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HAUSDORFF CONVERGENCE AND UNIVERSAL COVERS

CHRISTINA SORMANI AND GUOFANG WEI

Abstract. We prove that if Y is the Gromov-Hausdorff limit of a sequence
of compact manifolds, Mn

i , with a uniform lower bound on Ricci curvature
and a uniform upper bound on diameter, then Y has a universal cover. We
then show that, for i sufficiently large, the fundamental group of Mi has a
surjective homeomorphism onto the group of deck transforms of Y . Finally, in
the non-collapsed case where the Mi have an additional uniform lower bound
on volume, we prove that the kernels of these surjective maps are finite with
a uniform bound on their cardinality. A number of theorems are also proven
concerning the limits of covering spaces and their deck transforms when the
Mi are only assumed to be compact length spaces with a uniform upper bound
on diameter.

1. Introduction

In recent years the limit spaces of manifolds with lower bounds on Ricci curvature
have been studied from both a geometric and topological perspective. In particular,
Cheeger and Colding have proven a number of results regarding the regularity and
geometric properties of these spaces. However, the topology of the limit spaces is
less well understood. Note that in this paper a manifold is a Riemannian manifold
without boundary.

Anderson [An] has proven that there are only finitely many isomorphism types of
fundamental groups of manifolds with a uniform upper bound on diameter, lower
bound on volume and lower bound on Ricci curvature. Thus one might think
that given a converging sequence of such manifolds, the fundamental groups of the
manifolds must eventually be isomorphic to the fundamental group of the limit
space. However, Otsu [Ot] has shown that there are metrics of uniformly positive
Ricci curvature on S3 × RP 2 which converge to a simply connected 5-dim metric
space, showing that this need not be the case.

Tuschmann [Tu] has proven that if Y is the limit space of a sequence of manifolds
with two sided sectional curvature bounds then Y is locally simply connected and
thus has a universal cover [Defn. 2.3]. In fact Perelman [Pl] shows that the limit
space of a sequence of manifolds with a lower bound on sectional curvature is
locally contractible. If the limit space is locally simply connected, it is not difficult
to show that eventually there is a surjective map from the fundamental groups of
the manifolds onto the fundamental group of the limit space (see [Tu, Ca], [Gr, page
100], also Section 2 of this paper). Zhu [Zh] has proven a similar result for limits
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of three dimensional manifolds with uniform lower bounds on Ricci curvature and
volume and a uniform upper bound on diameter.

In this paper a manifold is a Riemannian manifold without boundary. Here we
are concerned with limits of sequences of manifolds with a uniform upper bound
on diameter and lower bound on Ricci curvature. The limits of such sequences
have only been shown to be locally simply connected at special “regular” points
[ChCo]. In fact Menguy [Me] has shown that the limit space could locally have
infinite topological type.

We prove that the universal cover of the limit space exists [Defn. 2.3]. We can
thus study the group of deck transforms of the universal cover, π̄1(M) [Defn. 2.4].
Note that this revised fundamental group, π̄1(M), is isomorphic to the fundamental
group of M if M is locally simply connected (cf. [Sp]). We can now state the main
theorem of our paper.

Theorem 1.1. Let Mi be a sequence of compact manifolds satisfying

Ricci(Mi) ≥ (n− 1)H and diam(Mi) ≤ D,(1.1)

for some H ∈ R and D > 0. If Y is the Gromov-Hausdorff limit of the Mi then
the universal cover of Y exists and for N sufficiently large depending on Y , there
is a surjective homomorphism

Φi : π1(Mi)→ π̄1(Y ) ∀i ≥ N.(1.2)

Note 1.2. There are Hausdorff limits of compact manifolds with a uniform bound
on diameter which have no universal cover (see Example 2.7).

Note 1.3. In Theorem 1.1, we do not know whether Ỹ is simply connected or not.
Example 2.6 demonstrates that without the curvature condition, it need not be
simply connected.

When the sequence is non-collapsing we have a stronger result:

Theorem 1.4. Let Mn
i be a sequence of compact manifolds satisfying

Ricci(Mi) ≥ (n− 1)H, diam(Mi) ≤ D and vol(Mi) ≥ V(1.3)

for some H ∈ R, D > 0 and V > 0. If Y is the Gromov-Hausdorff limit of the Mi

then there is i0 = i0(n,H, V,D, δY ) such that π1(Mi)/Fi is isomorphic to π̄1(Y )
for all i ≥ i0, here Fi is a finite subgroup of π1(Mi), and the order of each Fi
is uniformly bounded by N(n,H, V,D). In particular, π1(Mi)/Fi is isomorphic to
π1(Mj)/Fj for all i, j ≥ i0.

Compare Anderson’s result [An] which says that there are only finitely many
isomorphism types of fundamental groups of compact manifolds satisfying (1.3).

To prove these results we need to study the limit spaces of compact length spaces.
Thus in Sections 2 and 3 we restrict ourselves to sequences, Mi, which are only
compact length spaces with diam(Mi) ≤ D that converge in the Gromov-Hausdorff
sense to a limit space Y .

In Section 2 we present two examples of such sequences of length spaces which
converge in the Gromov-Hausdorff topology. However, their fundamental groups
cannot be mapped surjectively onto the fundamental group or revised fundamen-
tal group of the limit space. In the first example, we have a sequence of simply
connected length spaces whose limit space is not simply connected [Ex. 2.6]. In
the second example, the limit space has no universal cover [Ex. 2.7]. It should be
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recalled that even when the limit space is a manifold that the limit of the universal
covers is not necessarily a cover of the limit space (see [Pe1, Theorem 2.1] for a case
where it is). Thus the universal cover cannot be directly used to prove properties
about the fundamental group.

In Section 3, we introduce δ-covering spaces [Defn. 3.1]. Unlike the universal
cover, δ-covers always exist. We then show that the limit of the δ-covers is a
cover of the limit space [Theorem 3.6]. Furthermore, we prove that for a fixed
δ > 0 group of deck transforms of the δ-covers, M̃ δ

i , of the Mi eventually have a
surjective map onto deck transforms of the δ-cover of the limit space [Cor. 3.5]. We
also describe the relationship with the δ-covers and the universal cover if the latter
exists [Theorem 3.7]. We conclude with a proof of the following theorem which
should be contrasted with Example 2.6 [Note 2.8].

Theorem 1.5. If theMi are simply connected compact length spaces with diam(Mi)
≤ D that converge in the Gromov Hausdorff topology to a compact space Y , then
the universal cover of Y exists and the revised fundamental group, π̄1(Y ), is trivial.

In Section 4 we study limit spaces, Y , of sequences of compact manifolds Mi

satisfying (1.1) and prove that the universal cover of Y exists. To do so we first
prove Lemma 4.6 by extending techniques from [So] involving the Excess Theorem
of [AbGl] to arbitrary lower bounds on Ricci curvature. We then apply this lemma
combined with [ChCo] regularity results to prove Theorem 4.5 that there is at least
one ball in the limit space that lifts isometrically to any covering space. To extend
this to balls around arbitrary points in the limit space we use the Bishop-Gromov
Volume Comparison, which holds for limit measures by [ChCo] and Theorem 3.6.
Thus we prove that there is a δY > 0 such that the δY -cover of the limit space Y is
the universal cover of Y [Theorem 4.8]. Note that this δY depends on many factors
and cannot be determined uniformly without contradicting the examples of Otsu
[Ot]. Combining Theorem 4.8 with the results of Section 3, we obtain Theorem 1.1
and Corollary 4.12.

We conclude with the non-collapsed case, where Mi satisfy (1.3), proving Theo-
rem 1.4. We use results from Section 3 regarding the kernel of the surjective map
and results of Anderson regarding elements of the fundamental group of manifolds
with lower bounds on volume [An] to obtain Theorem 1.4.

Background material for Gromov-Hausdorff limits and Ricci curvature can be
found in Chapter 1 Sections A-C, Chapter 3 Sections A-B, Chapter 5 Section A of
[Gr] and in Chapters 9-10 of [Pe2]. Background material on covering spaces and
fundamental groups can be found in Chapters 1-2 of [Sp] and [Ma].

2. Background and Examples

In Sections 2 and 3 we consider compact length spaces. No curvature condition
is assumed. See [Gr, Chapter 1] for basic results about length spaces (called path
metric spaces). Recall also (cf. [Gr, Chapter 3A]), the following definition of the
Gromov-Hausdorff distance between metric spaces (called Hausdorff distance).

Definition 2.1 ([Gr, Defn. 3.4]). Given two metric spaces X and Y , the Gromov-
Hausdorff distance between them is defined,

dGH(X,Y ) = inf
{
dZH(f(X), f(Y )) :

for all metric spaces Z, and isometric
embeddings f : X → Z, g : Y → Z

}
,

(2.4)
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where, dZH is the Hausdorff distance between subsets of Z,

dZH(A,B) = inf{ε > 0 : B ⊂ Tε(A) and A ⊂ Tε(B)}.(2.5)

Here Tε(A) = {x ∈ Z : dZ(x,A) < ε}.
If x ∈ X and y ∈ Y , the pointed Gromov-Hausdorff distance:

dGH((X,x), (Y, y)) = inf


dZH(f(X), f(Y )) :
for all metric spaces Z, and isometric embed-
dings f : X → Z, g : Y → Z s.t.f(x) = g(y)


(2.6)

It is then clear what we mean by the Gromov-Hausdorff convergence of com-
pact metric spaces. However, for non-compact metric spaces, the following looser
definition of convergence is used.

Definition 2.2 ([Gr, Defn. 3.14]). We say that non-compact length spaces (Xn, xn)
converge in the Gromov-Hausdorff sense to (Y, y) if for any R > 0 there exists a se-
quence εn → 0 such that Bxn(R+ εn) converges to By(R) in the Gromov-Hausdorff
sense.

Although we are limiting ourselves to compact length spaces, their universal
covers may well be non-compact.

Recall that a space, Y , is semi-locally simply connected (or semi-locally one
connected) if for all y ∈ Y there is a neighborhood U of y such that π1(U, y) →
π1(Y, y) is trivial ([Sp, p. 78] [Ma, p. 142]). That is, any curve in U is contractible
in Y . This is weaker than saying that U is simply connected.

For a metric space Y , let r(Y ) denote the maximal number r such that every
closed curve in a ball of radius r in Y is homotopic to zero in Y , the semi-locally
simply connectivity radius. Note that if Y is compact and semi-locally simply
connected, then r(Y ) is positive.

The following theorem demonstrates how Gromov-Hausdorff closeness affects the
fundamental groups of spaces which are semi-locally simply connected.

Theorem 2.1. Let Y1, Y2 be two compact length spaces and Y2 semi-locally simply
connected. If dGH(Y1, Y2) ≤ ε, where ε = r(Y2)/20, then there exists a surjective
homomorphism Φ : π1(Y1)→ π1(Y2).

This theorem essentially follows from the proof of [Tu, Theorem (b)]. See also
[Gr, page 100] and [Ca]. As an extension of this theorem, Theorem 3.4, will be
proven in the next section; we will omit the proof.

Note 2.2. One usually doesn’t get a similar surjection for high homotopy groups,
as Berger’s examples of S3 collapsing to S2 illustrate for π2.

Theorem 2.1 immediately gives the following isomorphism.

Corollary 2.3. Let Y1 and Y2 be two compact semi-locally simply connected length
spaces and let r = min{r(Y1)/20, r(Y2)/20}. If dGH(Y1, Y2) ≤ r, then π1(Y1) is
isomorphic to π1(Y2).

Note 2.4. Note that if Y1 = S2×S1
ε and Y2 = S2, then π1(Y1) only maps surjectively

onto π1(Y2). This does not contradict the above corollary because r there depends
on both r(Y1) = ε and r(Y2).
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Note 2.5. Note that Colding [Co] and Cheeger-Colding [ChCo], proved that if Y1, Y2

are the same dimensional manifolds and sufficiently Hausdorff close (closeness de-
pends on Y1, Y2), then Y1, Y2 are diffeomorphic. Here an assumption on r(Yi) is
shown to suffice to match the fundamental groups of length spaces.

Definition 2.3 ([Sp, pp. 62, 82]). Y is a covering space of X if there is a continu-
ous map π : Y → X such that ∀x ∈ X there is an open neighborhood U such that
π−1(U) is a disjoint union of open subsets of Y each of which is mapped homeo-
morphically onto U by π. We say that a connected space X̃ is a universal cover of
X if X̃ is a cover of X such that for any other cover Y of X , there is a commutative
triangle formed by a continuous map f : X̃ → Y and the two covering projections.

Recall that if π : E → Y is a covering and Y is a connected compact length
space, then there is a unique length metric on E making π : E → Y distance non-
increasing and a local isometry (see [Ri]). Of course, the covering space need not
be compact.

The universal cover may not exist as can be seen in [Sp, Ex. 17, p. 84]. However,
if it exists, then it is unique. Furthermore, if a space is locally path connected and
semi-locally simply connected, then it has a universal cover and that cover is simply
connected [Sp, Cor. 14, p. 83]. On the other hand, the universal covering space of
a locally path connected space may not be simply connected [Sp, Ex. 18, p. 84].
We now present two examples.

Example 2.6. There exists a compact length space, X , which is the limit of simply
connected compact length spaces, but is not simply connected.

Proof. The construction of X is based upon the fact that {(t, sin(1/t)) : 0 < t ≤
1/π} ∪ {0} × [−1, 1] is a compact metric space which isn’t path connected. Here,
however, we construct a path connected space which isn’t simply connected.

First define two compact sets:

K1 = {(x, y, sin(1/y)) : y ∈ (0, 1/π], |x| ≤ y},

K2 = {(x, y, z) : |x| = y ≤ 1/π, z ∈ [−2, 2]}.

Let the length space be

X = K1 ∪K2.

First we prove that X is not simply connected.
We claim that the loops Cj : [0, 4/(jπ)]→ X defined as follows are all homotopic

to each other but are not contractible.

Cj(t) = (−t, t, 0) ⊂ K2, t ∈ [0, 1/(jπ)],

Cj(t) = (t− 2/(jπ), 1/(jπ), 0) ⊂ K1, t ∈ [1/(jπ), 3/(jπ)],

Cj(t) = (4/(jπ)− t, 4/(jπ)− t, 0), t ∈ [3/(jπ), 4/(jπ)].

Clearly the length of this curve is

L(Cj) = (2
√

2 + 2)/(jπ)→ 0, j →∞,

and clearly each curve is homotopic to the next.
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Now why aren’t they contractible? If C1 were contractable, there would be a
homotopy

H : A = [−1/π, 1/π]× [0, 1/π]→ X ⊂ R3

such that
H(t, 0) = (0, 0, 0), H(−1/π, s) = (−s, s, 0),

H(1/π, s) = (s, s, 0), H(t, 1/π) = (t, 1/π, 0).

Write H(s, t) = (h1(s, t), h2(s, t), h3(s, t)).
It is easy to see that Xr = X −K1 ∩ {(x, y, z) : z > r} is not simply connected

for r = 3/4, and that C1 is not contractible in this set. Thus H−1(X3/4) is also
not simply connected and thus cannot contain the entire domain. So there exists
(s1, t1) ∈ A such that h3(s1, t1) > 3/4 and H(s1, t1) ∈ K1.

Let U1 ⊂ A be the connected component of H−1(X \X1/2) that contains (s1, t1).
We continue this definition inductively, given (sj , tj) we define Uj ⊂ A to be the

connected component of H−1(X \X1/2) that contains (sj , tj). Then we note that
C1 is not contractable in H−1(X3/4 ∪H(U1)∪ ...∪H(Uj)) because at most finitely
many peaks have been filled in. So there exists (sj+1, tj+1) ∈ A \ (U1 ∪ ... ∪ Uj)
such that h3(sj+1, tj+1) > 3/4 and H(sj+1, tj+1) ∈ K1.

Now A is compact so a subsequence of the (sj , tj) converges to some (s∞, t∞) ∈
A. By continuity h3(s∞, t∞) ≥ 3/4. Now each point in the subsequence is in
a distinct connected component of H−1(X \ X1/2). Thus there exist points in
H−1(X1/2) on line segments between the points in the subsequence. The limit of
these points must have h3 ≤ 1/2. Since these line segments are shorter and shorter,
the limit point of points on the segments must also be (s∞, t∞) and we have a
contradiction. No homotopy can exist.

Now we define Xk, a sequence of simply connected length spaces which converge
to X .

Kk,1 = {(x, y, sin(1/y)) : 1/(kπ) ≤ y ≤ 1/π, |x| ≤ y},

K ′k,1 = {(x, y, 0) : 0 ≤ y ≤ 1/(kπ), |x| ≤ y}
and the connecting set

Kk,2 = {(x, y, z) : |x| = y ≤ 1/π, z ∈ [−2, 2]}.
Then the length spaces are defined,

Xk = Kk,1 ∪K ′k,1 ∪Kk,2.

It is easy to see that these spaces are compact with a uniform bound on their
diameters. They are also easily seen to be simply connected.

Now we claim dGH(Xk, X) < 10/(kπ). Let Zk be a metric space defined as
the disjoint union of Xk and X with K2 identified with Kk,2 and Kk,1 identified
with the appropriate part of K1. It is easy to see that the tubular neighborhood
of radius 10/(kπ) about Xk in Zk contains X and vice versa because the tubular
neighborhood about K2 covers Zk \ (X ∪Xk). �

Example 2.7. There exists a compact length space, X , with no universal cover
which is the limit of a sequence of manifolds, Xi. Furthermore, the fundamental
groups of the Xi are finitely generated but the fundamental group of the limit space
is not.
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Proof. Let X be the Hawaii Ring. That is X ⊂ R2 is defined

X =
∞⋃
j=1

Cj

where Cj is the circle of radius 1/2j around (1/2j, 0).
Let Yi =

⋃i
j=1 Cj ⊂ R2. Then Yi are compact length spaces which converge to

X .
To construct the manifolds, Xi we consider the tubular neighborhoods,

T1/(1002i)(Yi × {0}) ⊂ R3.

The boundaries of these neighborhoods are topological manifolds and length spaces,
and are within a Gromov-Hausdorff distance 2π/(102i) of the Yi. They may be
smoothed to create the manifolds Xi, which will then also converge to the length
space X . �

If a space has a universal cover, then we can define a revised fundamental group.
First recall the definition of the group of deck transforms (or self-equivalences) of
a cover π : Y → X . This is the group of homeomorphisms h : Y → Y such that
π ◦ h = π [Sp, p. 85]. It is denoted G(Y,X).

Given p̃ ∈ Y , there is a natural surjection Ψp̃ from the fundamental group,
π1(X, p) to G(Y,X) defined as follows. Note that given g ∈ π1(M,p) and p̃, it then
has a representative loop, C. We can lift C to a curve based at p̃ in the cover. This
defines an action of g on π−1(p) ⊂ M̃ which can be extended uniquely to a deck
transform of M . This map is surjective when Y is path connected because given
any h ∈ G(Y,X) we can join p̃ to h(p̃) by a curve and then the curve’s projection to
the base space gives an element of π1(X, p). The kernel, Hp, consists of elements of
the fundamental group π1(M,p), whose representative loops are still closed when
they are lifted to the cover.

Note that when the universal cover is simply connected and locally path con-
nected, then the group of deck transforms of the universal cover is isomorphic to
the fundamental group of X [Sp, page 87, Cor. 4].

Definition 2.4. Let the revised fundamental group of M , denoted π̄1(M), be the
group of deck transforms of the universal cover of M .

Then π̄1(M) = π1(M,p)/Hp where Hp is a normal subgroup described above.
It is isomorphic to π1(M,p) when M is semi-locally simply connected. In fact
Hp consists of those elements of π1(M,p) whose representative loops lift to closed
curves in the universal cover. Thus if π̄1(M,p) = π1(M,p) then Hp is trivial, so
every loop in M which lifts to a closed curve in M̃ is contractible. In particular,
each loop in M̃ must project to a closed loop in M which is contractible, so it must
be contractible. Thus π̄1(M) = π1(M,p) iff the universal cover of M is simply
connected.

Note 2.8. In Example 2.6, we have a sequence of simply connected spaces which
converge to a space which is not simply connected. However, the limit space is its
own universal cover. Thus its revised fundamental group is trivial. In Section 3 we
will prove that this is always the case [Theorem 1.5].
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3. δ-Covering Spaces

In this section we continue to study locally path connected length spaces. We
would like to understand what happens to the fundamental groups of such spaces
when we take their limits. Since we do not assume that they are semi-locally simply
connected, we do not know if these spaces have simply connected universal covers.
In fact they might not have universal covers at all. To circumvent this problem we
introduce intermediate δ-covering spaces.

Let U be any open covering of Y . For any p ∈ Y , by [Sp, page 81], there is
a covering space, ỸU , of Y with covering group π1(Y,U , p), where π1(Y,U , p) is a
normal subgroup of π1(Y, p), generated by homotopy classes of closed paths having
a representative of the form α−1 ◦ β ◦ α, where β is a closed path lying in some
element of U and α is a path from p to β(0).

Definition 3.1. Given δ > 0, the δ-cover, denoted Ỹ δ, of a length space Y , is
defined to be ỸUδ where Uδ is the open covering of Y consisting of all balls of radius
δ.

The covering group will be denoted π1(Y, δ, p) ⊂ π1(Y, p) and the group of deck
transforms of Ỹ δ will be denoted G(Y, δ) = π1(Y, p)/π1(Y, δ, p).

Note that Ỹ δ1 covers Ỹ δ2 when δ1 ≤ δ2.
Note also that G(Y, δ), denoted G(Ỹ δ, Y ) in [Sp, p. 86, Cor. 3], does not depend

on p. One can think of G(Y, δ) as roughly corresponding to the long loops, of length
at least δ, in π1(Y, p).

There is a natural surjective map from π1(Y, p) to G(Y, δ), which depends on
p̃ ∈ Ỹ δ, that we can call Ψp̃,δ. (See the paragraph after Example 2.7 in Section 2.)

Definition 3.2. When Y is compact, then for any h ∈ G(Y, δ), we can define the
(translative) δ-length of h,

l(h, δ) = min
q∈Ỹ δ

dỸ δ (q, h(q)).(3.7)

For any g ∈ π1(Y, p)

l(g, δ) = min
q∈Ỹ δ

dỸ δ (q,Ψp̃,δ(g)(q)).(3.8)

Note that since this is a compact length space, there is a point q ∈ Ỹ and a
curve C from q to Ψδ(g)(q)) whose length is l(g, δ). Consequently there is a point
π(q) ∈ Y and a loop π(C) based at the point, q, of length l(g, δ). Furthermore there
is some path, α, from p to π(q) such that α−1(π(C))α is a representative curve for
g ∈ π1(Y, p).

We have the following basic properties for δ-length.

Lemma 3.1. For all nontrivial g ∈ G(Y, δ, p), the δ-length of g,

l(g, δ) ≥ δ.(3.9)

For all δ1 ≤ δ2 we have

l(g, δ1) ≥ l(g, δ2).(3.10)

Proof. Suppose there exists a g such that (3.9) fails to hold. Since Y is a length
space, there is a curve β of length less than δ running from some point, q ∈ Ỹ δ to
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g(q). There is also a curve α running from p̃ to q. Then π(α) runs p to π(q), and
π(β) is a loop in Bπ(q)(δ), so

g = [π(α)−1 ◦ π(β) ◦ π(α)] ∈ G(Y, δ, p)

is trivial by the definition.
As mentioned above, for all δ1 ≤ δ2, there exists α and β in Ỹ δ1 such that

L(β) = l(g, δ1) and

g = [π(α)−1 ◦ π(β) ◦ π(α)] ∈ π(Y, p).

Now Ỹ δ1 is the δ1-cover of Ỹ δ2 , so α and β can be projected to paths in Ỹ δ1 . Thus
l(g, δ1) ≥ l(g, δ2). �

Proposition 3.2. If Y is a compact length space that has a universal cover, then
the universal cover is a δ-cover, for some δ0 > 0. Thus Ỹ = Ỹ δ0 = Ỹ δ for all
δ < δ0.

Proof. If Y has a universal cover, then for all y ∈ Y , there is an ry > 0 such that
By(ry) is lifted isometrically to the universal cover. Suppose the universal cover
is not a δ-cover for any δ > 0. Then there exists pi ∈ Y and Ci a loop based at
pi in Bpi(1/i) which lift non-trivially to the universal cover. Y is compact so a
subsequence of pi converges to p∞, and eventually some Ci will be contained in
Bp∞(rp∞) which is a contradiction. �

Proposition 3.3. If Y is a compact length space such that the universal cover
exists and all nontrivial elements of π1(Y, p) have a positive δ-length for some δ,
then Y is semi-locally simply connected.

Proof. Let δ0 be defined as in Proposition 3.2. If Y is not semi-locally simply
connected, then there is a curve C contained in some Bq(δ0) ⊂ Y which is not
contractible in Y . Let β run from p to q and g = [β ◦ C ◦ β−1] ∈ π1(Y, p). Note
that Ψδ0(g) is trivial and since Ỹ δ = Ỹ δ0 for all δ < δ0 by our choice of δ0, Ψδ0(g)
is trivial for all δ < δ0. This contradicts the hypothesis. �

Note that in the example in Section 2, there is a nontrivial element of the fun-
damental group with 0 δ-length for all δ.

Now we have good covering spaces for Y , but we don’t know if Bishop-Gromov
volume comparison holds on these covers even if it does on Y . In order to find a
good covering space such that Bishop-Gromov volume comparison also holds, we
relate these covering to the covering from the sequence. Note that in general, the
universal covering of sequences doesn’t converge to the universal cover of the limit,
e.g. the lens spaces, S3/Zp, converge to S2. (See [Pe1, Theorem 2.1] for a case
where it does.) However, we will show that this is almost true in the δ-cover level
(see Theorem 3.6). To prove this first we need a revised version of Theorem 2.1
which does not require a bound on the semi-locally simply connectivity radius.

Theorem 3.4. Let Y1, Y2 be two compact length spaces such that dGH(Y1, Y2) ≤ ε,
then there is a surjective homomorphism, Φ : G(Y1, δ1) → G(Y2, δ2) for any δ1 >
20ε and δ2 > δ1 + 10ε.

In the proof of this theorem and subsequent theorems, we think of G(Y, δ) =
π1(Y, p)/π1(Y, δ, p) as G(Y, δ, p) consisting of equivalence classes of loops based at
p such that C1 ∼ C2 iff C1 ◦ C−1

2 is homotopic to a curve in π1(Y, δ, p).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



3594 CHRISTINA SORMANI AND GUOFANG WEI

Proof. Since dGH(Y1, Y2) ≤ ε, there must exist a metric space (Z, d), such that Y1

and Y2 are isometrically embedded in (Z, d) and the Hausdorff distance between
them is less than 2ε and dZ(p1, p2) < 2ε. If α ∈ G(Y1, δ1, p1), then it can be
represented by some rectifiable closed curve γ : [0, 1] → Y1. On Γ := γ([0, 1])
now choose points x1, · · · , xm, xi = γ(ti), with xm = x0 = p1 and 0 = t0 ≤
t1 ≤ · · · ≤ tm = 1 such that for each γi := γ|[ti,ti+1], i = 0, · · · ,m − 1, one has
d(xi, xi+1) ≤ L(γi) < 5ε. We will refer to this as a 5ε-partition of γ. Since
dZH(Y1, Y2) ≤ 2ε, for each xi, i = 0, · · · ,m − 1, we can choose points yi ∈ Y2

satisfying dZ(xi, yi) < 2ε and set ym := y0 = p2. Connected yi to yi+1 by a
minimizing geodesic, γ̄i, i = 0, · · · ,m−1 of length less than 9ε. This yields a closed
curve γ̄ in Y2, consisting of m minimizing segments and having p2 as its base point.
Now define

Φ(α) = Φ([γ]) := [γ̄] ∈ G(Y2, δ2, p2).

First we need to verify that Φ is well defined. Using the fact that 9ε < δ1/2 <
δ2/2, one easily sees that [γ̄] doesn’t depend on the choice of minimizing geodesics
γ̄i, nor on the choice of points yi ∈ Y2, nor on the special partition {x1, · · · , xm}
of γ([0, 1]). Moreover using additionally the uniform continuity of a homotopy
one can see that [γ̄] only depends on the homotopy class of γ. It thus is also
easy to check that Φ is a homomorphism from π1(Y1, p1) to G(Y2, δ2, p2). However
α ∈ G(Y1, δ1, p1) not π1(Y1, p1).

Suppose γ1 and γ2 are both representatives of α ∈ G(Y1, δ1, p1). Then γ1 ∗ γ−1
2

is homotopic to a loop γ3 generated by loops of the form (α ∗ β) ∗ α−1, where β
is a closed path lying in a ball of radius δ1 and α is a path from p1 to β(0). So
[γ̄1] = [γ̄3] ∗ [γ̄2] and we need only show that [γ̄3] is trivial in G(Y2, δ2, p2).

In fact γ̄3 can be chosen as follows. The yi’s corresponding to the xi’s from the β
segments of γ3 are all within δ1 + 2ε of a common point and the minimal geodesics
between them are within δ1 + (2 + 9/2)ε < δ2. Furthermore, the yi’s corresponding
to the xi’s from the α and α−1 segments of the curve can be chosen to correspond.
Thus γ̄3 is generated by loops of the form (α ∗ β) ∗ α−1, where β is a closed path
lying in a ball of radius δ2 and α is a path from p2 to β(0). So it is trivial.

Last, we need to show that Φ is onto. If ᾱ ∈ G(Y2, δ2, p2), it can be represented
by some rectifiable closed curve σ. Choose an ε-partition {y0, · · · , ym} of σ such
that for all i = 0, · · · ,m − 1, one has L(σ|[ti,ti+1]) < ε, (yi = σ(ti)). Now choose
corresponding points xi ∈ Y1 satisfying d(xi, yi) < 2ε and we can connect those
points by minimizing curves in Y1. This yields a piecewise length minimizing γ :
[0, 1]→ Y1 with base point x0, and because of d(xi, xi+1) < 5ε the curve γ allows a
5ε-partition and [γ] ∈ G(Y1, δ1, p1). Now Φ([γ]) = ᾱ ∈ G(Y2, δ2, p2) because Φ([γ])
was shown above not to depend upon the choice of the yi as long as dZ(xi, yi) < 2ε
and the xi were a 5ε-partition of a representative curve γ.

Therefore Φ is surjective. �

Let (Mi, pi) be a sequence of connected locally path-connected spaces that con-
verge to (Y, p) in the pointed Gromov-Hausdorff topology. Denote by M̃ δ

i the
δ-covering of (Mi, pi), π1(Mi, δ, pi) the covering group and

G(Mi, δ, pi) = π1(Mi, pi)/π1(Mi, δ, pi)

the deck transformation on M̃ δ
i .

Now Theorem 3.4 gives us the following.
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Corollary 3.5. If (Mi, pi) is a sequence of connected locally path-connected spaces
with diam(Mi) ≤ D which converges to (Y, p) in the pointed Gromov-Hausdorff
topology, then for any δ1 < δ2, there exists N sufficiently large depending upon δ2
and δ1 such that ∀i ≥ N there is a surjective map Φi : G(Mi, δ1)→ G(Y, δ2).

Using this we can show that in the Gromov-Hausdorff limit the δ-covering of the
sequence converges to a cover which is almost the δ-covering of the limit. The fact
that it isn’t quite the δ-covering is seen by the following simple example. Take a
sequence of flat tori of side lengths 1 by (n − 1)/(2n). The δ = 1/2 cover of these
tori are cylinders since all loops of length < 1/2 are not unraveled. However, they
converge to a torus of side lengths 1 by 1/2 whose δ = 1/2 cover is Euclidean space,
which is a cover of the limit cylinder. However, for any δ2 < δ, the δ2-cover of the
limit is a cylinder.

Theorem 3.6. If Mi with diam(Mi) ≤ D converges to Y in the Gromov-Hausdorff
metric and the δ-covering of Mi, (M̃ δ

i , p̃i), converges in the pointed Gromov-Haus-
dorff metric to (Y δ, p̃∞), then (Y δ, p̃∞) is a covering space of Y , which is covered
by the δ-cover of Y , Ỹ δ. Furthermore, for all δ2 > δ, Y δ covers Ỹ δ2 . So we have
covering projections mapping

Ỹ δ → Y δ → Ỹ δ2 → Y.

Proof. Let πδi : M̃ δ
i → Mi be the covering map. It is distance decreasing by

construction. After possibly passing to a subsequence it follows from a generalized
version of the Arzela-Ascoli theorem (see e.g. [Pe2, page 279, Lemma 1.8]) that
πδi : M̃ δ

i →Mi will converge to a distance decreasing map πδ : Y δ → Y .
First, since M̃ δ

i is the δ-covering space, the covering map πδi : M̃ δ
i → Mi must

be an isometry on any ball of radius < δ. As πδi converges to πδ this property must
be carried over to πδ : Y δ → Y . Hence πδ : Y δ → Y is a covering map.

So we have three covering spaces of Y , Ỹ δ, Y δ and Ỹ δ2 . By the Unique Lifting
Theorem [Ma, Lemma 3.1, page 123] if Ỹ1 and Ỹ2 are covers of Y , then Ỹ1 covers
Ỹ2 if every closed curve in Y which lifts to a closed curve in Ỹ1 also lifts to a closed
curve in Ỹ2.

Now if C is a closed curve in Y whose lift to Ỹ δ is closed, then it is homotopic
to a curve consisting of paths, loops within δ-balls and reverse paths. So its lift to
Y δ is also closed since πδ is an isometry on δ-balls. Therefore Ỹ δ covers Y δ.

If δ2 > δ, we want to show Y δ covers Ỹ δ2 . Suppose not. Then there is a closed
curve C in Y whose lift to Y δ is closed but whose lift to Ỹ δ2 is not a closed loop.

Since the lift of C in Ỹ δ2 is not closed, Φδ2([C]) ∈ G(Y, δ2) is nontrivial. Using
Corollary 3.5, we can find N sufficiently large so that Φi : G(Mi, δ) → G(Y, δ2) is
surjective. In particular we can find curves Ci which converge to C in the Gromov-
Hausdorff sense, such that Φi([Ci]) = [C]. Since, [Ci] are nontrivial their lifts to
M̃ δ
i run between points C̃i(0) 6= C̃i(1). Furthermore, by Lemma 3.1,

dỸ δi
(C̃i(0), C̃i(1)) ≥ δ.

In the limit, the lifted curves C̃i converge to the lift of the limit of the curves C̃ in
Y δ and

dY δ (C̃(0), C̃(1)) ≥ δ.

This implies that C̃ is not closed and we have a contradiction. �
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Theorem 3.7. If there exists δY such that for all δ < δY we have Ỹ δ = Ỹ δY , then
the universal cover of Y exists and is Ỹ δY .

Proof. We need only show that given any cover, Ỹ ′, of Y , Ỹ δY covers Ỹ ′. By
Theorem 12 in [Sp, p. 81], p : Ỹ ′ → Y is a covering projection only if there is an
open covering U of Y and a point x̃ ∈ Ỹ ′ such that

π(U , p(x̃)) ⊂ p#π(Ỹ ′, x̃).

Since Y is compact, there is a finite sub-cover, U ′, such that π(Y,U , p(x̃)) =
π(Y,U ′, p(x̃)). For all y ∈ Y there is an ry > 0 such that B(y, ry) ⊂ U and
U ∈ U ′. Let

V = {By(ry) : y ∈ Y }.

Now V also has a finite sub-cover V ′, and taking

δ0 = min{ry : By(ry) ∈ V ′, δY },

we have a δ0 open cover, Uδ0 , which refines U . Thus by [Sp, p. 81, st. 8],

π(Uδ0 , p(x̃)) ⊂ p#π(Ỹ ′, x̃).

In particular, Ỹ δ0 covers Ỹ ′. However δ0 ≤ δY , so Ỹ δY = Ỹ δ0 covers Ỹ ′. �

We now prove that the revised fundamental group of the limit space of a sequence
of simply connected compact length spaces is trivial [Theorem 1.5]. The example
in Section 2 shows that this is as much as we can hope for.

Proof of Theorem 1.5. Since Mi are simply connected, for all δ > 0, we know
G(Mi, δ) is trivial. Thus by Corollary 3.5, we know that for all δ > 0, G(Y, δ) is
trivial as well. Thus Ỹ δ = Y for all δ and we satisfy the conditions of Theorem 3.7.
So the universal cover exists and has a trivial group of deck transformations. �

We now apply these results to study limits of Riemannian manifolds with a lower
bound on Ricci curvature.

4. Ricci Curvature

In this section we assume Y is a Gromov-Hausdorff limit of compact manifolds
{(Mn

i , pi)} satisfying (1.1), that is RicMn
i ≥ −(n− 1) and Diam(Mi) ≤ D. Recall

that, by the Gromov Precompactness Theorem [Gr, Thm. 5.3], a subsequence of any
sequence of covering spaces of such manifolds converges in the Gromov-Hausdorff
sense to some limit space. In particular, we know the following.

Lemma 4.1. If Y is the limit of {(Mn
i , pi)} satisfying (1.1) and δ > 0, then there

exists a subsequence such that {(M̃ δ
ij
, p̃i)} converges in the Gromov-Hausdorff sense

to some limit space Y δ with all the properties of Theorem 3.6.

Thus we can apply Cheeger-Colding’s result [ChCo] to show that the Bishop-
Gromov volume comparison theorem holds on Y δ. Recall [ChCo]

Theorem 4.2 (Cheeger-Colding). Given any sequence of pointed manifolds, {(Mn
i ,

pi)}, for which RicMn
i ≥ −(n − 1) holds, there is a subsequence, {(Mn

j , pj)},
convergent to some (Y m, y) in the pointed Gromov-Hausdorff sense, and there is a
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measure V̄∞ on Y satisfying Bishop-Gromov’s volume comparison theorem, i.e. for
z ∈ Y m, r1 ≤ r2, the following holds:

V̄∞(z, r1)
V̄∞(z, r2)

≥ Vn,−1(r1)
Vn,−1(r2)

,(4.11)

where Vn,−1(r1) is the volume of a ball of radius r1 in the simply connected space
of dimension n and curvature ≡ −1.

Therefore, we immediately have the following

Corollary 4.3. Bishop-Gromov’s volume comparison theorem (4.11) holds on the
Gromov-Hausdorff limit, Y δ, of any converging subsequence of δ-coverings of Mi.

In [ChCo], Cheeger and Colding prove the following theorem about the regularity
of the limit spaces of spaces with Ricci curvature curvature bounded below.

Definition 4.1. A regular point, y, in a limit space, Y , is a point such that there
exists k such that every tangent cone at y is isometric to Rk.

Theorem 4.4 (Cheeger-Colding). If Y is the limit space of a sequence of Mn
i with

RicMn
i ≥ −(n−1), then the set of regular points has positive measure, V̄∞(R) > 0.

In fact, the regular points are dense in Y .

Although we cannot control the topology in general, near a regular point, we
can control the δ-covers. In fact we can control these δ-covers above points with
poles in all their tangent cones. Recall that a tangent cone Y∞, has a pole at y∞
if ∀x ∈ Y∞, there is a length minimizing curve emanating from y∞ that passes
through x and extends minimally to ∞. Naturally this occurs at a regular point.

Theorem 4.5. Let Y be the Gromov-Hausdorff limit of a sequence of compact
manifolds such that

Ric ≥ −(n− 1)K where n ≥ 3,K > 0.(4.12)

If y ∈ Y is a point such that there exists a tangent cone, Y∞, y∞, that has a pole
at y∞, then there exists ry > 0, such that for all δ > 0, B(y, ry) lifts isometrically
to Y δ.

The proof of this theorem uses an idea similar to one used in [So]. Here, how-
ever, we have an arbitrary lower bound on Ricci curvature and are concerned with
eliminating small loops rather than large ones. In both cases we need to look at the
Excess Theorem of Abresch and Gromoll from a new perspective [AbGl]. This new
perspective is required because the original excess theorem has an inequality that
includes the distance from a point to a minimal geodesic. Such a distance does not
adapt well here because a curve of minimal length in a limit space is not necessarily
the limit of minimal geodesics. Thus we begin with the following lemma.

Lemma 4.6. Let Mn be a complete Riemannian manifold satisfying (4.12). There
exists a constant

S = Sn,K = min

1
8
,

1
4 · 3n

1
cosh(

√
K/4)

n

n− 1

(
n− 2
n− 1

)n−1
( √

K

sinh
√
K

)n−1


(4.13)

such that if γ is a minimal geodesic of length D ≤ 1 and x ∈Mn satisfying

d(x, γ(0)) ≥ (Sn,K + 1/2)D and d(x, γ(D)) ≥ (Sn,K + 1/2)D,
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then

d(x, γ(D/2)) ≥ 3Sn,KD.(4.14)

Note that in the case with nonnegative Ricci curvature, D can have arbitrary
length and S has no hyperbolic terms [So].

Proof. First we recall the Excess Theorem [AbGl, Prop. 2.3]. If r0 = d(x, γ(0)),
r1 = d(x, γ(D)) and l = d(x, γ) < min{r0, r1}, then

e(x) = r0 + r1 −D ≤ 2
(
n− 1
n− 2

)(
1
2
C3l

n

)1/(n−1)

,(4.15)

where

C3 =
n− 1
n

(
sinh
√
Kl√

Kl

)n−1√
K
[
coth

√
K(r0 − l) + coth

√
K(r1 − l)

]
.

(4.16)

Now suppose l > min{r0, r1}, then

d(x, γ(D/2)) ≥ l ≥ (S + 1/2)D ≥ 3SD.

So we need only consider the case where l < min{r0, r1} and we can apply (4.15).
Let us assume on the contrary that (4.14) does not hold. Then l < 3SD,

r0 − l > (1/2 + S)D − 3SD > D/4 and similarly r1 − l > D/4. Therefore

e(x) < 2
(
n− 1
n− 2

)1
2

(
n− 1
n

)(
sinh(

√
K3SD)√

K3SD

)n−1

·2
√
K coth(

√
K
D

4
)(3SD)n

]1/(n−1)

≤ 2
(
n− 1
n− 2

)1
2

(
n− 1
n

)(
sinh
√
K√

K

)n−1

·2
√
K

cosh(
√
K/4)√

K D
4

(3SD)n
]1/(n−1)

≤ 2D
(
n− 1
n− 2

)4
(
n− 1
n

)(
sinh
√
K√

K

)n−1

cosh(
√
K/4)(3S)n

1/(n−1)

.

On the other hand, e(x) = r0 + r1 −D ≥ 2(S + 1/2)D−D = 2SD, so

S <
n− 1
n− 2

4
(
n− 1
n

)(
sinh
√
K√

K

)n−1

cosh(
√
K/4)(3S)n

1/(n−1)

.

This gives

S > 4−13−n
1

cosh(
√
K/4)

n

n− 1

(
n− 2
n− 1

)n−1
( √

K

sinh
√
K

)n−1

,

contradicting (4.13). �
We will now apply this lemma to prove Theorem 4.5.
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Proof of Theorem 4.5. Assume on the contrary that for all r > 0 there is a δr > 0
such that the ball B(y, r) does not lift isometrically to Y δr . Let Gδ denote the deck
transformation group on Y δ. Thus, there exist ri → 0, δi = δri , and gi ∈ Gδi such
that di = dY δi (ỹ, giỹ) ∈ (0, 2ri) ⊂ (0, 1]. In fact, we can choose gi so that

dY δi (ỹ, giỹ) ≤ dY δi (ỹ, hỹ) ∀h ∈ Gδi .(4.17)

Next we will find a length minimizing curve, C̃i, running from ỹ to giỹ which
has the property that it passes through a particular point z̃i = C̃i(di/2) which is
the limit of halfway points of length minimizing curves in the sequence M̃j

δi . We
do this so that we can apply Lemma 4.6 to Mj.

To construct C̃i, we first let ỹj and ỹij be points in M̃j
δi which are close to ỹ

and giỹ. So dM̃j
(ỹj , ỹij) = di,j converges to di. Let z̃ij be midpoints of minimal

geodesics γij , running from ỹj to ỹij. Taking a subsequence of j → ∞, there is a
point z̃i ∈ Y δi which is halfway between ỹ to giỹ. Let C̃i be a length minimizing
curve running from ỹ to z̃i and then to giỹ. Finally let Ci be the projection of C̃i
to Y .

Now, imitating the proof of the Halfway Lemma of [So], and using (4.17), we
know Ci ∈ Y is minimizing halfway around, dY (Ci(0), Ci(di/2)) = di/2.

We choose a subsequence of these i such that (Y, y) rescaled by di converges to
a tangent cone (Y∞, y∞). So

dGH (B(y, 10di) ⊂ Y,B(y∞, 10di)) < εidi,(4.18)

where εi converges to 0.
Let S be the constant from Lemma 4.6. Since Y∞ has a pole at y∞, we

know there is a length minimizing curve running from y∞ through any point in
∂B(y∞, di/2) to ∂B(y∞, di/2 + 2Sdi). Thus by (4.18),

∀ x ∈ ∂B(y, di/2 + 2Sdi) ⊂ Y,(4.19)

we have points

x∞ ∈ Anny∞(di/2 + 2Sdi − εidi, di/2 + 2Sdi + εidi)(4.20)

and

yi ∈ Anny∞(di/2− εidi, di/2 + εidi)(4.21)

such that

dY (x,Ci(di/2)) < dY∞(x∞, yi) + εidi,(4.22)
≤ 2εidi + 2Sdi + εidi.(4.23)

Now we will imitate the Uniform Cut Lemma of [So], to show that for all x ∈
∂B(y, di/2 + 2Sdi), we have li = dY (x,Ci(di/2)) ≥ (3S)di. This will provide a
contradiction for εi < S/2 and we are done.

First we lift our points x and y to the cover Ỹ δi as follows. We lift y to the
point ỹ and we lift the closed loop Ci to the curve C̃i running from ỹ through
zi = ˜Ci(di/2) to giỹ. Then if σ is a length minimizing curve of length li running
from Ci(di/2) to x, we lift it to Ỹ δi so it runs from z̃i to a new point, x̃. Note that
by our choice of x in (4.19),

dỸ δi (giỹ, x̃) ≥ dY (y, x) = di/2 + 2Sdi(4.24)

and so is dỸ δi (ỹ, x̃).
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By our choice of C̃i and z̃i, we know there are corresponding points in M̃ δi
j . That

is there is a triangle formed by ỹj, ỹij, with a minimal geodesic γij running between
them and some point x̃j such that

di,j = d
M̃j

δi (ỹj , ỹij) → di,

d
M̃
δi
j

(ỹj , x̃j) → dỸ δi (ỹ, x̃) = (1/2 + 2S)di,

d
M̃
δi
j

(ỹij , x̃j) → dỸ δi (giỹ, x̃) = (1/2 + 2S)di,

li,j = d
M̃j

δi (γ̃ij(di,j/2), x̃j) → dỸ δi (z̃i, x̃) = li.

So for j sufficiently large, we have

d
M̃j

δi (ỹj , x̃j) ≥ (1/2 + S)di,j and d
M̃j

δi (ỹij , x̃j) ≥ (1/2 + S)di,j

(4.25)

and can apply Lemma 4.6 to get

li,j ≥ 3Sdi,j .(4.26)

Taking j to infinity, we get the limit of this bound in Ỹ δi , namely li ≥ 3Sdi.
This contradicts (4.22) for εi < S/2 and we are done. �

Note 4.7. In the non-collapsed case, namely when the sequence of compact mani-
folds Mn

i satisfy (1.3), every tangent cone of the limit space at every point is polar
[ChCo]. By Theorem 4.5, for every y ∈ Y , there exists ry > 0, such that for all
δ > 0, B(y, ry) lifts isometrically to Y δ for all δ > 0. Since Y is compact, this
implies that the Y δ stabilize, i.e. there exists δY depending on Y such that for all
δ < δY , we have Y δ = Y δY .

Using Theorem 4.5 and volume comparison we will prove that this is also true
in the collapsed case.

Theorem 4.8. There exists δY depending on Y such that for all δ < δY , we have
Y δ = Y δY and Gδ = GδY . Therefore Ỹ δ are also same for all small δ > 0.

Proof. Note that from Theorem 3.6, if Y δ do not stabilize for δ small, then neither
do the δ-covers Ỹ δ. So there exists a sequence of δi > 0 with δ1 ≤ D, δi > 10δi+1

such that all Ỹ δi and G(Y, δi) are distinct. In particular there are elements of
G(Y, δi) which are trivial in G(Y, δi−1). So there exist qi ∈ Y , such that the
Bqi(δi−1) contains a noncontractible loop, Ci, which lifts non-trivially in Y δi . Since
Ci must lift to a union of balls Bgq̃i (δi−1) in Ỹ δi , there exists gi non-trivial in
G(Y, δi) such that

dỸ δi
(giq̃i, q̃i) < 2δi−1.(4.27)

So if αi ⊂ Y is the projection of the minimal geodesic from giq̃i to q̃i it represents
an element gi of π1(Y ) which is mapped non-trivially into Gδi and trivially into
G2δi−1 .

For any j, the limit cover Y δj covers Y δi for i = 1...j−1. So g1...gj−1 are distinct
non-trivial deck transforms of Y δj . Furthermore, for any q ∈ Y , letting q̃i be the
lift of qi closest to q̃ ∈ Y δj , we have

dY δj (q̃, giq̃) ≤ dY δj (q̃, q̃i) + dY δj (q̃i, giq̃i) + dY δj (giq̃i, giq̃)

≤ D + 2L(αi) +D ≤ 4D.
(4.28)
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Therefore we have for any j, there are j−1 distinct elements in Gδj with l(gi, δj) ≤
4D.

On the other hand the total number of elements in Gδ of δ-length ≤ 4D is
uniformly bounded for all δ in terms of geometry and topology of Y . To show
this let us look at the lift of a regular point p ∈ Y in the cover Y δ. We know by
Theorem 4.5, there is a δ0 > 0 such that the ball of radius δ0 about p is isometrically
lifted to disjoint balls of radius δ0 in Y δ. Let N be the number of distinct elements
in Gδ of δ-length ≤ 4D. Note that gB(p̃, δ0) is contained in B(p̃, 4D + δ0) for all
g ∈ Gδ with l(g, δ) ≤ 4D. Thus applying Corollary 4.3 we have

N ≤ V̄∞(p̃, 4D+ δ0)
V̄∞(p̃, δ0)

≤ Vn,−1(4D + δ0)
Vn,−1(δ0)

.(4.29)

This is a contradiction. �

Note that δY can not be uniformly bounded regardless of Y , because we only
bound the number of elements of a certain length. Furthermore, the δ0 depend on
the properties of the regular point in Y . Finally, even with a uniform lower bound
on volume, a uniform bound on δY would contradict Otsu’s examples.

This result has several nice consequences. First, combining this with Theo-
rem 3.7, we get the following.

Theorem 4.9. If Y is the limit of a sequence of compact manifolds with uniformly
bounded diameter and a uniform lower bound on Ricci curvature, then the universal
covering space of Y exists.

Note 4.10. In fact Y δY is the universal cover. It is unknown whether the universal
cover is simply connected.

This theorem allows us to define the revised fundamental group of Y , π̄1(Y )
[Definition 2.3]. We can now prove Theorem 1.1 which was stated in the introduc-
tion.

Proof of Theorem 1.1. First, there is always a surjection

π1(Mi, p)→ G(Mi, δ) = π1(Mi, p)/π1(Mi, δ, p).(4.30)

Take δ = δY /2. Then by Theorem 3.4, there exists N sufficiently large so that
there is a surjection Φi : G(Mi, δ) → G(Y, δY ). Since Ỹ δ is the universal cover of
Y , G(Y, δY ) = π̄1(Y ). �

Theorems 4.9 and 3.6 imply the following.

Corollary 4.11. The universal cover of a limit space, Y , of compact manifolds,
Mi, satisfying (1.1), is the limit of δY /2-covers of a subsequence of the Mi.

Corollary 4.12. For all δ < δY , there exists N sufficiently large depending on δ
and δY such that G(Mi, δ) = π̄1(Y ) for all i ≥ N .

Proof. Choose N sufficiently large so that

dGH(Mi, Y ) < min
{
δ

20
,
δY − δ

20

}
∀i ≥ N.

Then by Theorem 3.4, there exists a surjection from G(Mi, δ) to G(Y, δY ) and
there is also a surjection from G(Y, δ/2) = G(Y, δY ) to G(Mi, δ). It is clear from
the definition of these surjections in the proof that they commute. �
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In the non-collapsed case, i.e. the sequence of compact manifolds Mn
i satisfy

(1.3), we can now prove Theorem 1.4 that the fundamental groups of Mi are even-
tually isomorphic up to a finite group.

Proof of Theorem 1.4. This essentially follows from Corollary 4.12 and Anderson’s
estimate on the order of subgroups generated by short loops [An, page 268] (see
also [Pe2, page 256]). Anderson’s estimate states that there exist L = L(n,H, V,D)
and N = N(n,H, V,D) such that if Mn is a compact manifold satisfying (1.3), then
any subgroup of π1(M) that is generated by loops of length ≤ L must have order
≤ N . Now choose δ such that δ ≤ min{L/2, δY /2}. Since the covering group
of the δ-cover of each Mi, π1(Mi, δ), is generated by loops of length ≤ 2δ ≤ L,
the order of π1(Mi, δ) is uniformly bounded by N(n, v,D). On the other hand,
by Corollary 4.12, the deck transformation group of the δ-covering space of Mi,
G(Mi, δ) = π1(Mi)/π1(Mi, δ), is isomorphic to π̄1(Y ) for all i ≥ i0. Setting Fi =
π1(Mi, δ) finishes the proof. �
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