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Volume Growth and Finite Topological Type

ZHONGMIN SHEN AND GUOFANG WEI

1. Intreduction

The structure of an open manifold with nonnegative Ricci curvature has
received much attention recently. On one hand, Sha-Yang’s examples [SY1,
SY2] demonstrate that such a manifold could have infinite topological type.
On the other hand, the beautiful result of U. Abresch and D. Gromoll [AG]
shows that if the manifold M" is not too “large” at infinity and the sec-
tional curvature is bounded from below, then it must be of finite topological
type. Here the “largeness” at infinity is measured by the notion of diameter
growth introduced in [AG]. Precisely they require that the diameter growth
PDp,r)= o(r” ") for some point p. Following this line, the first author also
proved variants of this result [S].

A natural generalization of Abresch-Gromoll’s result would be to place
conditions on the volume growth instead of diameter growth, as the fact that
the diameter growth is not more than r* implies that the volume growth
is not more than r"*®*7V%_ In fact it is generally belicved that Abresch-
Gromoll’s result would continue to hold for a nonnegatively Ricci curved
manifold whose volume growth is not more than #*. The purpose of this
paper is to present the following result.

We assume that Riemmannian manifolds under consideration will always
have “weak bounded geometry.” We say a complete manifold M has weak
bounded geomeiry, if it satisfies the bounds

(1) K =infK, >—00,  ©=infvol(B(x, 1)) > 0.

THEOREM 1.1. Let M" be complete with weak bounded geometry (1) and
Ric(k) > 0 outside a geodesic ball B(p, D) for some 2 <k <n-—1. There
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is a constant ¢ =¢(n, k, K, v, D) such that if

vol(B(p, 1))
r—+00 ?‘1+1/(k+1)

lim <cC,
then there exists a compact set, C, such that M "\C contains no critical points
of p. In particular, M " has finite topological type.

The proof of Theorem 1.1 will be given in §3. Here for some 1 < k <
n — 1, we say that the kth Ricci curvature is nonnegative, Ric(k) > 0, at
some point x, if for every (k + 1):dimensional subspace V' C T.M,

k+1
S (R(e,, v)v, €)= 0 forallvelV,

i=1

where {e,,... , €.} is any orthonormal basis for V. Thus for example
Ricm > 0 means exactly the same as K, > 0 while Ric(n_l) > 0 is the
same as Ric> 0.

As a special case of Theorem 1.1, we have

COROLLARY 1.2. Let M" be a complete manifold with weak bounded ge-
ometry, Ric > 0 outside a compact set and vol(B(p, r)) = o(r”” "y for some
peM". Then M" has finite topological type.

REMARK. By the Bishop-Gromov comparison theorem, one can show that
for any complete open manifold M" with Ric(M) >0,

vol(B(p, r)) = c(n)vol(B{p, 1}) -, peM,r>1;

see [CGT], Calabi and Yau [Y]. Thus our condition on the volume growth
requires it to be close to the minimum growth. On the other hand there arc
manifolds with nonnegative Ricci curvature that do not have weak bounded
geometry; see [CK].

2. Critical points of distance functions

The fundamental notion involved in such finite topological type result is
that of the critical point of a distance function, first introduced by Grove
and Shiohama. For this and the following fundamental lemma, the reader is
referred to [G, C].

Isotory LEMMA. If r; <1, € 400 and if a connected component C of
B(p,r,)\B(p, r,) is free of critical points of p, then C is homeomorphic to
C, x[r;, r,), where C, isa topological submanifold without boundary.

We now look for conditions that will enable us to tell whether a point is a
critical point of p or not. For r >0 and a point p on a compiete manifold
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M, let
R{p, r)={p(r), » a ray from L.

R(p, r) consists of points of intersections of the geodesic sphere of radius
¥ w1th all the rays emanating from p. Let R (X)) =d(x, R(p, r)), where
=d(p, x). The excess function is defined as

¢,(x) = im(d(p, x) + d(x, S(p, 1)) - 1),
where S(p, t):={x e M; d(p, x) = t}. Clearly,
(2) e, (%) < lim (d(p, x) +d(x, 7,(1)) ~ 1
for any ray 7y from p. The following inequality is then trivial.
3) &,(x) < R, (x).
The significance of the excess function lics in the following

LemMMA 2.1 [S, Lemma 10]. Suppose that M has sectional curvature Ky >
—K (K > 0). Then for any critical point x of p,

ex/f—(d(p,x)

e,(x) > —

\/— cosh\/_d(p x)

For our purpose, we need to obtain a better estimate for ¢ ,{x) than (3)
in the case that R1c )2 0.

PROPOSITION 2.2. Suppose R1c(k =0 on M\B(p, D) for some 2 <k <
n—1. Then for all x € M\B(p, 2D)

R, () )”"‘

4 e,(x) <8R (x) (m

Proor, If Ric(k) > 0 on all of M, then the estimate (4) is known; see [S,
Lemma 12}, also compare [AG, Clin the case k = n — 1. Now if Ric W = 0
only on M\B(p, D), the estimate (4) can be obtained by a modlﬁcatlon of
the argument in [S]. We need the following

LEmMA 2.3 [S, Lemma 11]. Let M" be complete and p,q € M". Sup-
pose that q is not on the cut-locus of p (hence d (X)) :=d(p, x) is smooth
near q) and Rlc(k) > 0 along the minimal geodeszc o from q to p. Then
Jor any orthonormal set {e,, .. » €1} in T, M with &(0) € span{e,},

k+1

k
ZDde!,e)<d( I

i=1




542 ZHONGMIN SHEN AND GUOFANG WEIL

Fix any point x € M\ B(p, 2D). Let ¥y be the ray emanating from p
such that for z = yp(r) € R(p, r), where r=d{p, x),

(5) R (x)=d(x, z).

We may assume that Rp(x) > 0, otherwise it is done. Since d(x, (1)) —¢
is nonincreasing in ¢, it follows from (2) that forall 0 <¢, <1¢,,

(6) e,(x) Sd(,(1,), %)+ d(r, (1), X) — (1, ~ 1),

Let # > 0 be a small number (# < 2R (x)) and R= R (x)+#. Itis easy
to see that if a minimal geodesic ¢ from yp(to) to a point y in B(p, R)
intersects with B{p, D), then ¢, <D+ 2R (x}+#. Take 7, =D + 4R (x)
and 1, =2d{(p, x)—t, . Let

ePlpz(y) :d(pls y)+d(p29y) _d(plspz):
where p, = yp(t!.) . Then it follows from (6) that
(7) &,(x) < €, (%).

Following the line in {AG], we will show that

2k C Mk
@) AR k—1 (2(k + I)Rp(x)kH) ’

— k k
where C = g mm T @ 0K, -
Now if R,(x) > 55d(p, X), then (4) follows from (3). Thus from now
on we will always assume that R (x) < 55d(p, x). In this case

8k

®) C<Tp.o

Assuming (8) and making use of (7) and (9), one can easily obtain (4).
The outline of the proof of (8) is given as follows. Let

| k-1

dp(f) = m(f RITORM 4 —}“‘—"‘"(f2 - R%).

2(k+1)
Let
f0)=Clopld(x,y) ~e,, ). yeBE,R),

where C' > ) ke T, % —x - By the choices of #,, one see that for any
y € B(p, Rp + ), the minimal geodesics from y to p; and x, respectively,
do not intersect with the bad set B(p, D). Following the proof of Lemma {2
in [S] and using Lemma 2.3, one can show that for any y € B(p, R)\ {x},
there is an orthonormal set {e,, ..., ¢, +1} in T yM such that the following
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inequality holds in a generalized sense (see [S]):

k+1 5 & %
D f [ b e, 2 Cj'r = —_
; > e dp;,y) dp,,¥)
k k
>C' - _
2 ¢ dp,, x)-R d(p,, x}-R
Thus f has no locally maximal point in B(x, R). Notice that f lste, ) S0
and f(z) >0, where z is defined in (5). One has that for any 0< p <R,

! .
0</(2) < Cdplp)~ min e, , (),

> 0.

which implies

e (x)<

. !
pp,(¥) S in € p, V) +2p < Cgp(p)+2p,

where we have made use of |€P1 2, (x)— € p, ()| € 2d{x, y). One obtains

. !
€5, (¥) < min {C' ¢ (p) +2p}

) 1k
< 2k C R
S E-T\ 2+ D) '
Letting # — 0 (hence R — R (x)) and C' — C, one obtains (8). o

Note that § < log(e’/coshr) for r > 10. Hence combining Proposi-
tion 2.2 and Lemma 2.1, we have

LEMMA 2.4. Let M" be complete with Ricy, > 0 on M\B(p, D) and
Ky2—-K(K>0). If d(p, x) > max{10/VK, 2D} and

) —
R (x) < EK k/(2(k+1))d(p, x)l/(k+1) ’

then x is not a critical point of p .

Now we shall introduce a notion of essential diameter of ends {compare
[C]). Let M be a complete manifold and p € M. For any r > 0, the
essential diameter of ends at distance r from p is defined by

Pp,r)= s%p diam(Z) ,

where the supremum is taken over all boundary components Y of M\
B(p,r), with 3NR(p,r)# 0. Let 3", be a boundary component of M \
B(p, r) with 3" NR(p, r) # §. By the definition of R,(x), one has that for
any x €3, Rp(x) <Y (p, r). Thus one has the following theorem which
is proved in [S] in the case Ric,, > 0 on all of M".
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TuEOREM 2.5. Let M" be complete with Ricy, > 0 on M\ B(p, D) and
K,; > —K (K > 0). Suppose that

i g(psr)

Tim —k/{2(k+1)) )

1
rtoo” 1f{k+1) < EK
Then there is a compact subset C in M" such that M\ C contains no critical

pointof p.

PrOOF. Applying Lemma 2.4, one concludes that there is a large number
ry such that for any r > ry,if 3, is a boundary component of A \B{p,r)
with 3> NR(p, r) # 0, then Y, is free of critical points. Now fixing Eru ,
let 7, be a ray from p with y(r,) € Ern . Denote by 3, the boundary

component of M\ B(p, t) with p(¢) € 3_,. Thus the set

U=Uzt

t=r,

is free of critical point of p. By using the Isotopy Lemma one can see that
U coincides with an unbounded connected component of M\ B(p, r,), and
U is homeomorphic to Efo %[0, +oc}. It is clear that there are only finitely
many (bounded and unbounded) connected components of M \ B(p, ry),
which contain points with distance from p at least #, + 1. Thus there is
r, = r, such that M \ B(p, r,) is contained in the union of the unbounded
components of M \ B(p, r,}). Therefore M \ B(p,r) is free of critical
points. 0O

3. Volume growth and diameter growth

The purpose of this section is to provide some relations between the vol-
ume growth and diameter growth for complete manifolds with nonnegative
Ricci curvature.

LEMMA 3.1. Let M" be complete with v = infvol(B(x, 1)) > 0. Then
forany pont pe M” and r > 2,

P, 1 < yvolBE, r+2)\ B, r-2).

PrOOF. The observation here is that under our assumption the volume of
annuli can be used to estimate the essential diameter of ends. Let ., be
a boundary component of M \ B(p, r) such that 3, NR(p, r) # @. Then
there is a ray 7, such that 7p(r) € -
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Let {B{p;, l)}j.\;l be a maximal set of disjoint balls with radius 1 and
center p; € 3 . Then

Cz

B(p;.2)>Y,,
1

I

F
and

N < Svol(B(p, r+ 2\B(, 7 2))
By the connectedness of 2., » one can show that for any point x 2., there

1sasubsetofps sy, 4y, ..., G, k<N, such that x € B(g,,2), » p(r)e
B(q,,2),and

B(g,, 2)N B4, D#B, 1<t<k-1,

Now one can easily construct a piecewise smooth geodesic ¢ joining x and
Y (r) through ¢’s. Thus

d(x, ,(r) < length(c) < 4N < gvol(B(p P 2\B(, r—2)).

Therefore
2, 7)< SvolBo, 1+ 2)\B, - 2)).

PROPOSITION 3.2. Let M" be complete with Ric >0 on M \B(p, D) and

Ric > —(n - DH* on B(p, D). Then there is a constant ¢ = c(n, H, D)
such that forall R>r > 2D,

Ry
vol(B(p, R\B(p, r)) < cf ?vol(B(p, ) dt
where ¢ =c(n, H, D).

Proor. Let U M be the unit sphere in T M . Foreach v e U M, let ¢,
denote the cut value of v. Thus if U, = {tv € T, Mt <1}, then exp, | g,

is an imbedding onto M\C \C, , where C denotes the cut-locus, which is of
MEAasure zero.
For 0<r<R,

vol(B(p, R\B(p, r)) = ] det(exp,, ) dA

U,n{tufr<t<R}

R
- f / det(exp ) dv | dt
r U8y r

Now fix a vector v € U,M . Let y, (f) be the geodesic from p with $(0) = v .
Denote f (1) = det(exp ;) - By the Basic Index Comparison [CE], we have
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for r<t,,
L)
Jo(r)

for all smooth functions g(f) with g(0) =0, g(r) = 1. By taking git) =
tr_l(r > D), we have

</ "= 1)g (0 ~ Ric(3, , )8 dt — (n— ) !
0

L) .

222
fv(!‘)_./; (n—1)H"r "t dt.

(log £,(M)IX < %(n ~)DEY T - %(n ~)D’H’R”!
< %(n ~)D*H* (1,2 R=r>D).

Therefore f,(R) < cf,(r), where we have put ¢ = exp(3(n — I)DZHZ) . Let
f(t) =0 for £ > ¢, and [ (1) = f,(&) for t <¢,. Then LR < cfy(m
(R>r>D). Now

n—1

7 [ R = ]Sfmlj;(R) dv < C./S;’-‘ 7.(r) dv.
Assuming R > 2D and integrating with respect to r from D to R, wehave

f f(R)dU<£ch 7y dvdr < P evolBp, R)
i “R'-D" Jp Jg 7 - R P

Hence for R>r > 2D,

R
vol(B(p,R)\B(p,r))=./r (fsnlf_v(t)d'u) dt

®1
§2ncf ?vol(B( ,0dt. 1
r

COROLLARY 3.3. Let M" be complete with Ric >0 on M\B(p, D) and
Ric > —(n — I)H2 on B(p, D). Suppose v = infvol{(B(x, 1)) > 0. Then
there is a constant ¢ = ¢(n, H, D) such that for r > 2D+ 10,

—1vol(B(p, r+2))
r+2
Now Theorem 1.1 follows from Theorem 2.5 and Corollary 3.3.

D(p,r)<c(n, H, D)v

4, Sha-Yang’s examples

Sha-Yang’s examples are the first kind of the nonnegatively Ricci curved
complete manifolds having infinite topological type. It is thus of much inter-
est to compute its various geometric quantities such as the diameter growth
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and the volume growth. In fact in [SY1] it is pointed out that for the 7-
dimensional example constructed there, the degree of diameter growth is % .
What we presented here is a detailed computation for this and other exam-
ples in [SY2). We acknowledge gratefully here the helpful conversations with
D. Yang. ‘
Sha-Yang’s examples are built upon manifolds obtained by rotating a curve.

We first establish a simple lemma about such manifolds.

LEMMA 4.1. Let f:R" — R" be a smooth function. The eguation p =
f(x) defines a surface of revolution in R"™" | where p =1/ yl2 + yﬁ and

(X, 1050, y,) are the coordinates of R™' . Assume Jor x large, f(x) =
O(x%), o < 1. Then the diameter growth of such a surface is at most r* and
hence the volume growth is at most y'H"—De

PROOF. Let r = d(0, (x,y)). Then r = [*4/1+ (f(x)%dx. Our
assumption implies that f'(x) = O(xa‘l) < O(1). Hence

(10) x<r<Cx,

for some positive constant C .

Now clearly the essential diameter & (0, r) <2nf(x) = O(x"). Hence by
(10) Z(0,ry< O™ . [

Recall that Sha-Yang’s examples R”'™ (m, n > 2) are obtained by per-
forming surgery infinitely many times on R”'! x §" ,

o0 o0
n,m r—1 m+1 m+1 n I
R"" =38 x@ Vo7 y%DxU%.
k=0 k=0

Here the metric on R™"' is obtained by realizing it as a surface of revolution
p = f(x) of parabolic type in R™2, and D,'f'”’s are a sequence of disjoint
geodesic balls having constant sectional curvature. In order for the surgery
to preserve nonnegative Ricei curvature the geodesic balls D,'c"“ must be
chosen to have larger and larger radius; see [SY2, (16)] and (11) below. This
can be achieved by constructing f so that the surface R™! contains larger
and larger spherical shells. One first chooses an infinite sequence a, > 0
such that 3777 a, = %. See Figure 1 on next page.

The first step of construction is to enlarge the circular arc with opening
angle a, by going out radially so that the arclength is a prescribed number
R,. Clearly the radius N, is related to a, and R, by the relation N, =
a, 1R2. Now one slides the circular sector thus obtained parallel down the
Xx-axis a distance s, so that the circular arc with opening angle a, can be
connected with this slide-down circular arc by a smooth curve of parabolic




ZHONGMIN SHEN AND GUOFANG WEI

FIGURE 1

type. Elementary trigonomeiry shows that this is possible when
Nycosa, — N

ie. p’z' should lie in the region enclosed by the tangent lines at p, and p,;

see Figure 2.

Inductively, at the kth step, one enlarges th
angle a,, by going out radially so that its arclength is a prescribed number

R,, . Thus the radius Ny, = a,, k' R,; . Now in order that the enlarged circular
arc can be connected with the previous one already in position one has 10

cos d,

FIGURE 2

(N, /Ny — 1)N,

2

slide it down a distance §;+§; + -+ 5 where

Ny cosdy y — Ny

cos Y,

2k—2

j=0

4;

cos(a, + a,)

5

e circular arc with the opening

< (Nzk/Nzk—z - 1)N2k.

cos Yy,

2k
=

-1
0 a

J
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Now as is shown in [SY2], R"*™ will have nonnegative Ricci curvature if

-2/
(11) R, ~a;

?

where a =2(m —1)/n.

Since the surgery reduces diameter, the diameter growth is controlled by
the diameter growth of the hypersurface R™ . By Lemma 4.1 we only need
to find out the growth of the function that generates R™"' . From the above

discussion, at x = 55+, +--- + 5., f(x) = N, sin Z?Sl a;. By taking
a, = %2_" , one easily finds f(x) = O(x?), where g = S

Thus for example, R*:? {m =2, n=2) will have diameter growth of
degree %, hence volume growth of degree % We remark that as m —

o, f— -% Therefore the degree of diameter growth of such manifold

could be arbitrarily close to 1.
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