,b] :a =ty < t; <+ <ty =b,

2
L

p(v(a), (b)) p(v(tk+1),7(tk))

I
i

2
i)

\/;1 (’Yl(tk+1)a’71(tk))2 + p2 (72(tk+1),’72(tk))2

]

k=1
N-1 2 rN-1 2
(5) > [ P1(71(tk+1),’)’1(t)k))] + [Z pz (V2 (tkt1),72(tk))
k=1 k=1

\Y
P

2 2
p1(1(a),11(6)” + p2(72(a),2(b))
~(a), (b))

Hence the equality in (6) holds, which implies

(6)

—~~

p

N-1
(7 pi (vi(@), % () = Y pi (Vitk+1),7i(2)), i=1,2.
k=1
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Suppose p1 (11(a),71(b)) # 0. It is clear that the equality in (5) holds iff there is
ur > 0, such that

(8) P2 ('72(tk+1)772(tk)) = ko (71(tk+l)a7l(tk))a k=1, ’N -1
Clearly, from (7) and the sum of (8) from k=1to k=N —1,
pr = p2(12(a),72(b)) /p1 (71(a), 71 () := p > 0,

which is independent of subdivisions 7. Now from (8) one obtains

ltk+1 = tkl = p(V(tk+1),7(2k))

= \/ p1(m (tk+1),'¥1(tk))2 +p2(72 (tk+1),'¥2(tk))2

= 1+ p2p(11(tk+1), 11 ().

Consequently one obtains that pa(y2(te+1),72(tk)) = p/v/1+ 2 [tes1 —til.
Since the subdivision is arbitrary, this proves Lemma 1. [}

An isometry of a metric space (X, p), by definition, is a map ¢ : X — X,
which preserves the metric p, i.e. p(p(z),¢(y)) = p(x,y), z, y € X. A theo-
rem due to van Dantzig and van der Waerden [KN; Theorem 4.7] says that the
isometry group of a connected, locally compact metric space is locally compact
with respect to the compact-open topology. In particular if the metric space is
connected and compact, then the isometry group is also compact. For the proof
of Theorem 1, one needs the following:

Proposition 1. Let (X1,p1) be a connected, locally compact, complete in-
ner metric space which contains no line. Let R* be the Fuclidean space. Let
X = X1 x R* with metric p= p1® || - ||, where || - || is the standard flat metric
of R¥. Then any isometry ¢ of (X,p) can be written as (p1,p2), where @, is an
isometry of (X1,p1) and @y is an isometry of (R*,|| - ||).

Proof. This proposition was proved by Cheeger-Gromoll [CG1] in the case
of smooth riemannian manifolds. Write ¢(z,£) = (<p1(:z:,§),<p2(az,§)), (z,€) €
X1 x RF. Given any (z,£) € X1 x R, £ # 0, consider the line £(t) := (z, é-[t),
t € R. It is clear that o/ is a line again. From Lemma 1 it follows that
(p20£)(t) is a geodesic in R* parameterized proportionally to arclength, thus
(pol)(t) = pa(z,0) + &1, t € R. Since X contains no lines, (¢; o £)(t) is a point,
which implies ¢;(z,£) = ¢1(z,€) = ¢1(z,0), z, £ € X1 x R*. Now fix zo € X;.
For any z € X, there is a normal minimal geodesic ¢ in X; joining zo and z.
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Let o¢ = (0(t),£), € € R*. Consider poog = (p1(0,€), p2(0,8)). It follows from
Lemma 1 that @a(c(t),£) is a geodesic through ¢2(z0,£) in R* parameterized
proportionally to arclength, i.e. @2(0(t),£) = p2(z0,£) +¢&'t, & € R*. We claim
& =0. If ¢ #0, then £(¢) := (¢1(w0,£),<p2(m0,§) + ]%It) is a line X. From the

same argument as above it follows that (¢~ o #)(t) = (&, £+¢&"'t), t € R, for
some |¢”| = 1. By the definition of the Busemann functions, one obtains

0 = b(p-toey+ (75 (1)) = bee+ (9o e)(®) = I€']-

It is a contradiction. Thus £ is a point. Therefore @2 (o (t),£) is independent of
t, which implies that p2(z,€) = p2(z0,£). We complete the proof. O

Now we consider a connected n-dimensional C* riemannian manifold (M,g),
0 < a <1, ie. an n-manifold of class C1'* with C® riemannian metric g. For
any absolutely continuous curve in M, its length is defined by g as usual. By
definition, the distance pgy between two points is defined as the infimum of the
integral length of absolutely continuous curve joining them. It is clear that the
topology induced by p, is equivalent to the original manifold topology. A curve in
M is rectifiable with respect to py iff it is of bounded variation in local coordinates
(cf. [My]). In particular, minimal geodesics (with respect to py) are Lipschitz
continuous in local coordinates. Furthermore M. Morse proved that the integral
length of an absolutely continuous curve is equal to its metric length defined by
pg- Thus minimal geodesics (with respect to pg) coincide with the extremal in the
variational problem associated with the integral length function. We say (M,g)
is complete if (M,pg) is complete. Hence a complete C riemannian manifold
is a locally compact, complete inner metric space. Complete C* riemannian
manifolds (M, g) have nice properties as we expect. For example, any geodesic
in (M, g) is of class C1 (cf. [CH]). However, since a geodesic may have branched
points and may not be extended to R, the exponential map need not be defined.
Thus the normal coordinates need not exist.

Theorem (Calabi-Hartman [CH]). Let (M,g) be a connected n-dimen-
sional C* riemannian manifold, 0 < a < 1. Then any isometry ¢ of (M, py) is
of class C1®. Furtermore ¢ satisfies

v'g=g.

Remark 1. For complete C° riemannian metrics on M, the isometry need
not be of class C* (cf. [CH]).

Proposition 2. Let (M,g) be an n-dimensional connected complete C*
riemannian manifold, 0 < o < 1. Then the isometyry group Isom(M) of (M, py)
s a Lie group, which acts effectively on M as a transformation group, and the
mapping Isom(M) x M — M, (p,z) — ¢(z), is of class C1.
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Proof. First notice that the isometry group Isom(M) is locally compact with
respect to the compact-open topology (cf. [KN; Theorem 4.7]). Then from the
Calabi-Hartman’s theorem above it follows that each isometry as a homeomor-
phism of M is of class C**. Thus Isom(M) is a Lie group and the mapping
Isom(M)x M — M is of class C! as follows from Montgomery-Zippin [MZ;
p. 208]. m}

3. The Splitting Theorems. It is well known that any complete open rieman-
nian manifold M with nonnegative sectional curvature can be decomposed into
a riemannian metric product V x RF where V is a riemannian manifold contain-
ing no lines. This splitting theorem is due to Cohn-Vossen in the 2—-dimensional
case, to Toponogov [T] in the higher dimensional case, and it is actually valid
under the weaker hypothesis Ric(M) > 0 [CG2].

In this section, we will prove the following:

Theorem 2. Let (Mj,g;;0;) be a sequence of pointed complete n-manifolds
satisfying the bounds

Ky, > -3, inj(M;) > o

with limj_oo Aj = 0. Suppose that (Mj,gj;0;) have the pointed LYP bound, and
converge in the pointed co topology for o/ < a:=1-— %, p > n, to a pointed
complete LY'P riemannian manifold (Mw,go0;0). Then (Moo,goo) is isometric to
a riemannian metric product (V x R¥, g1 ®6), where (V,g,) is a C* riemannian
submanifold containing no lines, with the induced riemannian metric g1 of goo,

and the isometry between My, and V x RF is a CY diffeomorphism preserving
the riemannian metrics.

Remark 2. We conjecture that Theorem 2 is valid under the weaker hy-
pothesis Ric(M;) > —(n— 1)), instead of Kps; > —A%. Then the proof implies
that Theorem 1 is also valid under the weaker hypothesis Ric(M) > —e(n,io).
Partial results have been obtained by the authors. For example, if (Moo,goo)
contains a line £, then the Busemann functions b*, associated with ¢*, satisfy
bt +b~ =0, and b* (hence b™) is of class C1* for 0 < o < 1. The sectional

curvature condition in this paper is used only in proving the convexity of b%.

For the proof of Theorem 2, we will prove the following lemmas.

Lemma 2. For each (Mj,g;j;0;) in Theorem 2 and any point x; € M;,
the distance function p; := p;(-,x;) satisfies

/ pidjpdu; < (n— 1)/ pAjcothA;p; dp;
M; M;
for all nonnegative functions ¢ € C§°(M;), where p;(-,-), A; and du;, respec-

tively denote the distance function, the Laplace operator and the volume element
defined by g;.
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Proof. Let Cy; denote the cut-locus at z;, and let Qy; = M;\ Cy;, which
is a star-like region. It is well-known that p; is smooth in ; and satisfies

Ajpj < (n - 1))‘1’ COth/\jpj.
One can choose a sequence of star-like regions {2 € {23, such that

lim Q¢ = Qy;

e—0

and Op;/0v > 0 on 8, where v denotes the outward-pointing unit normal to
09,. Clearly,

/ piljpdu; = lim/ Pl du;
Mj e—0 Qe

for all nonnegative functions ¢ € C§°(M;). By Green’s formula (which is valid
for Lipschitz continuous functions), one concludes

O0p.;
/ pi ;e dpu; =/ (Ajps)e dpg, —/ %<Pd8j
Qe Qe 09,

14

< /Q (Ajpj)e du;

<(n- 1)/ pAjcothAjp; dp;j. O
Qe

The proof of Lemma 3 below follows from (4).

Lemma 3. For any fized point zo € M, let poo(+, o) denote the distance
function defined by goo in My, from xo. Then for any compact subset K, zg € K,
there is a sufficiently large r > 0 such that zo € K C B,(0; M), and the induced
distance function p} := (f])*p; converges to poo, uniformly on K.

Lemma 4. Let {;, be a line in (Ms,900;0) through zo = £4,(0). Let bfo
denote the Busemann functions associated with £, Then bE satisfy

/ b::oAOO‘PNoo 20
Mo

for all nonnegative functions ¢ € C§°(My), where Ao and duso, respectively,
denote the Laplace operator and the volume element defined by goo.
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Proof. For any nonnegative function ¢ € C§°(M), and any t > 0, by Lemma
3 we can choose a sufficiently large r > 0, such that ££ (¢), supp ¢ C By(0; Mo),
and pj; converge to p%, = pool(", ¢£ (t)) uniformly on supp ¢. Let A} and dp;
denote the Laplace operator and the volume element defined by gJ From Lemma
2 it follows that

/ / / / !
p-A-<pp-S(n—1)/ @Ajcoth; pldu’.
[Mj =5 PHj (R 3 POl

Since in each coordinate F, = (z%) for My, the riemannian metric coefficients
(95)ab of g; satisfy the bounds (2) and (3), together with Lemma 3, one obtains

/ 5 dp; — / SNTLTARS
Moo Moo

Further, the uniform bounds (2) and (3) for (g;)ss imply that (g;)eb and (g;)*?
converge, in the weak LP topology, t0 (goo)as and (goo)??, respectively. Hence

lim [ ph Alpdy; = / Pl DooPhloo-
Moo Moo

J—roo

lim
j—oo

Letting j — 400, one concludes

n—1
/ PooBootp ditoo S/ ——¢ dltoo-
Mo My P

oo

Clearly,
/ (t = p5o) Boop dptios > / ————<p dioo-
M;

Letting t — +o0, since t — pf — bz, uniformly on compact subsets, one obtains

bz, Aco®dpice 2 0.
Mo

The following splitting property is proved in [GP2], [Y2].

Proposition 3. Let (Mj,g;;0;) be a sequence of pointed complete n—mani-
folds whose sectional curvature satisfies the bound

Ky—j > —)2
with hm,_.oo Aj = 0. Let p; denote the metric induced by g;. Suppose (M, pj;0;)

converge, in the pointed Hausdorff metric, to a pointed complete metric space
(Xo00s0j;05). Then (Xoo,po0) is isometric to a metric product

(VxR ;o] - 1)

for some totally convex subset (V,p1) containing no lines, where p; is the restric-
tion of poo to V.
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Sketch of proof. Clearly, (X,000) is a locally compact, complete inner
metric space. Further, the Hopf-Rinow theorem holds in X, (cf. e.g. [G1]). By
Lemma 2.2 in [GP1] it is not difficult to prove that X, satisfies the following:

Property T. For any normal minimal geodesics o : [—a,b] — Xo and
v : [0,c] = X, with 6(0) = v(0), there is a constant n € [—1,1] such that for
8 € [—a,b], t €[0,c],

Poo((8),7(1)* < 82 +42 —7st.
where a, b, ¢ are positive numbers.

Property T above shows that geodesics in X, have no branched points.
Since any totally convex subset in X, still statisfies Property T above it suffices
to prove that if X, contains a line £, through z, = £;,(0), then (X o, poo) is s0-
metric to (V x R,p1 ® || - ||) for some totally convex subset (V,p1) in (Xoo,foo)-
Let b7, denote the Busemann functions associated with £; . First by Property
T above, one obtains

9) b +b; =0.

Then by using Property T above and (9), one can conclude that the Buseman
functions bf are linear along geodesics. Thus all level sets V; := (b%)7'(2),
t € R, are totally convex. Furthermore, for any point z € X, there is a unique
line £, through r € X, satisfying

(10) bi (€:(t)) = t+b% (x), t €R.

Let b denote the Busemann functions associated with ££. Then one can easily
check the following equality holds:

(11) bz, () = bz, (z) + b5 (v), z, Y € Xeo.

Now we construct a map @ : (Vo x T,p1 @6) = (X0, po0) defined as &(z,t) =
£,(t), where Vg = (b3 )~*(0). We claim that ® is a (distance-preserving) isome-
try. The following argument is different from that given by Grove-Petersen[GP2].
It suffices to prove that for any points z;, zo € V! and s, t € R,

(1) Poo(lz,(8)T2) = 1/ Poo(T1,22)? + 8%
(i) p(ezl (8),&32(3)) = Poo(T1,%2).

To prove (i), without loss of generality, we assume s > 0. Applying Property T
above to £, |[—T,s] for large r and a normal minimal geodesic v issuing from z;
to z2, together with (11) one concludes that

(12) Poo (em (3)"’”2)2 < pm(wl’xz)z +s7.
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Similarily by (11) and applying Property T above to £, |[—s,r], y1 = £z, (s), for
large r and a normal minimal geodesic + issuing from £, (s) to 2, one obtains

(13) Poo(fl;l,xZ)z < Poo (Zan (3)’3"2)2 —s%

Then (i) above follows from (12) and (13). To prove (ii), let y; = £;(s), 1 = 1,2.
Then z; = £,,(—s). It follows from (i) that

VPoo(21,22)? + 8% = peo (ea:l (3),532) = Poo (y1,lfy2(—8))
= V/Poo(y1,¥2)% + (—5)?

= \/p°° (£21(8),a, (-SV))2 + 82,

from which (ii) follows. o

Proof of Theorem 2. 1t follows from Lemma 4 and (9) that the Busemann
functions satisfy

/ b3, Asop dpteo = 0.
Mo

A standard result from PDE [LU; Theorem 15.1] shows that b% are of C1*N
L?P. Thus the level set V; = (b% )~'(t) is a C** submanifold of M. It follows
from Proposition 3 that there is a (distance-preserving) isometry

d:(Vx Rk,pl ®6) = (Moo, Poo),

where V is a totally convex C® submanifold of M, with resriction p; of poo.
Let g; be the restriction of goo to V. We claim that p; is induced from g,, i.e.
for any z, y € V, pi(x,y) = infccv lengthy (c), where the infimum is taken
over all absolutely continuous curves ¢ in V joining z and y. On one hand, for
any absolutely continuous curve ¢ in V joining z and y, p1(z,¥) := poo(z,y) <
length, (c) = length, (c). On the other hand, there is a minimal geodesic v
in (Moo, Poo) joining z and y. Since minimal geodesics must be the extremals in
the calculus of variation problem associated with integral length, one has that
Poo(z,y) = length, (v) = lengthy (7). The convexity of V implies that v C V.
Thus poo(,y) = lengthy () = lengthy (7). This proves the above claim.
Thus the metric p; @ || - | on V x R* is one induced by g; @ 6, where § is the flat
riemannian metric on R¥. From the Calabi-Hartman theorem the isometry &
is at least of C1*® and preserves the riemannian metrics, i.e., ®*(91 ®6) = goo-
This proves Theorem 2. 0
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4. Proof of Theorem 1.
We prove it by contradiction. Suppose Theorem 1 is false. Then there is a
sequence of riemannian manifolds (Mj,g;) satisfying

L4 KMj 2 _A?,
o inj(Mj,g;) > io,
o diam(M;) <1,

with lim; \; = 0, such that no finite cover of M; is diffeormorphic to V x T*
for some closed simply connected (n — k)-dimensional manifold V. From the
Anderson-Cheeger’s C*—precompactness theorem [AC] one concludes that given
p>mnand a=1-2, passing to a subsequence if necessary, there are C Lan 2P
diffeomorphisms f; : M := M; — M; such that with respect to the fixed L?
atlas of harmonic coordinate charts for M, g; = f;g; have the LY? bound, and

converge, in the C*' topology for o’ < a, to an L riemannian manifold (M, g)
(for definition see Section 1 above). Let 7 : (M;5) — (M;p) be a universal
covering map. Let §} := m*g; and § = 7*g. Then, with respect to the induced
L*? atlas of harmonic coordinate charts for (M,3), g; have the LY? bound

(independent of j), and coverge, in the c* topology, to the LY riemannnian
manifold (M,§). Since the sectional curvature of g; satisfies K ,3) > —/\]2,
lim;_, 400 Aj = 0, it follows from Theorem 2 above that (M ,§) can be decomposed
into a riemannian metric product (V x R¥,g; ® §) for some connected totally
convex C® riemannian submanifold (V,g;) in (M,§). As proved in [CG2], one
knows V must be compact. From Proposition 1 one concludes that Isom(})
can be written as Isom(V) x Isom(RF). It follows from Proposition 2 that
Isom(V) is a Lie group and the mapping Isom(V)xV — V is of class C*.
Therefore the argument in [CG1] carries over to the rest of the proof. Let
m :=m(M;p) C Isom(M) = Isom(V) x Isom(R¥) be the fundamental group.
Following [CG1], let p; : m — Isom(V) and pp : 11 — Isom(R¥) be the
natural projections, respectively. It is clear that ker(py) is finite. For the sake of
simplicity we assume that ker(p;) = 0, i.e. ps is injective. The natural projection
M =V x R¥ — R* induces a continuous map M = M/m; — R¥/py(m;). Thus
pa(my) is a cocompact discrete subgroup of Isom(R¥). Thus there is a abelian
subgroup I'™* C m; of finite index such that po(T™*) is a lattice in the subgroup
L of translations in Isom(R*). Let t : a € R* — t(a) € L be the natural
isomorphism, where t(a)(¢) = £+a, £ € R*. Let H = p;(T*) C Isom(V)
and let H, be the connected component of the identity in H. Then H, is a
connected abelian Lie subgroup of Isom(V'), thus it turns out to be a torus. Let

T = ™ Np;*(H,) which is of finite index in 7;. Define a homomorphism ¥ :
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p2(T') C L — H, by p2(g) — p1(g), g € T. Since H, is a torus, ¥ can be extended
to a homomorphism ¥ : L — H,. T acts on V x L by g(z,t(a)) = (x,p2(g)t(a))
and on V x R* by g(z,a) = (p1(9)z,p2(9)a) = (p1(9)z,t(p2(9)) +a), g € T,
respectively. We construct a C'—diffeomorphism f : V x L — V x R* = M by
f(z,t(a)) = (¥(t(a))z,a). Clearly, fog = gof, g € I'. Therefore f induces a
C'—diffeomorphism f: V x L/T =V xT* — (V x R¥)/T = M*, where M* is a
finite cover of M. It is a contradiction. 0

5. Fundamental Groups. It is well known that if a closed riemannian n—
mani-
fold M has nonnegative Ricci curvature, then the fundamental group, m; (M),
has polynomial growth with degree < n (see [M]).

Let M be a closed riemannian manifold. Let sys,(M,p) denote the lower
bound of the lengths of noncontractible curves at z € M, and we put sys, (M) =
infzenr sys;(M,z), which is called the first systole of M. We have the old theo-
rem due to Hilbert and Birkhoff, that if M is a closed riemannian manifold, then
two (not necessary distinct) points in M can be connected by a geodesic curve
in a prescribed homotopy class. These geodesics are obtained by minimizing the
energy among all maps in the given homotopy class. We can prove the following:

Theorem 3. Given n, L > 0, there exists a constant ¢ = e(n,L) > 0
depending only on n and L such that if a closed n-manifold M admits a metric
satisfying the conditions diam(M) = 1, sys,(M) > L and Ric(M) > —¢, then
the fundamental group of M is of polynomial growth with degree < n.

The argument is similar to that given in [We] where the second author
proved the following:

Theorem 4 (Wei). Given n, v > 0, there exists a constant ¢ = e(n,v) > 0
depending only on n and v such that if a closed n-manifold M admits a metric
satifying the conditions diam(M) = 1, Vol(M) > v and Ric(M) > —¢, then the
fundamental group of M is of polynomial growth with degree < n.

Proof of Theorem 3. First let us assume that M is in the following class:
(14) Ric(M) > —(n—1)A%,  sys;(M)>L, diam(M)=1
for some positive constants L,\. It was proved by M. Gromov ([G1], Proposition

5.28) that for any point § in the universal covering M of M, the fundamental
group m1(M,p) admits a finite system of generators {gq }2)_; such that ||ga|| :=
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d(gap,P) < 2, diam(M) = 2, and every relation is of form g,gs = g,. Now it is
clear that BL/2(gaﬁ,M) N By /2(98p, M) =0, for a # 8. Thus

N
> vol(Br/2(gaps M)) < vol(Bair2(5,M)).

a=1

By the Bishop-Gromov volume comparison theorem one obtains

Thus

vol(Br/2(gad, M)) S vol(Byy1./2(gads M))
JEPsinh = atdt o2 sinh ! Mtdt

0
vol(By1/2(8, M))
TR ginhn 1 wtdt

44L/2 -1
sinh™ ™" Atdt

N< fo /7 nol := N(n,L, ).
Jo 7" sinh™ ™" Atdt

Therefore compare with [A1] we prove the following

Theorem 5. There are only finitely many possibilities for w1, (M) among
compact n-manifolds satisfying (14).

Now the argument in [We| carries over to the rest part of the proof for
Theorem 3. a

(A1)
(A2]
[AC]
(BK]

€]

[cG1)

[CG2]
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