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VARIOUS COVERING SPECTRA FOR COMPLETE METRIC

SPACES∗

CHRISTINA SORMANI† AND GUOFANG WEI‡

Abstract. Here we study various covering spectra for complete noncompact length spaces
with universal covers (including Riemannian manifolds and the pointed Gromov Hausdorff limits of
Riemannian manifolds with lower bounds on their Ricci curvature). We relate the covering spectrum
to the (marked) shift spectrum of such a space. We define the slipping group generated by elements
of the fundamental group whose translative lengths are 0. We introduce a rescaled length, the
rescaled covering spectrum and the rescaled slipping group. Applying these notions we prove that
certain complete noncompact Riemannian manifolds with nonnegative or positive Ricci curvature
have finite fundamental groups. Throughout we suggest further problems both for those interested
in Riemannian geometry and those interested in metric space theory.

Key words. Metric spaces, covering spectrum, universal covers, fundamental groups.

AMS subject classifications. 53B20, 53C30.

1. Introduction. The covering spectrum of a compact Riemannian manifold or
length space captures the metric properties needed to obtain topological information
about the given space. In prior work of the authors [36], we applied the covering
spectrum to determine the properties of the fundamental group of a compact metric
space and to determine whether that space has a universal cover. We proved the
covering spectrum is determined by the marked length spectrum and the elements
of the covering spectrum lie in the half length spectrum. Then de Smit, Gornet and
Sutton developed a means of producing pairs of compact manifolds which have the
same covering spectrum in [12]. They produced pairs of compact manifolds with
the same Laplace spectrum that have different covering spectra in [12] [13]. This is
intriguing in light of the work of Colin de Verdiere and Duistermaat-Guillemin relating
the length and Laplace spectra of compact Riemannian manifolds [10, 15]. A recent
extension of the notion of covering spectrum to a larger class of spaces which is called
the critical spectrum has been studied by Wilkins, Plaut, Conant, Curnutte, Jones,
Pueschel and Walpole [41] [29] [42] [11]. The key definitions, theorems and examples
are reviewed in Section 2.

In this paper we are concerned with the covering spectra and other related spectra
on complete noncompact Riemannian manifolds and length spaces. Prior work in this
direction has been conducted by the authors in [37] where we developed the notion
of the cut off covering spectrum. The cut off covering spectrum effectively removed
information about the space outside of large balls thus enabling us to extend a number
of our prior results. However data about the behavior of the space at infinity was lost
in the process.

Here we develop new spectra designed to capture the properties of complete non-
compact Riemannian manifolds at infinity. More generally, we assume all of our
metric spaces, X , are complete noncompact length spaces as in Definition 2.1 and
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that they have universal covers, X̃, in the sense that the universal cover is a cover
of all covering spaces (c.f. [38]). We do not assume the universal covering is simply
connected. Recall that the Gromov-Hausdorff limits of complete noncompact Rie-
mannian manifolds with uniform lower bounds on their Ricci curvature were proven
to have universal covering spaces in [35]. So all results in this paper apply to these
essential limit spaces that have been explored extensively by Cheeger, Colding, Ding,
Ennis, Honda, Menguy, Munn, Naber, Ohta, Tian, the authors and many others (c.f.
[5][9][14][16][18][22][20][25] ).

In the final section of the paper, we apply our spectra to prove special cases of
Milnor’s conjecture that the fundamental group of a complete noncompact manifold
with nonnegative Ricci curvature is finitely generated [21]. Prior work in this direction
has been conducted by Li, Anderson, Wilking and the first author [1][19][31][40].
In fact we prove complete noncompact manifolds with certain spectral properties
that have positive or nonnegative Ricci curvature have a finite fundamental group
[Theorems 1.1 and 1.2 respectively]. So one might prefer to view these as extensions
of Myers’ Theorem [23] that compact manifolds with positive Ricci curvature have
finite fundamental groups. Before we specialize to Riemannian manifolds, we first
need to extend our theorems about the covering spectrum proven in [36] to complete
noncompact length spaces and introduce our new covering spectra.

In Section 3, we extend our results in [36] relating the covering spectrum and the
length spectrum of a compact length space to the complete noncompact setting. We
introduce the (marked) shift spectrum [Definition 3.1] which captures the lengths of
elements of the fundamental group in the complete noncompact setting and agrees
with the classical (marked) length spectrum on compact length spaces. We prove
Theorem 3.2, that the the marked shift spectrum determines the covering spectrum
on such spaces (extending Theorem 4.7 of [36]). We prove the covering spectrum is a
subset of the closure of the half shift spectrum in Theorem 3.3. In the compact setting
this was proven in [36] without requiring a closure, but in the complete noncompact
setting we show this is necessary with Example 3.1. We suggest notion of a (marked)
shift spectrum that might be studied on spaces without universal covers [Remark 3.5].
We close this section by discussing elements of the fundamental group whose lengths
are achieved and proving Theorem 3.6 that if infinitely many such elements have their
lengths achieved in a common compact set then the universal cover contains a line.

In Section 4, we extend our results in [36] relating the covering spectrum to the
universal cover of a compact length space to the complete noncompact setting. We
introduce the universal slipping group, πslip(X), and the universal delta cover, X̃0

[Definitions 4.3 and 4.5]. On a compact metric space, the universal slipping group is
trivial and the universal delta cover is the universal cover. In fact the authors proved
that if the covering spectrum of a compact length space has a positive infimum, then
the universal cover exists and is a δ cover [36]. Here we present complete noncompact
manifolds whose δ covers are all trivial and whose universal cover is nontrivial [Ex-
ample 4.1]. Every element of the fundamental group in this example is represented
by a sequence of loops which slip out to infinity as their lengths decrease to 0. We
prove the universal delta cover, X̃0, is a pointed Gromov-Hausdorff limit of δ covers
as δ → 0 [Theorem 4.6]. It need not be a delta cover itself [Remark 4.8], nor is it the
universal cover [Remark 4.9]. However, if the covering spectrum has a positive infi-
mum, then X̃0 is a delta cover [Proposition 4.7]. In general we show X̃0 = X̃/πslip(X)
[Theorem 4.10]. Thus if the slipping group is empty and the covering spectrum has a
positive infimum, the universal cover is a δ cover [Corollary 4.12]. In Remark 4.13 we
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suggest that an adaption of this work to complete length spaces which are not known
to have universal covers might be applied to prove the existence of a universal cover
for such a space.

In Section 5, we introduce two new scale invariant covering spectrum: the base-
point dependent rescaled covering spectrum, CovSpecx0

rs (X), and the infinite rescaled
covering spectrum, CovSpec∞rs(X) [Definitions 5.12]. Both these spectra are defined
only on complete noncompact spaces using δ rescaled covering groups [Definition 5.9]
whose elements have rescaled lengths [Definitions 5.1 and 5.3] defined by measuring
the lengths sequences of representative loops based at points diverging to infinity.
These rescaled covering spectra take values lying in [0, 1]. We also define the rescaled
slipping group, π∞

rs (X, 0), which is generated by elements of the fundamental group
that have representative loops diverging to infinity whose rescaled lengths converge to
0. In the final subsection we suggest a few means of defining these spectra on spaces
without universal covers. Nevertheless, we believe the rescaled covering spectra will
prove most useful in the study of submanifolds of Euclidean space and Riemannian
manifolds, both of which always have universal covers.

In Section 6, we study the asymptotic behavior of complete noncompact metric
spaces using the rescaled covering spectra and the rescaled slipping group. We prove
that if the rescaled length of an element of the fundamental group is strictly less than
2, then it is represented by a sequence of loops diverging to infinity [Lemma 6.2].
We prove that if CovSpec∞rs(X) ⊂ [0, 1) then the cut off covering spectrum of [37] is
trivial [Theorem 6.3]. These two spectra are recording very different metric topological
information about a space. Next we compute the rescaled covering spectra of one
sheeted hyperboloids [Example 6.1] and doubly warped products [Theorem 6.6]. We
close with a conjecture about the rescaled covering spectra of manifolds with linear
diameter growth [Conjecture 6.8].

The notions and theorems in Sections 2-6 are then applied in the final section to
complete noncompact Riemannian manifolds with curvature bounds. First we study
manifolds with nonnegative sectional curvature, whose topology can be understood
because such manifolds have a compact soul. We prove a noncompact versions of
Myers’ Theorem:

Theorem 1.1. If M has positive Ricci curvature and K ⊂ M is compact, then
only finitely many elements of the fundamental group have their lengths achieved
within K.

This theorem is proven by constructing a line in the universal cover and apply-
ing the Cheeger-Gromoll Splitting Theorem [7]. Note that in the classic example of
Nabonnand [24], which has positive Ricci curvature, there are infinitely many ele-
ments in the fundamental group as well, but their lengths are not achieved anywhere.
In a cylinder, which has nonnegative Ricci curvature, infinitely many elements can
have their length achieved in a common compact set however the rescaled covering
spectrum of the cylinder is trivial and the fundamental group lies in the rescaled
slipping group. In fact we prove:

Theorem 1.2. If Mn is a complete noncompact Riemannian manifold whose
rescaled slipping group, π∞

rs (M, 0), is trivial and whose rescaled covering spectrum,
CovSpec∞rs(M), has a positive infimum, then it has a finite fundamental group.

This theorem is proven by applying the Bishop-Gromov Volume Comparison The-
orem in a style similar to Milnor’s proof that finitely generated subgroups of the fun-
damental group have polynomial growth [21]. Note that in the example of Nabonnand
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the entire fundamental group lies in the rescaled slipping group. We observe that a
similar statement holds when M is the pointed Gromov-Hausdorff limit of manifolds
with nonnegative Ricci curvature [Remark 7.14] including the tangent cone at infinity
for such a space.

It is possible that the techniques applied to prove these theorems may lead to a
proof of the Milnor Conjecture that the fundamental group of a manifold with non-
negative Ricci curvature is finitely generated. Our proofs apply the Cheeger-Gromoll
Splitting Theorem and a Milnor style application of the Bishop Gromov Volume
Comparison Theorem. Other techniques for controlling the fundamental groups of
such manifolds that appear in work of Anderson, Li, Wilking and the first author in
[1][19][31][40] have not yet been applied in combination with our new ideas. Further
suggested problems are stated in the final remarks of the paper.

The authors would like to thank Ruth Gornet, Carolyn Gordon and Shing-Tung
Yau for their interest in the covering spectrum and Burkhard Wilking for suggesting
an analysis of S3 × R4/Pin(2).

2. Background. In this section we review our prior work and that of others
taking advantage of the simplified definitions one can use when there is a universal
cover.

Definition 2.1. A complete length space is a complete metric space such that
every pair of points in the space is joined by a length minimizing rectifiable curve.
The distance between the points is the length of that curve. A compact length space
is a compact complete length space. (c.f. [4]).

Note that complete Riemannian manifolds are complete length spaces by the
Hopf-Rinow Theorem. As in Riemannian geometry, we define geodesics as follows
(c.f. [4] [33]):

Definition 2.2. A geodesic γ : I → X , is a locally length minimizing curve:

∀ t ∈ I ∃ εt > 0 such that dX
(

γ(t− ε), γ(t+ ε)
)

= L
(

C([t − ε, t+ ε])
)

.(2.1)

The length spectrum of a Riemannian manifold in a classical notion studied by
many people over the years (c.f. [10]). Here we recall the definition on a complete
length space (c.f.[33]):

Definition 2.3. The length spectrum is defined:

Length(X) = {L(γ) : γ : S1 → X}(2.2)

where γ is a closed geodesic.

Recall that on a metric space, X , with a universal cover, X̃, every element, g, in
the fundamental group, π1(X), can be thought of as a deck transform of the univeral
cover g : X → X . Thus every element has a well defined length

L(g) = inf
x∈X

dX̃(gx̃, x̃) ∈ [0,∞),(2.3)

where x̃ is an arbitrary lift of x to the universal cover. On complete noncompact spaces
the length in (2.3) might not be achieved and could be 0. It is sometimes referred to
as the translation length in CAT(0) geometry (c.f. [3]). On compact manifolds this
infimum is achieved at some x0 and any minimal geodesic running between x̃0 ∈ X
and gx̃0 can be seen to project to a geodesic loop, σ : S1 → X .
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Definition 2.4. The marked length spectrum is the map:

L : π1(X) → [0,∞)(2.4)

where L(g) is defined as in (2.3). The image L(π1(X)) is a subset of the length
spectrum on a compact manifold because it is achieved by a closed geodesic.

Let π1(X, δ) be the subgroup of the fundamental group generated by elements of
length < 2δ:

π1(X, δ) = 〈g ∈ π1(X) : L(g) < 2δ〉.(2.5)

In [37] Thm 2.14, the authors prove that the δ cover, X̃δ of a metric space with a
universal cover can be found by taking

X̃δ = X̃/π1(X, δ).(2.6)

The covering spectrum of metric space (initially defined in [36]) measures the size
of one dimensional holes in the space:

Definition 2.5. Given a complete length space X , the covering spectrum of X ,
denoted CovSpec(X) is the set of all δ > 0 such that

X̃δ 6= X̃δ′(2.7)

for all δ′ > δ.

When X has a universal cover then δ ∈ CovSpec(X) iff

π1(X, δ) 6= π1(X, δ′)(2.8)

for all δ′ > δ. Note that δ covers are monotone in the sense that if δ1 < δ2 then
X̃δ1 covers X̃δ1 . In a compact manifold, where all lengths of elements are positive,
any covering space is covered by a δ cover [34]. In [36], the authors proved that the
covering spectrum of a compact length space is a subset of the half length spectrum:

λ ∈ CovSpec(X) =⇒ 2λ ∈ Length(X).(2.9)

Example 2.1. Let X be the k torus created by taking the isometric product of
k circles:

X = S
1
r1

× S
1
r2

× · · · × S
1
rk

(2.10)

where r1 ≥ r2 ≥ · · · ≥ rk and S1r denotes a circle of intrinsic diameter r (circumference
2r). Then if δ ∈ (rj−1, rj ] we have

X̃δ = R× R× · · · × R× S
1
rj

× · · · × S
1
rk
.(2.11)

The covering spectrum is {r1, r2, r3, · · · , rk}.

Example 2.2. If X is a genus 2 surface which is a very fat figure eight with
two small holes, the covering spectrum has two elements {λ1, λ2} where λ1 is half the
length of the shortest geodesic around the smaller hole and λ2 is half the length of
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the shortest geodesic around the other hole. These two elements then generate the
entire fundamental group.

Bart de Smit, Ruth Gornet and Craig Sutton have developed a method of pro-
ducing two compact manifolds with the same covering spectrum, building upon work
of Sunada used to produce pairs of compact manifolds with the same Laplace spec-
trum in [12]. Despite the close relationship between the Laplace and Length spectrum
proven by Colin de Verdiere in [10] and the close relationship between the Covering
and Length spectrum proven by the authors in [35], de Smit, Gornet and Sutton have
found pairs of compact Laplace isospectral manifolds with different covering spectra.
They study higher dimensional manifolds in [12] and surfaces in [13].

In the complete noncompact setting, where the lengths of elements of the fun-
damental group are not achieved by lengths of closed geodesic loops, one still seems
to have some relationship between the covering spectrum and the translative length
spectrum, as indicated by the following example:

Example 2.3. LetM2 be the warped product R×fS
1 where f(x) = 1+e−x2

. For
δ ≤ π, all balls of radius δ are simply connected because f(x)diam(S1) ≥ π for all x.
Thus the δ cover is the universal cover, M̃ = R×f R, for δ ≤ π. For δ > π, we capture

a loop β running around S1 in a ball of radius δ where x ◦ β =
√

− log(δ/π − 1). So

the M̃ δ = M for δ > π. Thus the covering spectrum is just {π}. On the other hand
one can show there is no closed geodesic of length 2π in the marked length spectrum,
because any path γ which traverses around the S1, has length

L(γ) ≥ f(max{x ◦ γ})2π > 2π.(2.12)

Nevertheless L(g) = 2π where g is the deck transform generating the fundamental
group.

In the next section we prove Theorems 3.2 and Theorem 3.3, relating the lengths
of elements of the fundamental group to the covering spectrum for all complete length
spaces.

3. The covering spectrum and the shift spectrum. In this section we dis-
cuss the relationship between the covering spectrum and the length spectrum. We
make the following new definition which agrees with the marked length spectrum on
a compact length space.

Definition 3.1. The shift spectrum, Shift(X), is the collection of translative
lengths L(g) of elements of the fundamental group π1(X). The marked shift spectrum
is the map which takes each element of the fundamental group π1(X) to its length.
Two spaces X and Y are said to have the same marked shift spectrum if there is an
isometry between their fundamental groups, f : π1(X) → π1(Y ) such that L(f(g)) =
L(g) for all g ∈ π1(X).

It has been suggested that this should be called the translative length spectrum.
Since “shift” is a shorter word than “translative” and has the same meaning, we use
it instead.

As seen in Example 2.3, the shift spectrum is not necessarily a subset of the length
spectrum on a complete noncompact manifold. In that example, 2π ∈ Shift(M), but
is not the length of any smoothly closed geodesic.
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3.1. The marked shift spectrum determines the covering spectrum. We
can now extend Theorem 4.7 of [36] to complete noncompact spaces.

Theorem 3.2. The marked shift spectrum of a complete length space, X, with a
universal cover determines the covering spectrum of X.

Proof. From Definition 2.5, for X with a universal cover, the covering spectrum
is given by the δ where the covering groups π1(X, δ) change, where is π1(X, δ) is the
subgroup of the group of deck transforms generated by the deck transforms of length
< 2δ.

So if two spaces, X and Y , share the same shift spectrum,

π1(X, δ) = π1(Y, δ)(3.13)

via the restricted isometry between π1(X) and π1(Y ).
Suppose on the contrary that X and Y have the same marked shift spectrum

and different covering spectra. We may assume without loss of generality that that
δ0 ∈ CovSpec(X) \CovSpec(Y ). Since δ0 /∈ CovSpec(Y ), then by definition, there is
some δ1 > δ0 such that

Ỹ δ0 = Ỹ δ1 .(3.14)

Thus π1(Y, δ1) = π1(Y, δ0). Applying (3.13) we get

π1(X, δ1) = π1(Y, δ1) = π1(Y, δ0) = π1(X, δ0).(3.15)

Thus we have

X̃δ0 = X̃δ1 .(3.16)

and so δ0 /∈ CovSpec(X) which is a contradiction.

3.2. The covering spectrum lies in the closure of the shift spectrum.

Recall the lower semiclosure of a set A ⊂ R, denoted Cllower(A), is the set of all limits
of nonincreasing sequences of points in A (c.f. [37]).

Theorem 3.3. The covering spectrum is a subset of the lower semiclosure of the
1/2 shift spectrum:

CovSpec(X) ⊂ Cllower({h/2 : h ⊂ Shift (X)}).(3.17)

Before proving this, we provide an example demonstrating that the covering spec-
trum is not a subset of the half shift spectrum:

Example 3.1. Let X be a collection of circles of intrinsic diameter {π + π/j :
j ∈ N} joined at a common point. Let gj ∈ π1(X) be the element represented by a
loop going once around the circle of intrinsic diameter π + π/j. Then

π1(X, δ) = 〈gk, gk+1, gk+2, ... : π + π/k < δ〉(3.18)

and

CovSpec(X) = {π(1 + 1/j) : j ∈ N} ∪ {π}.(3.19)
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Here we have included π because for δ = π, π1(X, δ) is trivial, and for δ′ > π, there
exists k sufficiently large that π + π/k < δ′ and π1(X, δ′) is nontrivial. On the other
hand, the shift spectrum is the collection of finite sums:

Shift(X) =







N
∑

j=1

kj2π(1 + 1/j) : kj ∈ {0} ∪N, N ∈ N







(3.20)

which contains twice every value in CovSpec(X) except the value π.

Keeping this example in mind, we now prove Theorem 3.3:

Proof. Suppose on the contrary that there is a space X and an element

δ0 ∈ CovSpec(X) \ Cllower((1/2)Shift(X)).(3.21)

Then there exists ǫ > 0 such that

[δ0 + ǫ) ∩ (1/2)Shift (X) = ∅.(3.22)

By Definition 3.1,

∀g ∈ π1(M), L(g) 6= [2δ0, 2δ0 + 2ǫ).(3.23)

Thus,

π1(X, δ0 + ǫ/2) = π1(X, δ0),(3.24)

and δ0 is not in the covering spectrum.

Corollary 3.4. If X has a closed shift spectrum, then

CovSpec(X) ⊂ Shift (X).(3.25)

Remark 3.5. It is possible one might achieve the same results for spaces which
do not have universal covers possibly by extending the definition in (2.3) as follows:

L(g) = sup
X̃

inf
C

dX̃(C̃(0), C̃(1))(3.26)

where the supremum is taken over all regular covering spaces, X̃ of X and the infimum
is taken over all loops C : [0, 1] → X freely homotopic to a representative of g, and
where C̃ is a lift of C to X̃. This leads to a natural extension of the notion of the
shift spectrum. Proving the extensions would be difficult without a common cover to
examine, however one might examine how we overcome this issue in the proof that the
covering spectrum is contained in the half length spectrum in [36] where no universal
cover is assumed.

3.3. Lines in universal covers. Naturally, in a complete noncompact Rieman-
nian manifold, some elements of the shift spectrum may lie in the length spectrum.
This occurs, for example, when the lengths of elements of the fundamental group are
actually achieved within a compact set. The following theorem demonstrates that
this is in some sense exceptional:
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Theorem 3.6. Given a complete Riemannian manifold M , if there are infinitely
many distinct elements g1, g2, ..., gi, ... of π1(M) such that all L(gi) are achieved in a
compact set, then the universal cover of M has a line.

Proof. Let γi be a representative of gi such that L(γi) = Li = l(gi) and γi(0) ∈ K.
Since all gi are distinct, there is a subsequence Lj → ∞. Fix a lift of K, K̃ in the

universal cover. Let γ̃j be a lift of γj with γ̃j(0) ∈ K̃. Since L(γj) = l(gj), gj is a
translation along γ̃j , and γ̃j is minimal on any subinterval of length Lj. In particular

γ̃j is minimal on [−Lj/2, Lj/2]. Since γ̃j(0) ∈ K̃ and K̃ is compact, γ̃j converges to
a line.

4. The covering spectrum and the universal cover. On a compact length
space, δ covers were used to prove the existence of a universal cover. In fact the
universal cover is a δ cover for a sufficiently small δ [34], and the universal cover of
a compact length space exists iff its covering spectrum is finite [36]. The same is
not true in the complete noncompact setting, even when the space is a Riemannian
manifold:

Example 4.1. The cylindrical cusp manifold

M = R×er S
1(4.27)

has M̃ δ = M for all δ while the universal cover is diffeomorphic to a plane.

In this section we investigate the relationship between the delta covers and the
universal covers of a complete noncompact manifold. Note that in [35] we used relative
δ covers of balls to prove existence of universal covers in some noncompact settings,
but here we are focusing on the delta covers of the manifold itself.

4.1. The fundamental group and the universal slipping group. We begin
by examining the elements of the fundamental group which cause the problem seen
in Example 4.1.

Definition 4.1. For each element g ∈ π1(M), p ∈ M , let L(g, p) = dM̃ (p̃, gp̃),

where p̃ is some lift of p in the universal cover M̃ , i.e. the length of a shortest
representative of g at p.

Definition 4.2. The slipping elements g in the fundamental group such that

L(g) = inf
x∈M̃

dM̃ (x, gx) = 0(4.28)

The loops representing these elements slide out to infinity and their lengths disappear.

The set of slipping elements is not a group since it need not be closed as we will
see in Example 4.3. However, it generates a group we call the slipping group.

Example 4.2. The slipping group of the isometric product cylinder R ×1 S
1 is

empty. The slipping group of a warped product cylinder R×f S
1 where limr→∞ f(r) =

0 is the entire fundamental group, Z. The slipping group of the doubly warped product
R×f S1 ×h S1 where f is uniformly bounded below but limr→∞ h(r) = 0 is Z which
is a subgroup of π1 = Z× Z .

Of course in these examples the slipping elements and the slipping group agree.
Next we see why we need to generate the slipping group.
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Example 4.3. We begin by taking a figure 8 formed by taking two circle of
radius 1 joined at a point. Let M2 be a smooth surface of genus 2 which is obtained
by taking the boundary of the tubular neighborhood of radius 1/2 about this figure
eight in R3 and smoothing it slightly. CrossM2 with a line. For the negative direction
on the line, r ∈ (−∞, 1], take the isometric product metric. For the positive direction,
r ∈ [1,∞), of the line, change the metric on M2 smoothly so that it is the smoothened
tubular neighborhood of radius 1− 1/(2r) about the fixed figure eight.

Now the fundamental group of the figure eight (and M2 ×R) is the free group on
two elements g1 and g2 where g1 goes once around the first circle and g2 goes once
around the second. The slipping elements of M2 × R with this metric, are gj1 and gj2
where j ∈ Z. The slipping group is the whole fundamental group. However g1g2 and
other mixed elements are not slipping elements, because in order to go around both
holes, they must have length ≥ 2.

There is a possibly larger group we can call the universal slipping group which is
defined as follows:

Definition 4.3. An element g in the fundamental group is in the univer-
sal slipping group of M , denoted πslip(M), if for all δ > 0 there exist elements
g1, g2, ...gN ⊂ π1(M) such that L(gj) < δ and g = g1g2 · · · gN . Here N may depend
on δ and on g.

Clearly the slipping group is a subgroup of the universal slipping group. The
universal slipping group may be strictly larger than the slipping group as can be seen
in the following example:

Example 4.4. We construct a complete noncompact surface, M2, as follows.
First we take the “pair of pants”, P 2, and endow it with a Riemannian metric so
that the region near the “waist” of the pants, is isometric to a cylinder S1

2π × [0, ε)
and the regions near the legs are isometric to cylinders S1

π × [0, ε) where S1r is a circle
of intrinsic diameter r. We further require that the shortest loop homotopic to the
waist in P 2 has length 4π and the shortest loop homotopic to a leg in P 2 has length
2π. We glue together two pairs of pants at the waist and call the waist where they
are glued γ1 . Then we glue on four more pairs of pants (rescaled by 1/2) so that
their waists are glued into the four legs along γ2,1, γ2,2, γ2,3, γ2,4. Next we glue eight
more pairs of pants (rescaled by 1/4) so that their waists are glued to the eight legs
along γ3,1, ...γ3,8 and so on ad infinitum. This forms a complete noncompact metric
space with a collection of closed geodesics γi,j where i ∈ N and j ∈ 1, · · · , 2i. These
geodesics are the shortest curves in their free homotopy classes. If we set σi,j to be a
minimizing geodesic from γ1(0) to γi,j(0), then we have

gi,j = [σ−1
i,j ∗ γi,j ∗ σi,j ] ∈ π1(M

2)(4.29)

such that L(gi,j) = L(γi,j) = (1/2)i2π and (assuming they are oriented and ordered
consistently)

gi,j = gi+1,2j−1gi+1,2j(4.30)

Thus every element of π1(M
2) is in the universal slipping group although no element

of π1(M
2) is in the slipping group.

We have the following nice description for the universal slipping group:
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Lemma 4.4. When viewed as subsets of π1(M):

πslip(M) =
⋂

δ>0

π1(M̃
δ).(4.31)

Proof. Let g ∈ ⋂

δ>0 π1(M̃
δ), then for all δ > 0 g ∈ π1(M̃

δ). By the definition of
π1(M, δ) in (2.6), we know there exists elements of length < 2δ whose product is g,
and since this is for all δ, g is in the slipping group.

Assume on the other hand that g is in the slipping group, then for all δ > 0, g is
a product of elements of length less than δ so it is in π1(M, δ/2).

4.2. The universal cover and the universal δ cover. On a compact length
space with a universal cover we proved in [36] that the covering spectrum is finite
and that the universal cover is the δ cover corresponding to the smallest δ in the
spectrum. On a complete noncompact length space with universal cover, clearly the
covering spectrum may have infinitely many elements:

Example 4.5. A surface of infinite genus with the same size holes has a finite
covering spectrum. However, if the size of the holes goes to zero as they approach
to infinity, then the surface has a covering spectrum consisting of infinitely many
elements whose infimum is 0 and the universal cover is not a δ cover.

Note that in this example the universal cover is not a delta cover but it is a limit
of the δ covers as δ → 0. That is, M̃ is the pointed Gromov Hausdorff limit of M̃ δ as
δ → 0 where the points at the centers of the balls used for this limit are the lifts of a
fixed point in the space.

We introduce the universal delta cover and prove that it can always be obtained
as such a pointed Gromov-Hausdorff limit:

Definition 4.5. The universal delta cover, M̃0, of a length space, M , is a
covering space which covers all delta covers, M̃ δ. We require further that for any
other covering space M̃ ′ which covers all δ covers, M̃ δ, we have M̃ ′ covers M̃0.

Theorem 4.6. The pointed Gromov-Hausdorff limit,

lim
δ→0

M̃ δ(4.32)

of a sequence of δ covers of a fixed complete length space with universal cover, M ,
based at the lifts of a fixed point p ∈ M exists and is the universal δ cover M̃0. Thus
it doesn’t depend on the basepoint used to define the pointed Gromov-Hausdorff limit.

Proof. First we will just show that for any p and any sequence δj → 0, there is a
converging subsequence which converges to a cover. To get uniqueness, we will show
it is the universal delta cover in the sense described.

Let fj : M̃
δj → M be the covering maps so that f(pj) = p. Let hj : M̃ → M̃ δj be

covering maps so that f(p̃) = pj . For any fixed R, ǫ > 0 let N(ǫ, R) be the maximum

number of disjoint balls of radius ǫ in Bp̃(R) ⊂ M̃ . This provides a uniform upper

bound on the number of disjoint balls of radius ǫ in Bpj
(R) ⊂ M̃ δj . Thus by Gromov’s

compactness theorem a subsequence of the Bpj
(R) converges. By Grove Petersen’s

Arzela Ascoli theorem and the fact that fj and hj are distance nonincreasing maps,
subsequences of these functions converge as well. Taking R → ∞ and diagonalizing
we get a limit space M̃0 with distance nonincreasing maps h∞ : M̃ → M̃0 and
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f∞ : M̃0 → M such that the concatenation of these functions is a covering map.
Thus f∞ must be a covering map as well since it will act as an isometry on any ball
lifted isometrically to the universal cover.

Now this covering space we have obtained (which may depend on the subsequence
δj and on the point p), covers all the delta covers of the space. This can be seen,
by fixing δ > 0 and observing that eventually δj < δ, so it is a limit of spaces which

cover M̃ δ, and thus the same arguement used above to explain why it covers M can
be used to explain why it covers M̃ δj .

Furthemore if N covers all of M̃ δ, then N covers all the M̃ δj and, as argued above
these covering maps have a convergence subsequence to a covering map from N to
M̃0.

Thus M̃0 is the universal δ cover and so it is unique and doesn’t depend on the
choice of p or the subsequence, and so no subsequence was required for the limit after
all.

We can now extend Theorem 3.4 of [36]:

Proposition 4.7. If the infimum of the covering spectrum is positive then the
universal delta cover is a delta cover and the infimum is in the covering spectrum.

Proof. If the spectrum has a positive infimum inf{δ}, let δ0 = inf{δ}/2. Then
the δ0 cover will cover all δ covers and so it must be the universal delta cover by the
uniqueness in Theorem 4.6. Now there exists δi in the covering spectrum decreasing
to inf{δ}, and so by Defn 2.5, we have

X̃δi 6= X̃δ′ ∀δ′ > δi.(4.33)

By the monotonicity of δ covers, the inf{δ} cover must cover these δi covers and so
for every i we have

X̃ inf{δ} 6= X̃δ′ ∀δ′ > δi.(4.34)

Taking δi down to inf{δ} we see that inf{δ} satisfies the requirements of Defn 2.5.

Remark 4.8. In general, however, the universal delta cover need not be a delta
cover. This can be seen in Example 4.5, where each δ cover unravels finitely many
holes and the universal delta cover unwraps all of them.

Remark 4.9. The universal delta cover need not be the universal cover either. In
the cusp cylinder of Example 4.1, M , all the delta covers, M̃ δ, are just isometric to M
and thus so is their Gromov-Hausdorff limit, the universal delta cover. Observe that
in this example the universal slipping group πslip, is the whole fundamental group.

Theorem 4.10. Given a complete length space, M , with a universal cover, M̃ ,
fundamental group π1(M), and universal slipping group πslip(M) ⊂ π1(M). Then the

universal delta covering space M̃0 satisfies

M̃0 = M̃/πslip(M)(4.35)

and is thus a regular covering space.

Proof. From Lemma 4.4, it is enough to show

M̃0 = M̃/(
⋂

δ>0

π1(M, δ)).
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This follows immediately since M̃/(
⋂

δ>0 π1(M, δ)) covers all δ-cover M̃ δ and any

cover covers all the δ-cover covers M̃/(
⋂

δ>0 π1(M, δ)). Therefore M̃/(
⋂

δ>0 π1(M, δ))

is the universal delta-cover M̃0.

Remark 4.11. In Example 4.4, the universal slipping group of the surface, M2,
was the whole fundamental group. So the universal delta cover of M2 is just M2.
Thus all delta covers of this space are just M2.

An immediate consequence of Theorem 4.10 combined with Proposition 4.7 is:

Corollary 4.12. If the slipping group is empty and the covering spectrum has
a positive infimum then the universal cover is a δ cover.

Remark 4.13. If one extends the notion of slipping group and universal delta
cover to complete length spaces which are not known to have a universal cover, a
theorem similar to Corollary 4.12 might be applied to prove the existence of a universal
cover.

5. The Rescaled Covering Spectra. In this section, we define two scale in-
variant spectra called the Rescaled Covering Spectrum and the Rescaled Covering
Spectrum at Infinity. The first of these will be defined for pointed spaces (X, x) and
the latter will not depend on a basepoint. Both will be invariant when the space is
rescaled.

Unlike the ordinary covering spectrum, the rescaled spectra will be initially de-
fined without covering spaces. Instead we will assume the spaces have universal
covers and use subgroups of the fundamental group to define the spectra just as the
covering spectrum may be computed using (2.8). At the end of this section we pro-
pose a possible means of extending the definition to spaces without universal covers
[Remark 5.15]. However we believe the main applications of these spectra are to sub-
manifolds of Euclidean space and to Riemannian manifolds both of which always have
universal covers.

5.1. The rescaled length and the infinite rescaled length. We begin with
the rescaled length:

Definition 5.1. Given a pointed space (X, x0) with a universal cover, we defined
the rescaled length of an element g ∈ π1(X) envisioning it as a deck transform:

Lx0

rs (g) = inf
x∈X\{x0}

dX̃(gx̃, x̃)

dX(x, x0)
.(5.36)

where x̃ is a lift of x to the universal cover.

By definition this is scale invariant, so if we rescale the metric on our space, we
get the same rescaled lengths for all g.

Remark 5.2. As in Remark 3.5, one might try to extend this definition to spaces
without universal covers. Here, however, we will keep things simple.

Note that for a standard cylinder the rescaled length of all elements are zero, while
for the one sheeted hyperboloid, {(x, y, z) : x2 + y2 = z2 + 1}, the rescaled length of
the generator is 2. See Example 6.1 for more details. In both of these examples the
infimum is not achieved.
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However, for some spaces, the rescaled length is achieved and is highly dependant
on the basepoint. This occurs with spaces like the catenoid and those with handles
where for most points in the manifold the shortest geodesic based at a point must
traverse all the way into some central location and then go all the way back out:

Example 5.1. Let X be a handlebody with a cusp and g an element with length,
L(g) < 2, represented by a loop running around the handle. Suppose σ is the minimal
loop running around the handle so L(σ) = L(g). For x far from the handle, a loop
freely homotopic to σ based at x would have to traverse all the way to the loop and
then come back so

dX̃(x̃, gx̃)

dX(x, σ)
→ 2.(5.37)

No matter where x0 is located

lim
x→∞

dX̃(x̃, gx̃)

dX(x, x0)
→ 2.(5.38)

On the other hand if we choose x on σ, we see that

Lx0

rs (g) ≤
dX̃(g ˜σ(t), ˜σ(t))

dX(σ(t), x0)
≤ L(σ)

inft∈S1 dX(σ(t), x0)
.(5.39)

So if we choose a basepoint x0 sufficiently far from σ we get

Lx0

rs(g) < 2(5.40)

So Lx0

rs (g) is achieved at some point x rather than approached as x → ∞. If we fix a
particular such x0 we get some positive value Lx0

rs (g) = f(x0) > 0.
However this function f is highly dependant on the basepoint x0 and in fact

decays to 0 as we choose x0 further and further from σ:

f(x0) ≤
dX̃(g ˜σ(t), ˜σ(t))

dX(σ(t), x0)
≤ L(σ)

dX(σ(t), x0)
.(5.41)

In our next definition, we define a scale invariant length which we will prove does
not depend on a basepoint in Lemma 5.4 below:

Definition 5.3. Given a complete length space X with a universal cover the
infinite rescaled length of an element of the deck transforms is:

L∞
rs(g) = lim

R→∞
inf

x∈X\Bx0
(R)

dX̃(gx̃, x̃)

dX(x, x0)
.(5.42)

where x̃ is a lift of x to the universal cover and x0 ∈ X .

Here the rs in Lx0

rs refer to the word “rescaled”. They are not parameters.

Lemma 5.4. The infinite rescaled length of a deck transform does not depend on
the basepoint x0 used in (5.42).

Proof. Note that there exists xi → ∞ such that

L∞
rs(g, x0) = limi→∞

dM̃ (gx̃i, x̃i)

d(xi, x0)
.(5.43)
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Let d(x0, y0) = r. Then by the triangle inequality,

dM̃ (xi, gxi)

d(x, y0)
≥ dM̃ (xi, gxi)

d(x, x0) + r
.(5.44)

Taking xi to infinity we get:

L∞
rs(g, y0) ≤ limi→∞

dM̃ (gx̃i, x̃i)

d(xi, y0)
≤ L∞

rs(g, x0).(5.45)

Lemma 5.5. Given X and choosing any basepoint x0 to define Lx0

rs we have

L∞
rs(g) ≥ Lx0

rs (g).(5.46)

Proof. This is just a matter of noting that the the infimum in the definition of
L∞
rs is over a smaller set than the one in the definition Lx0

rs .

Lemma 5.6. The rescaled length and infinite rescaled lengths are always ≤ 2.

Proof. Let (X, x0) be a complete length space with a universal cover and g ∈
π1(X). Let γ run between x̃0 and gx̃0 in X̃. Then for any sequence xi → ∞ we have

L∞
rs(g) ≤ limi→∞

dM̃ (gx̃i, x̃i)

d(xi, x0)
(5.47)

≤ limi→∞
2dM̃ (x̃i, x̃0) + L(γ)

d(xi, x0)
= 2.(5.48)

Lemma 5.7. For a given element g ∈ π1(X), Lx0

rs (g) = 0 iff L∞
rs(g) = 0.

Proof. If L∞
rs(g) = 0, then there exists xi → ∞ such that

lim
i→∞

d(x̃i, gx̃i)/d(x0, xi) = 0,(5.49)

so the infimum in the definition of Lx0

rs(g) is 0 as well. We get the converse using
(5.5).

5.2. Rescaled groups and rescaled delta covers.

Definition 5.8. The rescaled slipping group is the group generated by g ∈ π1(X)
with L∞

rs(g) = 0 and is denoted

π∞
rs(X, 0).(5.50)

Definition 5.9. The rescaled δ covering group, πx0

rs (X, δ), of a pointed complete
length space (X, x0) with a universal cover is the subgroup of π1(X) generated by
elements of rescaled length Lx0

rs (g) < 2δ:

πx0

rs (X, δ) = 〈 g : Lx0

rs (g) < 2δ 〉 ⊂ π1(X)(5.51)

Similarly the infinitely rescaled δ covering group is

π∞
rs(X, δ) = 〈g : L∞

rs(g) < 2δ 〉 ⊂ π1(X)(5.52)
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These groups are scale invariant:

πx0

rs (X, δ) = πx0

rs (X/R, δ) and π∞
rs(X, δ) = π∞

rs (X/R, δ).(5.53)

Definition 5.10. A rescaled δ cover of a space X with a universal cover is

X̃δ,x0

rs /πx0

rs (X, δ)(5.54)

and the infinite rescaled delta cover is

X̃δ,∞
rs /π∞

rs(X, δ).(5.55)

Lemma 5.11. We have

π∞
rs (X, δ) ⊂ πx0

rs (X, δ).(5.56)

Thus

X̃δ,x0

rs covers X̃δ,∞
rs .(5.57)

When δ > 1, the group is the entire fundamental group and the covering spaces are
just the original space X.

Proof. Given g ∈ π∞
rs (X, δ), L∞

rs(g) ≤ 2δ, so by (5.5), Lx0

rs (g) ≤ 2δ, and g ∈
πx0

rs (X, δ). Lemma 5.6 justifies the claims regarding δ = 1.

5.3. Rescaled covering spectra defined.

Definition 5.12. Given a pointed complete length space (X, x0), with a univer-
sal cover, X̃, the rescaled covering spectrum of X denoted CovSpecx0

rs (X), is the set
of all δ > 0 such that

πx0

rs (X, δ) 6= πx0

rs (X, δ′) ∀δ′ > δ(5.58)

when viewed as subsets of π1(X). The infinite rescaled covering spectrum,
CovSpec∞rs(X), is defined similarly as the set of all δ > 0 such that

π∞
rs(X, δ) 6= π∞

rs (X, δ′) ∀δ′ > δ(5.59)

so that it does not depend on the basepoint x0.

By (5.53), we see that these covering spectra are scale invariant:

CovSpecx0

rs (X) = CovSpecx0

rs (X/R) and CovSpec∞rs(X) = CovSpec∞rs(X/R).(5.60)

Proposition 5.13. Given a pointed complete length space (X, x0), with a uni-
versal cover, X̃,

CovSpecx0

rs (X) ⊂ (0, 1](5.61)

CovSpec∞rs(X) ⊂ (0, 1].(5.62)

Proof. If δ > 0 ∈ CovSpecx0

rs (X) then there exists gj ∈ π1(X) \ πx0

rs (X, δ) such
that

lim sup
j→∞

Lx0

rs(gj)/2 = δ.(5.63)

By Lemma 5.6 we know L∞
rs(gj) ≤ 2. The proof for infinite rescaled cover spectrum

is the same.

Remark 5.14. By the theorem in the appendix of [37] it is easy to see the
rescaled and infinite rescaled covering spectra are lower semiclosed sets.
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5.4. Further directions.

Remark 5.15. One should be able to extend the notion of the rescaled covering
spectra to complete noncompact length spaces without universal covers by adapting
the definition of the rescaled lengths as discussed in Remark 5.2.

Remark 5.16. An alternative way of extending the definition of the rescaled
covering spectra to spaces without universal covers would be to describe the related
covering spaces as Spanier covers with some well chosen sets. One cannot just choose
balls Bx(rx) where rx = δd(x, x0). as there is a difficulty with the point x0 itself. If
one uses an arbitrary ball around x0 we lose scale invariance. One possibility might
be to take a limit of covers where the radius of the ball about x0 is taken to 0.

Remark 5.17. To define the infinite rescaled covering spectra on spaces without
universal covers, one needs to figure out how to use open sets to force the length out
to infinity.

6. Asymptotic behavior and the rescaled covering spectrum. Here we
study the asymptotic behavior of complete noncompact metric spaces using the
rescaled covering spectra and the rescaled slipping group. The first subsection con-
cerns the loops to infinity property and the relationship between the rescaled covering
spectra and the cut off covering spectrum defined by the authors in [37]. The sec-
ond subsection explicitly computes the rescaled covering spectra of spectific spaces
including hyperboloids and doubly warped products. The final subsection proposes
a conjecture concerning the relationship between the diameter growth of a space and
its rescaled covering spectrum.

6.1. Loops to infinity. We recall the loops to infinity property defined in [32]:

Definition 6.1. Given a metric space, X , a loop γ : S1 → X is said to have
the loops to infinity property, if for every compact set K ⊂ X , there is another loop
σ : S1 → X \K freely homotopic to γ.

Lemma 6.2. If L∞
rs(g) < 2 then any curve representing g has the loops to infinity

property.

Proof. If g does not have the loops to infinity property, its representative curves
Ci whose lengths approach L∞

rs(g) and have Ci(0) → ∞ must pass through a common
compact set, K. Thus L(Ci) ≥ 2dX(Ci(0),K), so the limit in the definition of rescaled
length gives a 2.

Theorem 6.3. Given a complete length space X, with a universal cover, X̃, if

CovSpec∞rs(X) ∈ (0, 1)(6.64)

then

CovSpeccut(X) = ∅.(6.65)

This theorem captures the fact that the rescaled covering spectrum and the cut
off spectrum measure very different kinds of “holes” in a complete length space.

Proof. By the hypothesis we have

π∞
rs(X, 1) = π∞

rs(X, δ′) ∀δ′ > 1.(6.66)
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So for any g0 ∈ π1(M), taking δ′ > L(g0)/2, we see that g0 ∈ π∞
rs (X, 1). So the

fundamental group is generated by elements g with Lx0

rs (g) < 2. Thus by Lemma 6.2,
any curve representing such a generator has the loops to infinity property and so by
Theorem 4.20 in [37] CovSpeccut(X) = ∅.

6.2. Cones, hyperboloids and warped products.

Definition 6.4. The base point free cone over Y with scaling k denoted Ck(Y )
is

Ck(Y ) = (0,∞)f × Y(6.67)

where f(r) = kr.

Theorem 6.5. Given a compact length space Y , we have

CovSpec∞rs(Ck(Y )) =
{

(1/2)
√

2− 2 cos(min{π, 2kδ}) : δ ∈ CovSpec(Y )
}

.(6.68)

and

CovSpecx0

rs (Ck(Y )) = ∅.(6.69)

Proof. Recall that with a linear warped product,

dCk(Y )((y1, r1), (y2, r2)) =
√

r21 + r22 − 2r1r2 cos(min{π, kdY (y1, y2)}) .(6.70)

This can be seen because if kdY (y1, y2) < π then the minimal geodesic between them
has length < π, and the minimal geodesic between (yi, ri) lies in a linear warped
product of that geodesic (which is a sector of Euclidean space and one can compute
its length using the law of cosines. If kdY (y1, y2) ≥ π then the shortest geodesic in
the cone passes though the base point and has length

r1 + r2 =
√

r21 + r22 − 2r1r2 cos(π) .(6.71)

Let N = Ck(Y ) and Ñ its universal cover. By the definition of the base point
free cone, any g ∈ π1(N) is also a g ∈ π1(Y ). In fact, one can easily see that

Ñ = (0,∞)×f Ỹ = Ck(Ỹ ),(6.72)

where any point in N can be represented as x = (y, r) with x ∈ Y and this point lifts
to a point x̃ = (ỹ, r) ∈ Ñ where ỹ ∈ Ỹ and where g(x̃, r) = (gx̃, r).

Let y1 achieve the infimum in the definition of L(g) viewing g ∈ π1(Y ):

L(g) = dỸ (gỹ1, ỹ1)(6.73)

and let y0 be furthest from y1:

dY (y0, y1) = sup
y∈Y

dY (y1, y).(6.74)

For any r0 > 0 we take x0 = (y0, r0). We have

r−1(0, R) ⊂ Bx0
(R+ r0) ⊂ r−1(0, R+ 2r0).(6.75)
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Applying Definition 5.1 which does not depend on the choice of x0, we have

L∞
rs(g) = lim

R→∞
inf

(y,r)∈N\Bx0
(R)

dÑ (g(ỹ, r), (ỹ, r))

dN ((y, r), (y0, r0))
(6.76)

= lim
R→∞

inf
y∈N,r≥R

dÑ ((gỹ, r), (ỹ, r))

dN ((y, r), (y0, r0))
(6.77)

= lim inf
r→∞

inf
y∈N

r
√

2− 2 cos(min{π, kdỸ (gỹ, ỹ)})
√

r2 + r20 − 2rr0 cos(min{π, kdY (y, y0)})
(6.78)

= lim inf
r→∞

r
√

2− 2 cos(min{π, kdỸ (gỹ1, ỹ1)})
√

r2 + r20 − 2rr0 cos(min{π, kdY (y1, y0)})
(6.79)

=
√

2− 2 cos(min{π, kdỸ (gỹ1, ỹ1)})(6.80)

=
√

2− 2 cos(min{π, kL(g)}) .(6.81)

This implies the first claim in the statement of our theorem.
In contrast, when we compute the rescaled length depending on a given basepoint

x0 = (y0, r0), we choose any y2 6= y0 and we have

Lx0

rs(g) = inf
(y,r) 6=(y0,r0)

dÑ (g(ỹ, r), (ỹ, r))

dN ((y, r), (y0, r0))
(6.82)

= inf
(y,r) 6=(y0,r0)

r
√

2− 2 cos(min{π, kdỸ (gỹ, ỹ)})
√

r2 + r20 − 2rr0 cos(min{π, kdY (y, y0)})
(6.83)

≤ inf
r 6=r0

r
√

2− 2 cos(min{π, kdỸ (gỹ2, ỹ2)})
√

r2 + r20 − 2rr0 cos(min{π, kdY (y2, y0)})
= 0.(6.84)

This effect where the rescaled spectrum goes to 0 does not appear to happen in
a setting where the space N is a manifold that is asymptotically cone like. Although
the infinite rescaled spectrum appears to behave in the same way. This can be seen
in the following example:

Example 6.1. The one-sheeted hyperboloid,

N2 = {(x, y, z) : x2 + y2 = z2 + 1},(6.85)

has a rescaled covering spectrum which consists of a single value

CovSpecx0

rs (N) = {1}(6.86)

CovSpec∞rs(N) = {1} .(6.87)

Proof. To compute Lx0

rs (g), we take advantage of the invariance under rescaling:

{(x, y, z) : x2 + y2 = z2 + 1}/R = {(Rx,Ry,Rz) : x2 + y2 = z2 + 1}
= {(x, y, z) : x2 + y2 = z2 + 1/R2}

Let σ ⊂ N be the circular neck. As R → ∞, we see that the length of a shortest
geodesic γ based at any point γ(0) ∈ N \ Tr(σ) is approaching the length of such a
geodesic in the flat cone with the origin removed:

{(x, y, z) : x2 + y2 = z2, (x, y, z) 6= (0, 0, 0)}.(6.88)
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This is Ck(Y ) in (6.67) with k = 1, Y the circle with radius 1/
√
2. Covspec(Y ) =

{ π√
2
}, hence Theorem 6.5 gives

CovSpec∞rs(Ck(Y )) = {1}.

Since it is scale invariant, so CovSpec∞rs(N
2) = {1}.

In the following theorem we see that warped product spaces which are asymptotic
to such cones, and even double warped producs which need not be close to the cones
but are simply connected on their second warping factor, have the same rescaled
covering spectra as their cones.

Theorem 6.6. Suppose our space is a doubly warped product

X = [0,∞)×f N ×h M(6.89)

where N and M are compact Riemannian manifolds with f ′(0) = 0, f(0) > 0 and
either h′(0) = 0 or h(0) = 0. In all these cases we assume f(r) > 0 and h(r) > 0 on
(0,∞).

If M is simply connected or h(0) = 0 we have

L∞
rs(g) = lim inf

r→∞
F (r, LN(g))

r
,(6.90)

where F (r, d) is the length of a minimal geodesic in

R×f R(6.91)

between (r, 0) and (r, d) and LN(g) is the length of g viewed as an element of π1(N).

Proof. Observe that the universal cover

X̃ = [0,∞)×f Ñ ×h M(6.92)

where x = (r, y, z) lifts to x̃ = (r, ỹ, z) and any g ∈ π1(X) can be viewed as g ∈ π1(N)
so that

gx̃ = (r, gỹ, z).(6.93)

Also we note that if

X ′ = [0,∞)×f N(6.94)

then X̃ ′ = [0,∞)×f Ñ and that

dX′((r1, y1), (r2, y2)) ≤ dX((r1, y1, z1), (r2, y2, z2))

≤ dX′((r1, y1), (r2, y2)) + max
[r1,r2]

h(r)dM (z1, z2).(6.95)

So applying Definition 5.1 with x0 = (0, y0, z0) we have

L∞
rs(g) = lim

R→∞
inf

(r,y,z)∈X\BR(0,y0,z0)

dX̃((r, gỹ, z), (r, ỹ, z))

dX((r, y, z), (0, y0, z0))
(6.96)

= lim inf
r→∞

inf
y∈N,z∈M

dX̃((r, gỹ, z), (r, ỹ, z))

dX((r, y, z), (0, y, z))± dX((0, y0, z0), (0, y, z))
(6.97)
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= lim inf
r→∞

inf
y∈N,z∈M

dX̃((r, gỹ, z), (r, ỹ, z))

dX((r, y, z), (0, y, z))
(6.98)

= lim inf
r→∞

inf
y∈N

dX̃′((r, gỹ), (r, ỹ))

dX′((r, y), (0, y))
(6.99)

= lim inf
r→∞

inf
y∈N

F (r, dÑ (gỹ, ỹ))

r
.(6.100)

Observe that F (r, d) is increasing as d increases so

inf
y∈N

F (r, dÑ (gỹ, ỹ))

r
=

F (r, LN(g))

r
(6.101)

where LN (g) be the length of g as an element of π1(N). Thus

L∞
rs(g) = lim inf

r→∞
F (r, LN (g))

r
.(6.102)

Corollary 6.7. Suppose that

lim
r→∞

f(r)

r
= k.(6.103)

If k > 0 we have

CovSpec∞rs(X) = {1
2

√

2− 2 cos(min{π, 2kd}) : d ∈ CovSpec(N)(6.104)

and the rescaled slipping group is empty. If k = 0 then

CovSpec∞rs(X) = ∅,(6.105)

and π1(X) ⊂ π∞
rs (X, 0).

Proof. In the special case where

lim
r→∞

f(r)/r = 0,(6.106)

then

lim
r→∞

F (r, d)/r = 0(6.107)

so CovSpec∞rs(X) = ∅ and π1(X) is a subset of the rescaled slipping group. Alternately
if

lim
r→∞

f(r)/r = k > 0,(6.108)

then

lim
r→∞

F (r, d)/r =
√

2− 2 cos(min{π, 2kd})(6.109)

so we have our claim.
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6.3. Diameter growth. For any metric space X , p ∈ X ,

lim sup
r→∞

diam(∂Bp(r))

r
= a,(6.110)

with 0 ≤ a ≤ 2.

Conjecture 6.8. For a metric space X with a above,

CovSpec∞rs(X) ⊂ (0,
a

2
] ∪ {1}.(6.111)

In particular, when X has sublinear diameter growth, i.e. a = 0, then

CovSpec∞rs(X) ⊂ {1}.(6.112)

7. Applications with curvature bounds. In this section we restrict ourselves
to the study of complete Riemannian manifolds, M . In the first subsection we study
manifolds with nonnegative sectional curvature, whose topology can be understood
because such manifolds have a compact soul. We also present an interesting example
of Wilking which has nonnegative sectional curvature and positive Ricci curvature
and prove it has a nontrivial rescaled covering spectrum. In the next subsection we
study manifolds with nonnegative Ricci curvature. We first show that the funda-
mental group of the classic example of Nabonnand lies in the rescaled slipping group
[Proposition 7.7]. We prove Theorem 1.1 concerning manifolds with positive Ricci
curvature and its Corollary 7.5. We close with a subsection on the rescaled covering
spectra of manifolds with nonnegative Ricci curvature proving Theorem 1.2.

7.1. Nonnegative sectional curvature. Cheeger-Gromoll [8] proved that
complete manifolds with nonnegative sectional curvature are diffeomorphic to nor-
mal bundles over totally geodesic compact submanifolds called souls. Sharafutdinov
[30] then proved there was a distance nonincreasing retraction to the soul: P : M → S.
Perelman [27, 28] showed that P is a Riemannian submersion and extended the dis-
tance nonincreasing retraction to complete Alexandrov spaces with nonnegative cur-
vature. In [37] using the distance nonincreasing retraction, P , the authors proved
that the covering spectrum of these spaces behave exactly like the covering spectrum
of a compact space:

Theorem 7.1. [37] If Mn is a complete noncompact Alexandrov space with
nonnegative curvature, then

CovSpec(Mn) = CovSpec(Sk)(7.113)

where Sk is its soul and

CovSpec(Mn) ⊂ (1/2)Length(Mn) = (1/2)Length(Sk)(7.114)

and it is determined by the marked length spectrum of Mn.

In the proof of this theorem, we observed that the length of every element of π1

was achieved within the soul. Combining this with our Theorem 3.6, we see that either
there are only finitely many elements in the fundamental group or the universal cover
contains a line. This was already shown in the compact setting by Cheeger-Gromoll
[7].
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Theorem 7.2. [37] If Mn is a complete noncompact Alexandrov space with
nonnegative curvature, then immediately

Shift(Mn) = Length(Mn),(7.115)

the slipping group and universal slipping groups are trivial.

We can also prove the following theorem relating the holonomy to the covering
spectrum:

Theorem 7.3. If a complete noncompact manifold, Mm, with nonnegative sec-
tional curvature has a connected holonomy group, then the fundamental group lies in
the rescaled slipping group and the infinite rescaled covering spectrum is empty. More
generally, if g ∈ π1(M

n) has a representative loop whose holonomy lies in the identity
component of the holonomy group then sup{L(g, p) : p ∈ Mm} < ∞ and g lies in the
rescaled slipping group.

Proof. Perelman proved that for all t > 0, we have

dM (expq1(tv1), expq2(tv2)) ≥ dS(q1, q2)(7.116)

as long as vi ∈ TMqi are perpendicular to the soul. Furthermore, he proved that if
there is a path from q1 to q2 such that v1 is parallel to v2 along that path, then there
is equality for all t > 0 [27][28].

Now suppose g ∈ π1(M) has a representative loop, C, which lies in the identity
component of the holonomy group of Mn. We apply the distance decreasing retrac-
tion, P , to obtain a loop P ◦ C, in the soul which is freely homotopic to C, and
thus also has holonomy in the identity component of the holonomy group of Mn.
Recall the identity component of the holonomy is generated by contractible loops.
So in this case one can compose P ◦ C with a trivial loop γ0 so that the composi-
tion, γ : [0, 1] → S ⊂ M , has a closed parallel normal vector field, v(s), such that
v(0) = v(1). Thus, taking Ct(s) = expγ(s)(tv(s)) as our representative of g based at
pt = Ct(0) we have

L(g, pt) ≤ L(Ct) = L(γ).(7.117)

This

L∞
rs(g) ≤ lim inf

t→∞
L(g, pt)

t
= 0.(7.118)

Remark 7.4. Note that the infinite Moebius strip has holonomy group, Z2,
and the value 1 lies in its infinite rescaled covering spectrum. One might think that
any complete noncompact manifold with nonnegative sectional curvature that has a
nonempty infinite rescaled covering spectrum has a line in its universal cover. How-
ever, in the appendix we will show that Wilking’s example has a nontrivial covering
spectrum.

7.2. Positive Ricci curvature and Theorem 1.1. For many years after
Cheeger and Gromoll proved the Soul Theorem [8] for manifolds with nonnegative
sectional curvature, it was an open question whether a complete noncompact mani-
fold with positive Ricci curvature must have a finite fundamental group. After all, if
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the manifold has positive Ricci curvature and nonnegative sectional curvature, then
it has a soul with positive Ricci curvature and the fundamental group must be fi-
nite by Myers’ Theorem [23]. Manifolds with positive sectional curvature have trivial
fundamental groups.

Then in 1980, Nabonnand [24] found an example of a complete noncompact man-
ifold with positive Ricci curvature whose fundamental group is Z. In fact, in [39],
the second author showed that fundamental group could be any torsion free nilpotent
group and Wilking adapted these examples to prove the fundamental group could be
any almost nilpotent group [40].

Below we will describe Nabonnand’s example in more detail and will see below
in Proposition 7.7, that all elements of the fundamental group of his example lie in
the rescaled slipping group. We will also study the Berárd-Bergery Examples which
demonstrate a variety of covering spectra can be achieved on manifolds with positive
Ricci curvature [Proposition 7.11]. In the Appendix we will see that Wilking’s example
has positive Ricci curvature and a nontrivial rescaled covering spectrum.

First we prove Theorem 1.1, stated in the introduction, that for any compact set
K in a complete noncompact manifold with positive Ricci curvature, there are only
finitely many distinct elements g of π1(M) such that L(g) are achieved in the compact
set K.

Proof. By Theorem 3.6, we know that if there are infinitely many elements whose
length is achieved within a compact set, then the universal cover contains a line. How-
ever, by the Cheeger-Gromoll Splitting Theorem [8], any manifold with nonnegative
Ricci curvature that contains a line splits isometrically, and thus cannot have strictly
positive Ricci curvature.

A corollary of Theorem 1.1 is:

Corollary 7.5. Let M be a complete Riemannian manifold with Ric > 0. If
there is a compact set K ⊂ M such that L(g, p) is nondecreasing outside of K as
p → ∞, then π1(M) is finite.

Remark 7.6. Note that the nondecreasing hypothesis in Corollary 7.5 implies
that the slipping group is trivial and the covering spectrum has an infimum. One
may ask if one still must have a finite fundamental group when the nondecreas-
ing hypothesis is replaced by an assumption that the slipping group is trivial and
the covering spectrum has an infimum. However we will produce many examples in
Proposition 7.11 which have infinite fundamental groups.

Then Berárd-Bergery [2] showed that, given any compact manifold Mm with
Ricci ≥ 0, Nm+3 = Mm × R3 has a complete warping metric

g = dr2 + h2(r)gS2 + f2(r)gM with h(0) = 0,

h′(0) = 1, and f(0) 6= 0, f ′(0) = 0.(7.119)

with Ric > 0. Nabonnand’s example had the same structure with M = S1.
For complete manifolds with Ric ≥ 0, unlike manifolds with nonnegative sectional

curvature, L(g, p) could decrease as p goes to infinity. In Nabannand’s example [24]
of S1 × R3 with Ric > 0, the length of S1 strictly decreases as it goes to infinity. In
fact we can show that:

Proposition 7.7. For any warping metric as in (7.119) (with M = S1) on
N = S1×R3), if Ric > 0, then f ′(r) < 0 for r > 0. So the rescaled covering spectrum
is empty and π1(N) is contained in the rescaled slipping group.
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Proof. To see this we examine the Ricci curvature in the S1 direction, V , which,
according to Nabonnand’s equation (1) is

−Ric(V, V ) =
f ′′(r)

f(r)
+ 2

f ′(r)h′(r)

f(r)h(r)
< 0 for r > 0.(7.120)

By smoothness requirements f ′(0) = 0 and f(r) > 0 for all r ∈ [0,∞). Suppose
f ′(r0) = 0. Then

f ′′(r0)

f(r0)
=

f ′′(r0)

f(r0)
+ 2

f ′(r0)h′(r0)

f(r0)h(r0)
< 0.(7.121)

So f ′′(r0) < 0 and all critical points are local maximal. This implies there is at most
one critical point and f ′(r) < 0 after that critical point. Since f ′(0) = 0 we have
f ′(r) < 0 for all r > 0. So f is strictly decreasing.

Any g ∈ π1(N) is also a g ∈ π1(M) with such a construction and any point in N
can be represented as (x, r) with x ∈ M . So applying Definition 5.1

L∞
rs(g) ≤ Lx0

rs (g) = inf
(x,r)∈N\{(x0,0)}

dÑ (g ˜(x, r), ˜(x, r))

dN ((x, r), (x0 , 0))
(7.122)

≤ lim
r→∞

f(r)dM̃ (gx̃, x̃)

r − dN (x, x0)
= 0.(7.123)

Remark 7.8. The above theorem also holds for general warped products as in
(7.119) when Mn has nonnegative Ricci curvature, e.g. Mn = T n.

Remark 7.9. Note that in general the rescaled slipping group of a manifold with
Ricci > 0 may not be the entire fundamental group even though such manifolds have
the loops to infinity property. See Example 8.1 in the appendix.

Remark 7.10. In Berárd-Bergery type examples where f(r) is monotone de-
creasing in r in (7.119), limr→∞ f(r) could be zero or any positive number. When
limr→∞ f(r) = 0, the entire fundamental group is in the slipping group and the
universal delta cover is the whole space.

Proposition 7.11. If Mn is a compact manifold with nonnegative Ricci cur-
vature, then there is a Berárd-Bergery example, Nn+3 of a complete noncompact
manifold with positive Ricci curvature as in (7.119) such that

CovSpec(Nn+3) = CovSpec(Mn).(7.124)

Proof. In the Berárd-Bergery examples, f(r) need only be decreasing and we can
find decreasing f(r) such that limr→∞ f(r) = 1.

Remark 7.12. If Mn has positive Ricci curvature, then f need not be strictly
decreasing to make M × R3 have positive Ricci curvature. One can take f(r) to be
constant and h(r) concave down, since the isometric product of M with R

3 where R3

has Ric > 0 would have positive Ricci curvature. Then we get CovSpec(M × R3) =
CovSpec(M) and CovSpecx0

rs (M × R3) = 0.
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7.3. Ricci curvature and the rescaled covering spectrum. We now prove
Theorem 7.13. In fact we prove the following stronger theorem:

Theorem 7.13. Suppose Mn is a complete noncompact manifold, Mn, and
π∞
rs (M, δ) is trivial. If Mn has nonnegative Ricci curvature then the fundamental

group is finite with less than 2(2 + δ)n/δn elements.

Proof. Assume on the contrary there are N nontrivial elements g1, g2, ...gN−1 ∈
π1(M) such that gi 6= g±1

j for all i 6= j. Let g0 be the identity in π1(M). When M

has nonnegative Ricci curvature, we have our theorem if we prove N ≤ (2+δ)n

δn
. So we

assume on the contrary that

N >
(2 + δ)n

δn
.(7.125)

For all i, j ∈ {0, 1, 2, ...(N − 1)} with i 6= j, we have gig
−1
j are nontrivial. So

gig
−1
j /∈ π∞

rs (M, δ)(7.126)

and

L∞
rs(gig

−1
j ) ≥ 2δ.(7.127)

So for any x0 ∈ M , ǫ > 0, there exists Ri,j,ε sufficiently large that ∀R ≥ Ri,j,ε we
have

inf
x∈M\Bx0

(R)

dM̃ (x̃, gig
−1
j x̃)

dM (x, x0)
> 2δ − 2ε.(7.128)

Let Rε = max{Ri,j,ε : i, j ∈ 0, 1, ...(N − 1)}. Then (7.128) holds for all R ≥ Rε.
In particular, for all x ∈ M \Bx0

(Rε) we have

Bgix̃(ρε(x)) ∩Bgj x̃(ρε(x)) = ∅(7.129)

where

ρε(x) = ρ(x)(δ − ε) where ρ(x) = d(x, x0).(7.130)

Fix a lift of x0, x̃0, choose x̃, a lift of x, such that

dM̃ (x̃, x̃0) = dM (x, x0) = ρ(x).(7.131)

We now apply the trick in Milnor’s paper [21]. First we set

C = max{dM̃ (x̃0, gix̃0) : i = 0, 1, 2...N}.(7.132)

Then by the triangle inequality,

Bgix̃(ρε(x)) ⊂ Bx̃0
(C + ρ(x) + ρε(x)) ⊂ Bx̃(C + 2ρ(x) + ρε(x)).(7.133)

Since

vol(Bgix̃(ρε(x))) = vol(Bx̃(ρε(x))(7.134)
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and the balls are disjoint, we have

Nvol(Bx̃(ρε(x)) ≤ vol(Bx̃(C + 2ρ(x) + ρε(x)).(7.135)

By the Bishop-Gromov Volume Comparison Theorem, we have

N ≤ (C + 2ρ(x) + ρε(x))
n

(ρε(x))n
.(7.136)

Substituting ρε(x) = ρ(x)(δ − ε) we have

N ≤ (C + ρ(x)(2 + δ − ε))n

(ρ(x)(δ − ε))n
(7.137)

for all x ∈ M \Bx0
(Rε). So now we take x → ∞, ρ(x) → ∞ and we have

N ≤ (2 + δ − ε)n

(δ − ε)n
.(7.138)

Lastly we take ε → 0 and we have our contradiction.

Remark 7.14. A version of Theorem 1.2 holds for any metric measure space
whose universal cover satisfies a doubling condition for arbitrarily large radii including
the pointed Gromov-Hausdorff limits of manifolds with nonnegative Ricci curvature.
In that case we can prove the group of deck transforms of the universal covering
space is finite. See [34] for similar discussions of extensions of theorems regarding the
universal covers of manifolds with nonnegative Ricci curvature to their limit spaces.

Remark 7.15. It should be noted that Anderson extended Milnor’s techniques
by intersecting balls with fundamental domains and taking their radii to infinity in
[1]. He proved that the fundamental group in a manifold with nonnegative Ricci
curvature and lim infR→∞ vol(Bx0

(R))/Rn = α > 0 has a fundamental group which
is finite with ≤ ωn/α elements. Li also proved this using the heat kernal in [19].
One might ask if manifolds satisfying the conditions in their theorem have a trivial
rescaled covering group for some value δ. Or perhaps, one could show that at least
the rescaled slipping group is trivial.

Remark 7.16. The first author proved in [31] that the fundamental group of a
manifold, Mn, with nonnegative Ricci curvature and linear volume growth

lim sup
R→∞

vol(Bx0
(R))

R
< ∞(7.139)

has a finitely generated fundamental group. One might ask whether under these con-
ditions one can prove there is a δ > 0 such that π∞

rs (M, δ) is trivial and thus improve
this theorem to imply that the fundamental group is finite. However the cylinder
and the infinite Moebius strip both have linear volume growth (and 0 curvature), and
infinite fundamental group with a nontrivial rescaled slipping group and so π∞

rs (δ) is
nontrivial for all δ > 0.

Remark 7.17. The first author proved in [31] that the fundamental group of a
manifold, Mn, with nonnegative Ricci curvature with small linear diameter growth

lim sup
R→∞

diam(Bx0
(R))

R
≤ Sn(7.140)
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has a finitely generated fundamental group. The constant provided in [31] was im-
proved by [43]. One might ask whether under these conditions one can prove there
is a δ > 0 such that π∞

rs (M, δ) is trivial and thus improve this theorem to imply that
the fundamental group is finite. However, this is not possible: Nabonnand’s example
has both an infinite fundamental group and sublinear diameter growth as well as a
nontrivial rescaled slipping group.

8. Appendix. We would like to thank Burkhard Wilking for suggesting this
example when asked for an example of a manifold with nonnegative sectional curvature
that had L(g, p) diverging to infinity as p → ∞, but the universal cover has no line.

Example 8.1. Let M6 = (S3 × R
4)/Pin(2). This has nonnegative sectional

curvature because it is a quotient of a manifold with nonnegative sectional curvature.
It is R4 bundle with soul S3/P in(2) = RP 2.

In Proposition 8.2 we will prove this example has positive Ricci curvature. In
Proposition 8.3, we will prove the infinite rescaled covering spectrum is nontrivial.
These are the only facts needed to apply this example earlier in the paper.

Before studying the properties of this example, we explain the construction in
more detail. Here S3×R4 is the standard isometric product with nonnegative sectional
curvature. One takes

S
3 × R

4 = {(z1, z2, z3, z4) ∈ C
4 : |z1|2 + |z2|2 = 1}.(8.1)

We can take an S1 action on this space:

eiθ(z1, z2, z3, z4) = (eiθz1, e
iθz2, e

iθz3, e
iθz4).(8.2)

Then M̃6 = (S3×R4)/S1 has nonnegative sectional curvature by O’Neill’s Submersion
Formula [26]. The elements of M̃6 are equivalence classes

[(z1, z2, z3, z4)] = [(eiθz1, e
iθz2, e

iθz3, e
iθz4)] ∈ M̃6.(8.3)

Recall that the Hopf sphere has S2 = S3/S1, where we also view

S
3 = {(z1, z2) ∈ C

2 : |z1|2 + |z2|2 = 1}(8.4)

with the same kind of circle action

eiθ(z1, z2) = (eiθz1, e
iθz2).(8.5)

The equivalence classes

[(x1 + ix3, x2 + ix4)] = [(z1, z2)] = [(eiθz1, e
iθz2)] ∈ S

3/S1(8.6)

are identified with points

(

2(x1x2 + x3x4), 2(x1x4 − x2x3), x
2
1 + x2

3 − x2
2 − x2

4

)

(8.7)

∈ {(a, b, c) : a2 + b2 + c2 = 1} = S
2 ⊂ R

3.

We can see that M̃6 is an R4 bundle over S2 with

π
(

[(eiθz1, e
iθz2), e

iθz3, e
iθz4)]

)

= [(eiθz1, e
iθz2)](8.8)
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So it is simply connected.

We define M6 = M̃6/Z2 taking the antipodal map on the S2 base and the fibers.
First note that the antipodal map, g0, on S2:

g0[(e
iθz1, e

iθz2)] = g0[(x1 + ix3, x2 + ix4)](8.9)

= g0
(

2(x1x2 + x3x4), 2(x1x4 − x2x3), x
2
1 + x2

3 − x2
2 − x2

4

)

(8.10)

=
(

− 2(x1x2 + x3x4),−2(x1x4 − x2x3),−x2
1 − x2

3 + x2
2 + x2

4

)

(8.11)

= [(x2 − ix4,−x1 + x3i)] = [(z̄2,−z̄1)](8.12)

= [(eiθ z̄2, e
i(π+θ)z̄1)](8.13)

We define the Z2 action g on M̃6 such that π ◦ g = g ◦ g0 as follows:

g[(eiθz1, e
iθz2, e

iθz3, e
iθz4)] = [(eiθ z̄2, e

i(π+θ)z̄1, e
iθ z̄4, e

i(π+θ)z̄3)].(8.14)

Since the soul of M̃6 = S3 × R4/S1, is S3/S1 = S2, we know the soul of M6 =
S3 × R4/Pin(2) = M̃6/Z2 is RP 2 = S2/Z2. Wilking made an argument using this
soul and the tangent cone at infinity to show the universal covering space does not
contain a line. However, we see here that it does not contain a line because in fact it
has positive Ricci curvature:

Proposition 8.2. The Wilking Example, M6, has positive Ricci curvature.

Proof. We will examine M̃6. The soul directions have positive Ricci curvature
because the soul has positive sectional curvature and the total space has nonnegative
sectional curvature. So we only need to check the fibre directions. The fibres are
totally geodesic with quotient metric R4 ×S1/S1. We can write the metric of R4 × S1

as

dr2 + r2((σ1)2 + (σ2)2 + (σ3)2 + dθ2,(8.15)

where (σ1)2 + (σ2)2 + (σ3)2 is the standard left invariant metric on S3, with dual
orthonormal vector fields X1, X2, X3 satisfy the bracket relation [Xi, Xi+1] = 2Xi+2

(indices are mod 3). Let X1 be tangent to the Hopf fibre direction. Then the orbit
direction of S1 acts on R4 × S1 is X1 + ∂

∂θ
. Therefore the orthonormal basis of

R4 × S1/S1 is ∂
∂r
, X̄1 = 1√

1+r2
(1
r
X1 − r ∂

∂θ
), X̄2 = 1

r
X2, X̄3 = 1

r
X3. Now we can use

O’Neill’s formula to compute the sectional curvatures. One can find K( ∂
∂r
, X̄1) =

‖[ ∂
∂r
, X̄1]

v‖2 = 4
(1+r2)2 , and K(X̄2, X̄3) = ‖[X̄2, X̄3]

v‖2 = 4
1+r2

. Therefore the Ricci

curvature of all directions are positive.

Intuitively, one can see that L(g, p) → ∞ and p → ∞ in M6. However, we will
now prove it grows linearly to obtain the following proposition:

Proposition 8.3. The Wilking Example, M6, has nontrivial infinite rescaled
covering spectrum.

Proof. The fundamental group of M6 is Z2. Let g be the nontrivial element,
described by its action on M̃ in (8.14). We need only show:

L∞
rs(g) = lim

R→∞
inf

x∈M6\Bx0
(R)

dM̃6(gx̃, x̃)

dM6 (x, x0)
> 0.(8.16)
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First we compute:

dM̃6

(

gx̃, x̃
)

= dM̃6

(

g[(z1, z2, z3, z4)], [(z1, z2, z3, z4)]
)

= dM̃6

(

[(eiθ z̄2, e
i(π+θ)

z̄1, e
iθ
z̄4, e

i(π+θ)
z̄3)], [(e

iθ
z1, e

iθ
z2, e

iθ
z3, e

iθ
z4)]

)

= inf
θ,φ

dS3×R4

(

(eiθ z̄2, e
i(π+θ)

z̄1, e
iθ
z̄4, e

i(π+θ)
z̄3), (e

iφ
z1, e

iφ
z2, e

iφ
z3, e

iφ
z4)

)

= inf
θ,φ

dS3×R4

(

(ei(θ−φ)
z̄2, e

i(π+θ−φ)
z̄1, e

i(θ−φ)
z̄4, e

i(π+θ−φ)
z̄3), (z1, z2, z3, z4)

)

= inf
θ′

dS3×R4

(

(eiθ
′

z̄2, e
i(π+θ′)

z̄1, e
iθ′

z̄4, e
i(π+θ′)

z̄3), (z1, z2, z3, z4)
)

= inf
θ′

√

(

dS3

(

(eiθ′ z̄2, ei(π+θ′)z̄1), (z1, z2)
)

)2

+

(

dR4

(

(eiθ′ z̄4, ei(π+θ′)z̄3), (z3, z4)
)

)2

≥ inf
θ′

dR4

(

(eiθ
′

z̄4, e
i(π+θ′)

z̄3), (z3, z4)
)

= inf
θ′

√

∣

∣

∣eiθ
′

z̄4 − z3

∣

∣

∣

2

+
∣

∣

∣ei(π+θ′)z̄3 − z4

∣

∣

∣

2

≥ inf
θ′

√
2

2

(

∣

∣

∣e
iθ′

z̄4 − z3

∣

∣

∣+
∣

∣

∣e
i(π+θ′)

z̄3 − z4

∣

∣

∣

)

= inf
θ′

√
2

2

(

∣

∣

∣
e
−iθ′

z4 − z̄3

∣

∣

∣
+

∣

∣

∣
e
i(π+θ′)

z̄3 − z4

∣

∣

∣

)

= inf
θ′

√
2

4

(

∣

∣

∣
z4 − e

iθ′

z̄3

∣

∣

∣
+

∣

∣

∣
e
i(π+θ′)

z̄3 − z4

∣

∣

∣
+

∣

∣

∣
e
−iθ′

z4 − z̄3

∣

∣

∣
+

∣

∣

∣
z̄3 − e

−i(π+θ′)
z4

∣

∣

∣

)

≥ inf
θ′

√
2

4

(

∣

∣

∣e
iθ′

z̄3 − e
i(π+θ′)

z̄3

∣

∣

∣+
∣

∣

∣e
−iθ′

z4 − e
−i(π+θ′)

z4

∣

∣

∣

)

= inf
θ′

√
2

4

(

∣

∣

∣
z̄3 − e

iπ
z̄3

∣

∣

∣
+

∣

∣

∣
z4 − e

−iπ
z4

∣

∣

∣

)

=

√
2

4

(

∣

∣

∣
1− e

iπ
∣

∣

∣
|z̄3|+

∣

∣

∣
1− e

−iπ
∣

∣

∣
|z4|

)

=

√
2

4

(

2|z̄3|+ 2|z4|
)

≥
√
2

2

√

|z3|2 + |z4|2.

On the other hand

dM6(x, x0) = min{dM̃6(x̃, x̃0), dM̃6(x̃, gx̃0)}(8.17)

So by the triangle inequality

∣

∣

∣
dM6(x, x0)− dM̃6 (x̃, x̃0)

∣

∣

∣
≤ dM̃6(x̃0, gx̃0).(8.18)

Choosing x0 in the soul, x̃0 = [(w1, w2, 0, 0)], so

dM̃6(x̃, x̃0) = inf
θ,φ

dS3×R4

(

(eiθw1, e
iθw2, 0, 0), (e

iφz1, e
iφz2, e

iφz3, e
iφz4)

)

(8.19)

≤ dS3×R4

(

(w1, w2, 0, 0), (z1, z2, z3, z4)
)

(8.20)

≤
√

π2 + |z3|2 + |z4|2.(8.21)
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If dM6(x, x0) → ∞, then dM̃6(x̃, x̃0) → ∞ and |z3|2 + |z4|2 → ∞. Thus

L∞
rs(g) = lim

R→∞
inf

x∈M6\Bx0
(R)

dM̃6(gx̃, x̃)

dX(x, x0)
(8.22)

≥ lim inf
|z3|2+|z4|2→∞

√
2
2

√

|z3|2 + |z4|2
√

π2 + |z3|2 + |z4|2 + dM̃6(x̃0, gx̃0)
=

√
2/2.(8.23)

Thus the rescaled covering spectrum is nontrivial.
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