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The Cut-off Covering Spectrum

Christina Sormani ∗ Guofang Wei †

Abstract

We introduce the R cut-off covering spectrum and the cut-off covering spectrum of a complete

length space or Riemannian manifold. The spectra measure the sizes of localized holes in the

space and are defined using covering spaces called δ covers and R cut-off δ covers. They are

investigated using δ homotopies which are homotopies via grids whose squares are mapped into

balls of radius δ.

On locally compact spaces, we prove that these new spectra are subsets of the closure of the

length spectrum. We prove the R cut-off covering spectrum is almost continuous with respect

to the pointed Gromov-Hausdorff convergence of spaces and that the cut-off covering spectrum

is also relatively well behaved. This is not true of the covering spectrum defined in our earlier

work which was shown to be well behaved on compact spaces. We close by analyzing these

spectra on Riemannian manifolds with lower bounds on their sectional and Ricci curvature and

their limit spaces.

1 Introduction

Complete length spaces and Riemannian manifolds are often studied using Gromov-Hausdorff con-
vergence and Gromov’s compactness theorem. However, this convergence, reviewed in Section 5,
does not preserve the topology of the space. Thinner and thinner flat tori converge to circles, thus
losing a generator of the fundamental group. Sequences of surfaces of higher and higher genus can
converge to the Hawaii Ring, a space with an infinitely generated fundamental group and no uni-
versal cover [Example 2.1]. Sequences of capped cylinders can be seen to converge in the pointed
Gromov-Hausdorff sense to cylinders if the cap slides out to infinity [Example 5.2].

Adding curvature conditions to the spaces in question both restrict their topology and topology of
the limit spaces. Cheeger-Gromoll’s Soul Theorem not only demonstrates that complete noncompact
spaces with nonnegative sectional curvature have finite topological type, but also that their ”holes”
are located in a compact soul [ChGr]. Perelman proved a geometric extension of this result for their
limit spaces using work of Sharafutdinov [Sh][Pe1]. More recently Cheeger-Colding have proven a
number of results concerning the limits of manifolds with nonnegative Ricci curvature (c.f. [Ch] and
[Wei]). The topology of such spaces has been studied extensively by a number of mathematicians
(c.f. [ShSo2]). As one examines this work, it becomes clear that it is not only of importance to
understand the topological question concerning the existence of holes in these spaces but also to
examine the geometric properties of these holes.

In [SoWei3], the authors defined the covering spectrum of a compact length space, K. This
spectrum measures the size of the one dimensional holes in the space and is closely related to the
length spectrum: every element in the covering spectrum is half the length of a closed geodesic,

CovSpec(K) ⊂ (1/2)Length(K). (1.1)

∗Partially supported by a grant from the City University of New York PSC-CUNY Research Award Program
†Partially supported by NSF Grant # DMS-0505733.
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The covering spectrum is empty when the space is simply connected or is its own universal cover.
It is determined using a sequence of covering spaces called δ covers which unravel curves that don’t
fit in balls of radius δ. We proved that when compact length spaces Ki converge in the Gromov-
Hausdorff sense to a compact length space K, then their covering spectra converge in the Hausdorff
sense:

dH(CovSpec(Ki) ∪ {0}, CovSpec(K) ∪ {0}) → 0. (1.2)

It is possible for elements to converge to 0 as they do on the sequence of thinner and thinner tori, at
which point they disappear and are no longer in the covering spectrum. However, elements which
converge to a positive value do not disappear in the limit. Furthermore, an element in CovSpec(K)
is the limit of elements in CovSpec(Ki). In particular, the covering spectrum of the limit space, K,
of a sequence of simply connected spaces, Ki, is empty [SoWei3].

When studying complete noncompact spaces, it is natural to employ pointed Gromov-Hausdorff
convergence. The covering spectrum is not continuous with respect to this convergence. Sequences
of manifolds, Xi with handles sliding out to infinity converge to a space X with no handles, so that
we can have δ ∈ CovSpec(Xi)∀i ∈ N yet CovSpec(X) = ∅ [Example 5.1]. It is even possible for
there to be an element in the covering spectrum of the limit space when CovSpec(Xi) = ∅ ∀i ∈ N

[Example 5.2]. These difficulties arise because the pointed Gromov-Hausdorff convergence is defined
as the Gromov-Hausdorff limit of balls of radius R where the convergence can be slower as we take
larger values of R.

Further difficulties are caused by the lack of compactness on a single space. Even on a locally
compact space the covering spectrum is no longer closely related to the length spectrum on a
noncompact space: there can be holes which extend to infinity and decrease in size [Examples 2.4
and 2.5]. Those that decrease to 0 are not detected by the covering spectrum and those that decrease
to a constant cause an element in the covering spectrum to exist which is not 1/2 the length of a
closed geodesic. This is explored in [SoWei4]. Here we define a new spectrum which resolves many
of these difficulties.

In this paper we introduce the R cut-off covering spectrum and the cut-off covering spectrum
to overcome these difficulties. The R cut-off covering spectrum of a pointed space (X, x) detects
holes which do not extend outside the closed ball B̄x(R). The cut-off covering spectrum detects
holes which do not extend to infinity. A cylinder only has a hole extending to infinity, so its cut-off
covering spectrum is empty. We prove that on locally compact length space X both of these spectra
are contained in the closure of the length spectrum because the holes they detect are localized
[Theorem 4.16 and Corollary 4.18]. Local compactness is seen to be necessary in Example 4.3.

We prove that the R cut-off covering spectrum is continuous with respect to the pointed Gromov-
Hausdorff convergence of the locally compact spaces [Theorem 5.2]. This result is not an immediate
extension of our compact results because the R cut-off spectrum is not uniformly localized: it detects
any hole which passes into B̄x(R) no matter how far out part of the hole extends. While the elements
of the covering spectrum of a compact space are bounded above by the diameter of the space, there
is no upper bound on an element in the R cut-off covering spectrum [Example 5.5]. In Example 5.5,
one sees a sequence of Xi with increasingly large holes such that the hole snaps open to give a
simply connected limit X . One aspect of our theorem says that if a sequence of spaces (Xi, xi) have
elements

δi ∈ CovSpecR
cut(Xi, xi) (1.3)

which diverge to infinity, then the holes they detect always snap open in the limit and are no longer
holes at all.

Another difficulty in our noncompact setting arises from the fact that the R cut-off covering
spectrum is defined using covering spaces and, as such, homotopies which extend far outside B̄x(R)
could influence the value of CovSpecR

cut(X, x). To handle this issue we develop the concept of the δ
homotopy first introduced [SoWei1]. A closed curve is δ homotopic to a point if it lifts as a closed
curve to the δ cover of the space. We introduce δ homotopies: maps from rectangular grids to the
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space which map squares into balls of radius δ [Lemma 3.4]. This allows us to control the location
of the maps and, in particular, we prove that if a curve is δ homotopic to a point, then it is δ
homotopic in a bounded region to a collection of possibly trivial loops lying near the boundary of
that region [Lemma 3.7]. Later we apply this to localize subsets of the cut-off covering spectrum
[Proposition 4.36]. We also bound the lengths of curves in a region A with certain δ homotopic
properties in terms of the number of disjoint balls of radius δ/5 that fit within A [Lemma 3.9]. This
is useful later for uniformly bounding the size of holes which are detected by the R cut-off covering
spectrum in a Gromov-Hausdorff converging sequence of balls.

Since the δ homotopy concepts and lemmas are of interest beyond their applications to the cut-off
covering spectra, they are developed in Section 3 immediately following Section 2 which reviews the
definition of the covering spectrum and provides a new simplified definition for spaces with universal
covers [Theorem 2.11]. While the lemmas in Section 3 are very intuitive and have explanatory
diagrams, the proofs are necessarily technical and may be skipped by the reader.

In Section 4 we introduce the cut-off covering spectra of pointed length spaces (X, x). We begin

by defining the R cut-off δ covers, X̃δ,R
cut , which unravel curves that are not δ homotopic to loops

outside B̄x(R). We prove they have unique limits as R diverges to infinity and call these limits
the cut-off δ covers[Prop 4.7]. These covers unravel holes which do not extend to infinity. The R
cut-off covering spectrum, CovSpecR

cut(X, x) is defined using the R cut-off δ covers while the cut-off
covering spectrum CovSpeccut(X) is defined using the cut-off δ covers and is basepoint invariant
[Definitions 4.4 and 4.9].

In Section 4.3 we relate these spectra to the covering spectra and to each other, showing in
particular that for any R1 < R2 and any basepoint x ∈ X we have

CovSpecR1

cut(X, x) ⊂ CovSpecR2

cut(X, x) ⊂ CovSpeccut(X) ⊂ CovSpec(X). (1.4)

In Section 4.4, we prove Theorem 4.16 that for locally compact X , if δ ∈ CovSpecR
cut(X) then

2δ ∈ Length(X) which we write as CovSpecR
cut(X) ⊂ (1/2)Length(X). As a corollary we then show

CovSpeccut(X) ⊂ Cllower((1/2)Length(X)) (1.5)

where Cllower(A) is the lower semiclosure of the set A ⊂ R. The lower semiclosure is defined
and explored in the appendix, where we prove any spectrum defined in a manner similar to these
spectra are lower semiclosed sets [Theorem 7.5]. Example 4.2 demonstrates the necessity of the lower
semiclosure in (1.5) .

In Section 4.5 we study various topological conditions on a complete length space. We first recall
the loops to infinity property defined in [So] and relate this concept to the emptiness of the cut-off
covering spectrum [Theorem 4.20 and Theorem 4.21]. Corresponding examples are presented as
well. Then we describe the cut-off covering spectrum on various topological spaces [Theorem 4.22].

In Section 4.6, we introduce a new construction of length spaces which are not locally compact.
This construction consists of attaching a “pulled ribbon” to a given space along a line. Example 4.5
demonstrates the necessity of the local compactness condition in Theorem 4.21. Example 4.6 demon-
strates that a space with an empty length spectrum can have a nontrivial cut-off covering spectrum
demonstrating the necessity of local compactness in Theorem 4.16.

In Section 4.7 we localize the R cut-off covering spectrum using the δ homotopies as mentioned
above. Proposition 4.36 shows subsets of the R cut-off covering spectra agree on spaces with isometric
balls of sufficient size.

In Section 4.8 we explore

CovSpecR2

cut(X) \ CovSpecR1

cut(X) when R2 > R1. (1.6)

In particular Propositions 4.37 and 4.38 together imply that these two spectra are equivalent for R2

sufficiently close to R1 on locally compact spaces .
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In Section 5 we introduce Gromov-Hausdorff convergence, first reviewing the definitions. In
Section 5.1 we provide examples demonstrating why the covering spectrum is not continuous with
respect to pointed Gromov-Hausdorff convergence: elements can shrink to 0, disappear in the limit,
suddenly appear in the limit, or diverge to infinity.

In Section 5.2 we prove the continuity of the R cut-off covering spectrum [Theorem 5.2] and
provide examples clarifying why it is necessary to slightly change R to obtain this continuity. The
proof requires two propositions: one controlling the fundamental groups of the R cut-off δ covers
and the other proving the R cut-off δ covers converge. It also strongly relies on the results on δ
homotopies and localization proven in the earlier sections.

In Section 5.3 we prove Theorem 5.5 which states that

for any δ ∈ CovSpeccut(X), there is δi ∈ CovSpeccut(Xi) (1.7)

such that δi → δ. In particular if Xi are simply connected locally compact spaces that converge
to a locally compact space X in the pointed Gromov-Hausdorff sense then CovSpeccut(X) = ∅
[Corollary 5.6]. This limit space need not be simply connected as can be seen in Example 5.2.

Further directions of study are suggested in Question 5.7 and Remark 5.8.
In Section 5.4 we prove the pointed Gromov-Hausdorff limits of simply connected spaces either

have the loops to infinity property or two ends [Theorem 5.9]. In Section 5.5 we investigate the cut-
off covering spectra of tangent cones at infinity, proving in Theorem 5.11 that spaces with bounded
cutoff covering spectra have tangent cones at infinity with empty covering spectra.

We close the paper with Section 6 on applications to spaces with curvature bounds. Section 6.1
discusses manifolds with nonnegative sectional curvature and consequences of the Cheeger-Gromoll
Soul Theorem and work of Sharafutdinov and Perelman. Theorem 6.1 applies to length spaces with
curvature bounded below as well and states that if S is the soul of the manifold, then

CovSpec(S) = CovSpec(TR(S)) = CovSpec(M) (1.8)

where TR(S) is the tubular neighborhood of the soul.
In Section 6.2 we apply our convergence results to obtain an almost soul theorem [Theorem 6.3]

which says that locally (1.8) is approximately true. Corollary 6.5 descibes the local behavior of the
covering spectrum of a manifold with sect ≥ −1. We describe such spaces as having many ”subscaled
souls”.

In Section 6.3 we turn to manifolds with nonnegative Ricci curvature. Theorem 6.6 states that
the cut-off covering spectrum of such a space is empty unless its universal cover splits isometri-
cally. In particular a manifold with positive Ricci curvature has an empty cut-off covering spectrum
[Corollary 6.7].

In Section 6.4 we prove Theorem 6.8 which concerns limits of spaces with lower bounds on their
Ricci curvature approaching 0. We then suggest some open problems related to Ricci curvature
and the cut-off covering spectrum and possible local almost soul theorems similar to Corollary 6.5.
Conjecture 6.9 suggests an extension of a theorem of the first author from [So] which was used to
prove Theorem 6.6. In Conjecture 6.10 we suggest that Theorem 6.8 might then be strengthened to
Theorem 6.6. In Conjecture 6.11 we suggest a possible subscaled soul theorem for manifolds with
Ricci ≥ −1 similar to Corollary 6.5. We close by applying Theorem 5.2 and Theorem 6.3 to prove
Conjecture 6.10 implies Conjecture 6.11 [Theorem 6.12].

We would like to thank Carolyn Gordon, David Fisher and Ruth Gornet for encouraging us to
pursue a further investigation of the covering spectrum. The first author would like to thank the
Courant Institute for its hospitality.

2 Background

First we recall some basic definitions.
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Definition 2.1 A complete length space is a complete metric space such that every pair of points
in the space is joined by a length minimizing rectifiable curve. The distance between the points is
the length of that curve. A compact length space is a compact complete length space (c.f. [BBI]).

Note that complete Riemannian manifolds are complete length spaces. Like geodesics in Rie-
mannian manifolds, geodesics in length spaces are locally minimizing curves. Closed geodesics are
geodesics from S1 to the space.

Example 2.1 A simple example of a complete length space that we will use repeatedly in this section
is a collection of circles of various radii joined at a point, p. The distance between points on single
circle is just the shorter arclength between them. Distances between points, q1, q2 on distinct circles
is the sum of the shorter arclength from q1 to p and the shorter arclength from q2 to p. This space
is called the Hawaii ring when the collection of radii is {1/j : j ∈ N}.

2.1 Spanier covers and δ-covers

Definition 2.2 We say X̄ is a covering space of X if there is a continuous map π : X̄ → X such
that ∀x ∈ X there is an open neighborhood U such that π−1(U) is a disjoint union of open subsets
of X̄ each of which is mapped homeomorphically onto U by π (we say U is evenly covered by π).

Definition 2.3 [Sp, pp 62,83] We say X̃ is a universal cover of X if X̃ is a cover of X such that for
any other cover X̄ of X , there is a commutative triangle formed by a continuous map f : X̃ → X̄
and the two covering projections.

Note that the Hawaii Ring does not have a universal cover. In fact the universal cover of a space
need not be simply connected as can be seen by taking the double spherical suspension of the Hawaii
Ring [Sp].

We now introduce a special collection of covers we will call Spanier covers as they are described
in [Sp, Page 81].

Definition 2.4 Let U be any collection of open sets covering Y . For any p ∈ Y , by [Sp, Page 81],
there is a covering space, ỸU , of Y with covering group π1(Y,U , p), where π1(Y,U , p) is a normal
subgroup of π1(Y, p), generated by homotopy classes of closed paths having a representative of the
form α−1 ◦β ◦α, where β is a closed path lying in some element of U and α is a path from p to β(0).

It is easy to see that a Spanier cover is a regular or Galois cover. That is, the lift of any closed
loop in Y is either always closed or always open in a Spanier cover. In particular Spanier covers of
a collection of circles of various radii will leave some or none of the circles as circles and unravel the
other circles completely into a tree.

The following lemma is in Spanier [Sp, Ch.2, Sec.5, 8]:

Lemma 2.5 Let U and W both be collections of open sets that cover Y . Suppose U refines W in
the sense that for any open set W in W there is an open set U ∈ U , such that U ⊂ W . Then the
Spanier cover ỸU covers ỸW .

Spanier covers will be used to define various covering spaces in this paper as well as the δ covers
first introduced by the authors in [SoWei1].

Definition 2.6 Given δ > 0, the δ-cover, denoted Ỹ δ, of a length space Y , is defined to be the
Spanier cover, ỸUδ

, where Uδ is the open covering of Y consisting of all open balls of radius δ.
The covering group will be denoted π1(Y, δ, p) ⊂ π1(Y, p).
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In Example 2.1, the δ cover of the space consisting of circles of various sizes glued at a common
point, is a covering space which unravels all the circles of circumference 2πr ≥ 2δ and keeps the
smaller circles wrapped as circles. In particular, when X is the figure eight created by joining one
circle of circumference 2π and one circle of circumference 4π at a common point: then X̃δ is X itself
when δ > 2π, it is a real line with circles of circumference 2π glued at the points {2jπ : j ∈ Z} when
δ ∈ (π, 2π] and it is the universal cover X̃ when δ ≤ π.

The δ-covers of compact spaces are surveyed quickly in the background section of [SoWei3].
There we proved that δ covers of complete length spaces are monotone in the sense that if δ1 < δ2

then Ỹ δ1 covers Ỹ δ1 which just follows from Lemma 2.5. See [SoWei3, Lemma 2.6].
If one has a space where balls of radius δ1 and δ2 have the same topology, the covering spaces

are the same. In fact, for compact spaces, we proved the δ covers are lower semicontinuous in the
sense that for any δ1 > 0 there is a δ2 < δ1 sufficiently close to δ1 such that the two delta covers
agree [SoWei3, Lemma 2.7]. This is not true for complete noncompact spaces. In fact, the space of
circles of circumference 2πri joined at a point have distinct delta covers for each δi = πri so that
lower semicontinuity fails when there is a sequence ri increasing to r0 [SoWei3, Example 2.8].

2.2 Review of the Covering Spectrum

In [SoWei3] we introduced the covering spectrum on compact metric spaces which is well defined on
complete noncompact spaces as well.

Definition 2.7 Given a complete length space X, the covering spectrum of X, denoted CovSpec(X)
is the set of all δ > 0 such that

X̃δ 6= X̃δ′

(2.1)

for all δ′ > δ.

The covering spectrum of a finite collection of circles of circumference 2πri joined (glued) at a
common point is {πri}.

For a compact length space the covering spectrum is discrete and the only accumulation point
of the covering spectrum that can occur outside of the covering spectrum is 0 [SoWei3, Prop. 3.2].
This happens for example with the Hawaii Ring where the circles have circumference 2πrj = 2π/j.

The covering spectra of complete noncompact spaces need not be discrete:

Example 2.2 The covering spectrum of a complete noncompact length space can be (0,∞) as can
be seen by joining the uncountable collection of circles of circumference 2πr for every r ∈ (0,∞) at a
common point. This same covering spectrum can be achieved by taking a joined countable collection
of circles of circumference 2πr for every r ∈ Q.

The following lemma is a simple exercise on the definition:

Lemma 2.8 If δj ∈ CovSpec(X) and δj decrease to a positive limit δ0 > 0, then δ0 ∈ CovSpec(X).

Example 2.3 Thus the covering spectrum of the joined collection of circles of circumference 2πrj =
2π + 2π/j, is {π(1 + 1/j) : j ∈ N} ∪ {π}. In contrast the covering spectrum of the joined collection
of circles of circumference 2πrj = 2π − 2π/j is just {π(1 − 1/j) : j ∈ N}.

This is just an indication of the complexity one encounters when studying the covering spectra
of complete noncompact spaces. In the next section we explore this situation, and in subsequence
sections we introduce alternative spectra which detect properties that the covering spectrum cannot
detect on a complete noncompact space. Further review of the covering spectra of compact spaces
will appear below.
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2.3 The Covering Spectrum and Deck Transforms

In our prior papers, we did not like to assume the space had a universal cover in part because we were
applying δ-covers and the covering spectrum to prove the existence of universal covers. However, if
one does assume the existence of a universal cover there is a fairly beautiful new perspective on the
meaning of the covering spectrum using its relationship with the group of deck transforms π1(Y ) on
the universal cover, Ỹ .

Recall that a δ cover is defined using a covering group π1(Y, δ), so with a universal cover we have:

Ỹ δ = Ỹ /π1(Y, δ). (2.2)

This provides us with an equivalent definition for the covering spectrum:

Definition 2.9 Given a complete length space X, with a universal cover, X̃, the covering spectrum
of X is the set of all δ > 0 such that

π1(X, δ) 6= π1(X, δ′) ∀δ′ > δ (2.3)

when viewed as subsets of π1(X).

The δ-covering group as described in the definition of the δ-cover is complicated without the
assumption of the existence of a universal cover. With the universal cover, one knows it is a
subgroup of the deck transforms and in fact we shall see it can be described using the length of these
transforms.

Definition 2.10 Given a complete length space X with universal cover X̃, for each element g ∈
π1(X), its length L(g) is

L(g) = inf
x̃∈M̃

d(x̃, gx̃). (2.4)

Theorem 2.11 The δ covering group π1(Y, δ) is the subgroup of π1(Y ) generated by elements g
with L(g) < 2δ. Thus δ ∈ CovSpec(Y ) iff there exists δi decreasing to δ and gi ∈ π1(Y ) of length
L(gi) < 2δi such that gi is not generated by elements of length < 2δ.

To prove this we need to relate the loops β in balls of radius δ that were used to define π1(Y, δ)
in Defn 2.6, to deck transforms of length < 2δ. The difficulty is that the loops β might well be
quite long and correspond to deck transforms of large length. So we apply the following lemma first
proven in [SoWei3, Lemma 5.8].

Lemma 2.12 Given a complete length space X, suppose C : [0, L] → Bq(δ) ⊂ X where X is a
complete length space, then C is freely homotopic in Bq(δ) to a product of curves of length < 2δ
based at q.

Note that this lemma does not require the existence of a universal cover. We include the proof
since the idea is of some importance.
Proof: Since Bq(δ) is open and the image of C is closed there exists ǫ > 0 such that Im(C) ⊂
Bq(δ − ǫ). Take a partition, 0 = t0 < t1 < ... < tk = L, such that tj+1 − tj < ǫ, and let γj run
minimally from q to C(tj) making sure to choose γ0 = γk. Then C is clearly freely homotopic in
Bq(δ) to the combination γjC([tj , tj+1])γ

−1
j , and each of these curves has length < 2(δ− ǫ)+ ǫ < 2δ.

Applying this lemma we can prove Theorem 2.11 concerning spaces with universal covers.
Proof of Theorem 2.11: Let g be a generator of π1(Y, δ) so it has a representative loop β in a
ball od radius δ. By the Lemma 2.12, β is generated by loops of length < 2δ, so g is generated by
deck transforms of length < 2δ

7



Now let L(h) < 2δ so h has a representative path β whose lift runs between some x and hx of
length < 2δ. But then β is in a ball of radius δ around its midpoint, so g ∈ π1(Y, δ).

On compact spaces Theorem 2.11 can be combined with Arzela-Ascoli and Lemma 3.2 to prove
CovSpec(M) ⊂ (1/2)Length(M) where Length(M) is the collection of lengths of closed geodesics
γ : S1 → M [SoWei3]. This is not true on complete spaces as the infimum in (2.4) need not be
achieved:

Example 2.4 Let M2 be the warped product manifold R ×f(r) S1 where

f(r) = 2Arctan(−r) + 2π. (2.5)

Here π1(M) is generated by a single element g whose length

L(g) = inf
r∈(−∞,∞)

f(r) = π (2.6)

but there is no closed curve homotopic to a representative of g whose length is π.

On a compact Riemannian manifold, CovSpec(M) = ∅ implies M is simply connected [SoWei3].
Yet this is not true for complete manifolds:

Example 2.5 Let M2 be the warped product manifold R ×f(r) S1 where

f(r) = 2Arctan(−r) + π. (2.7)

Given any δ > 0, eventually f(r) < 2δ, so any g ∈ π1(M) is represented by a loop of length < 2δ.
Thus by Theorem 2.11 the covering spectrum is empty.

Further implications of this perspective on the covering spectrum will be investigated in [SoWei4].
In that paper we will also investigate the slipping group:

Definition 2.13 The slipping group of X denoted πslip(X) is generated by the elements g ∈ π1(X)
such that L(g) = 0.

3 Delta homotopies

In this section we develop the concept of the delta homotopy which we first defined in [SoWei1]:

Definition 3.1 Two loops γ1, γ2 in X are called δ-homotopic if πδ([γ1]) = πδ([γ2]), where πδ :
π(X) → π(X)/π(X, δ). In particular γ1 is δ homotopic to a point if

[γ1] ∈ π(X, δ) (3.1)

which means γ1 lifts as a closed loop to X̃δ.

This concept can be used to produce closed geodesics.

Lemma 3.2 If γ is not δ homotopic to a point and L(γ) ≤ 2δ then γ is a closed geodesic which is
minimizing over any interval of half its length and has length 2δ.

8



Proof: Since γ lifts as a closed loop to X̃δ it does not fit in a ball of radius δ. In particular, for any
t ∈ S1

δ/π we have

Im(γ) ∩ (X \ Bγ(t)(δ)) 6= ∅. (3.2)

However L(γ) = 2δ so the only point in (3.2) must be γ(t + δ) and d(γ(t + δ), γ(t)) must be δ. Thus
γ is minimizing on any subinterval of length δ including an interval centered at t = 0.

This lemma will be applied later when we prove our new spectra are in the length spectrum.
The remiander of this section will be dedicated to providing a more geometric understanding of

δ homotopies. We will first relate δ homotopies to grids [Section 3.1], then describe how to localize
δ homotopies [Section 3.2] and finally prove a few properties of δ homotopies that are localized in
compact sets [Section 3.3].

While we apply the results in this section to study the cut-off covering spectrum, we prove
them first because they apply in a much more general setting and should prove useful for those
interested in other concepts. Those who are more interested in the cut-off covering spectrum may
jump to Section 4 and only return to this section before continuing to Section 5 on Gromov-Hausdorff
convergence. Alternatively one might skim through this section reading only the statements and
viewing the acompanying diagrams.

3.1 Using grids to understand δ homotopies

Before we can transform our original somewhat algebraic definition of δ homotopy [Definition 3.1]
into a geometric statemant about grids, we need to examine the definition closely. Clearly it is base
point independent. So if a curve C is δ homotopic to a point then αCα−1 is also δ homotopic to a
point. So it is often easier to think of γ1 as δ homotopic to γ2 if we joint them to a common point
via curves α1 and α2 and then say α1γ1α

−1
1 is δ homotopic to α2γ2α

−1
2 which is the same as saying

α1γ1α
−1
1 (α2γ2α

−1
2 )−1 = α1γ1α

−1
1 α−1

2 γ−1
2 α2 (3.3)

is δ homotopic to a point. In this sense we make the following definition:

Definition 3.3 A collection of loops γ1, γ2, ...γk is δ homotopic to a point if there exist curves αi

mapping a base point p to γi(0) and such that

α1γ1α
−1
1 α2γ2α

−1
2 ...αkγkα−1

k (3.4)

is δ homotopic to a point.

The ordering of the loops is important in this definition. If γ1, γ2 is δ homotopic to a point then
γ1 is δ homotopic to γ−1

2 .

Lemma 3.4 A loop C of length L is δ homotopic to a point iff there is a δ homotopy H : G → X
where G is an N × M grid of unit squares such that H(0, y) = C(yL/M), H(x, 0) = H(x, M) =
H(N, y) = C(0) and such that the image under H of each square in the grid is contained in a ball
of radius δ.

In some sense this lemma is intuitively obvious. See Figure 1. Special cases of this lemma were
used within some of the proofs in [SoWei1]. Writing out the proof is a bit technical and so first we
set some notation. Let βj,k be image of the clockwise loop around the square (j, k), (j, k + 1), (j +
1, k + 1), (j + 1, k). Let αj,k be the image of the line segment from (j, 0) to (j, k). Let ᾱj is the
image of the line segment from (j, 0) to (j − 1, 0).
Proof: If such a homotopy exists, then define Cj(t) to be the loop H(j, t) from t to M so C0(t) =
C(tL/M) and CN (t) is a point. Note that C0 is just C. Furthermore each

αj,0βj,0α
−1
j,0αj,1βj,1α

−1
j,1 ...αj,Mβj,Mα−1

j,M is homotopic to Cj(t)(ᾱjCj−1(t)ᾱ
−1
j )−1 (3.5)

9



C C

B

B

Figure 1:

within the image of the grid. Thus by the definition of the δ cover,

Cj(t)(ᾱjCj−1(t)ᾱ
−1
j )−1 (3.6)

lifts as a closed loop to the X̃δ and so Cj and Cj−1 are δ homotopic to each other. Thus C is δ
homotopic to CN which is a point.

Conversely, if C is δ homotopic to a point, then by the definition of the δ cover, C is homotopic
to a collection of curves αiβiα

−1
i where βi are in balls of radius δ. So we take the homotopy

H̄ : [0, N ] × [0, M ] → X so that H̄(0, t) = C(tM/L), H̄(s, 0) = H̄(s, 1) = C(0) and

H̄(N, t) = α1β1α
−1
1 α2β2α

−1
2 ...αkβkα−1

k (t) (3.7)

Using the uniform continuity of the homotopy H̄ we can choose N and M large enough that each
square in the grid is within a ball of radius δ. We can also insure, possibly by adding a few more
columns to allow for a slow homotopy between reparametrizations, that each βj starts at a tj and
ends at a tj + 1 where tj are integers.

We now add a gridded column of unit squares on the right side of the homotopy. The horizontal
bars will have constant images. The verticals will agree with H̄(N, t) whenever this is part of an α
curve but will take the value H̄(N, tj) for t ∈ [tj , tj + 1]. In this way most of the new squares will
be in subsegments of the α curves, and the selected new squares at the tj points will have images
equal to βj and thus lie in balls of radius δ.

Finally we add a number more columns to allow for a homotopy from the curve

α1α
−1
1 α2α

−1
2 ...αkα−1

k (3.8)

to a point. This can be done just by contracting along each αj . In this way we complete the
homotopy. Then we restrict the homotopy to the grid points and we are finished.

Lemma 3.5 If H is a δ homotopy, then there exists ǫ ∈ (0, δ) sufficiently close to δ that H is an ǫ
homotopy.

In fact on compact spaces, one then has X̃ǫ = X̃δ as proven in Lemma 2.7 of [SoWei3].
Proof: By Definition 3.6, every square Si,j in the domain of H is mapped into a ball Bqi,j

(δ). Since
H(Si,j) is a closed set, lying in an open ball, it fits in a smaller open ball Bqi,j

(δi,j) with δi,j < δ.
Let

ǫ = max{δi,j : i = 1..N, j = 1..M}. (3.9)

10



3.2 δ homotopies in subsets

The following extension of the definition of δ homotopy takes full advantage of Lemma 3.4. Note
that this extension only requires X to be a length space so that distances between curves are not
necessarily achieved by curves, just approached by a sequence of curves.

Definition 3.6 A loop C of length L is δ homotopic in A ⊂ X to a point if there is a δ homotopy
H : G → A where G is an N × M grid of unit squares such that H(0, y) = C(yL/M), H(x, 0) =
H(x, M) = H(N, y) = C(0) and such that the image under H of each square in the grid is contained
in a ball of radius δ.

We say a curve C0 is δ homotopic in A to a collection of loops C1, C2, ..., Ck, if there exists paths
αj from C0(0) to Cj(0) lying in A such that

C−1
0 α1C1α

−1
1 α2C2α

−1
2 ...αkCkα−1

k (3.10)

is δ homotopic in A to a point. We will say C0 is δ homotopic in A to a collection of loops in
B ⊂ A if the loops Cj lie in B but we do not require the paths αj lie in B. Similarly one can define
δ homotopies in A between two collections of curves.

Suppose we have a curve which is δ homotopic in a set A to a point and we would like to restrict
the δ homotopy to a set B ⊂ A. Parts of the δ homotopy may well leave B and so they need to be
chopped off. This provides new curves where the homotopy is chopped. See Figure 4 for a glimpse
of an application.

Lemma 3.7 Given a δ homotopy in A, H : G → A from a curve γ to a point, and given a set B
contained in A such that γ ⊂ B, then γ is δ homotopic in B to a collection of curves γ1, γ2, · · · , γk

such that each γj lies in B and the tubular neighborhood T2δ(A \ B).

Figure 2:

Figure 2 depicts this lemma and the idea of the proof. The grey regions are the pullback of the
A \ B to the grid of the initial homotopy. In the figure the collection is just a pair of curves. Once
we have the final picture in the figure, we can apply Lemma 3.8 It is possible that γ itself just lies
in T2δ(A \ B). Before we can prove Lemma 3.7 rigorously, we need another lemma which justifies
that images of the pair of curves produced in the last step of the picture are indeed δ homotopic to
the initial curve.

Lemma 3.8 Given a δ homotopy in A, H : G → A from a curve γ to a point, and a subset of
squares G′ ⊂ G such that the image of Cl(G \ G′) is contained in a set B ⊂ A. Here by closure,
we are including the boundary of G′. Suppose G′ has connected components G1, ...Gk. Let γj be the
boundary of Gj running around clockwise so that the image of γj lies in B.

Then γ is δ homotopic in B to the collection of curves αjγjα
−1
j where αj are paths lying in B

or, equivalently, is freely δ homotopic in B to the collection of curves γj.

11



Figure 3: In this figure γ0 = C1H2H3 and we are proving it is δ homotopic in B to the pair of curves
γ1 = C4 and γ2 = C5. The grids are drawn above. The first rectangle is filled in completely so we
can view our γ0 as the boundary of the full dark region. The last rectangle has G′ darkened and
it’s two connected components G1 above G2. Intuitively we are saying that the two inner curves
should be δ homotopic to the outer curve because of all the squares between them. The rectangles
in between show how we can run through a sequence of subsets of the grid creating a δ homotopy
from γ0 to the pair γ1 and γ2.
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Intuitively this can be seen because there are only squares that fit in balls of radius δ running
between them. You might wish to skip the proof if you intuitively believe the process. For the
intuitive idea see Figure 3.
Proof: We now rigorously construct a sequence of collections of curves so that each collection is
δ homotopic to the next. We begin with γ0 which is the image of the boundary of the entire grid
G0 = G. Each Gi will be a subset of Gi−1 created by removing one square, and at each step our
collection of curves will be the boundary of Gi. We know that we can create a sequence of Gi so
that eventually we arrive at GI = G′. We just need to verify that we have a δ homotopy running
from each boundary to the next. There are three cases.

The first case we encounter occurs when removing a square does not change the number of
connected components of the subgrid. This is seen in the first part of Figure 3. A square is removed
from the side on one region. We need to show that a curve of the form C1H2H3 is δ homotopic to
C1H

−1
1 H−1

4 when H1, H2, H3H4 is a loop in a ball of radius δ because it is the image of a single
square. To construct the δ homotopy, we set H(0, t) to be the required

C1H2H3(C1H
−1
1 H−1

4 )−1 = C1H2H3H4H1C
−1
1 . (3.11)

This time we put all of H2H3H4H1 into one integer segment and stretch the C1 enough that each
segment lies in a δ ball. We add the second column to the grid keeping everything as in the first
column except for the H2H3H4H1 segment which is now just set to H2(0) = C1(L). Thus the image
of the grid thus far is contained in the images of the old curves which is in B and all the squares are
in δ balls trivially. The rest of the homototy is a classical homotopy contracting C1C

−1
1 to a point

and we take as many columns as necessary so that everything is done slowly enough to fit in balls
of radius δ. This portion is contained in Im(C1) ⊂ B so we are done. It is also possible that the
square would be attached on only one side, but this is equally easy.

The second possible case, depicted in the center of Figure 3 is when the square which is removed
creates divides a region into two connected components. So we must show that C3H1C2H3 is δ
homotopic in B to the pair of curves C3H

−1
4 and C2H

−1
2 given that H1H2H3H4 is the image of a

square and so lies in a ball of radius δ. Using H4H1 to run C2H2 to a common base point, we will
construct a δ homotopy in B from

(C3H1C2H3)((H4H1)C2H
−1
2 (H4H1)

−1)−1(C3H
−1
4 )−1 (3.12)

to a point.This is already homotopic within its image to

C3H1C2H3(H4H1)H2C
−1
2 (H4H1)

−1H4C
−1
3 (3.13)

which is homotopic within its range to

C3H1C2H3(H4H1)H2C
−1
2 H−1

1 C−1
3 (3.14)

Once again we set this up as the first column so that each collection of curves Hj fit in a single unit
segment and the Cj are spread out so that they divided into pieces of length less than δ. Our second
column will be set up so that all the horizontal bars are constant and the new vertical line is the same
as before except that the segment with H3(H4H1)H2 is not just the fixed point H3(0) = C2(L2). So
our new column is

C3H1C2C
−1
2 H−1

1 C−1
3 (3.15)

but this can be contracted via a homotopy lying on its image to a point, so we just provide that
homotopy enough columns so that the images of all the squares lie in δ balls. So we are done. Note
that the order of the new collection was important so that this last step would untangle.

In fact there are cases where the square that is removed might separate into three or even four
regions. This follows exactly as above the the regions need to be selected in clockwise order around
the square to get the last step to untangle.
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The third case is the situation where removing a square removes a segment from the collection.
That situation is trivial. Anytime a collection of curves includes a loop within a δ ball it is δ
homotopic to the collection with the ball removed.

Thus we have shown that no matter how we remove the square, we can show that each collection
of curves is δ homotopic to the next collection carefully replacing one curve by a new curve or a new
curve by a collection of new curves in the right order until finally one has the boundary of the given
region G′.

We can now return to the proof of Lemma 3.7. See Figure 2.
Proof of Lemma 3.7: Let H be the given δ homotopy. Remove all vertices in G which are
mapped by H into A \ B. Remove all the squares touching these vertices. This gives our collection
of squares G′ which satisfies the condition of Lemma 3.8. So we obtain a collection γ1, ...γk which
are δ homotopic in B to γ where each γj lies in the boundary of G′. Thus every point q which lies
on a γj , is on the image of a square which includes one of the original removed points z. So q and
z lie in a common ball of radius δ and z ∈ A \ B. Thus q ∈ T2δ(A \ B).

3.3 Compactness and δ homotopies

One very nice attribute of δ homotopy classes of curves is that they interact well with compactness
so that one can control the lengths of curves in a given class.

Lemma 3.9 Let C be a set of loops in a length space Z which includes a trivial loop that is just a
point. Suppose there is a curve C in Z which is not δ = 5ρ homotopic to any collection of curves
in C has length. Suppose the number of disjoint balls of radius ρ lying in Z is bounded above by a
finite number N . Then there exists a curve γ in Z which is not δ = 5ρ homotopic to any collection
of curves in C and has length ≤ 5Nρ.

Note here that we cannot just take C to be a trivial loop (a point), because then it would be
homotopic to the trivial loop in C. In our application C will be all loops located outside a given set
but this more general statement is equally valid and possibly useful to others. Our space Z will be
a subset of a larger space using the induced length metric and thus might not be complete.
Proof: Take a maximal disjoint collection of balls of radius ρ centered at points

Y = {yj : j = 1..N} ∈ Z. (3.16)

So the tubular neighborhood of radius 2ρ of this finite collection of points contains all of Z.
Take C : [0, L] → Z ⊂ T2ρ(Y ) parametrized by arclength which is not 5ρ homotopic to any

collection of curves in C. We will use C to construct a shorter such curve. Define 0 = t0 < t1 <
· · · < tk = 1 such that tj − tj−1 = ρ for j < k and tk − tk−1 < ρ. Define σ : [0, L] → Z so that σ(tj)
is a point in Y closest to C(tj). Then

dA(σ(tj), σ(tj+1) ≤ dA(σ(tj), C(tj) + ρdA(C(tj+1), σ(tj+1) < 5ρ (3.17)

and we can join the points in σ by curves in A of length < 5ρ. We can also join C(tj) to σ(tj) by a
curve hj in A of length < 2ρ. Thus we have a collection of squares

hjσ([tj , tj + 1])h−1
j+1C([tj , tj+1])

−1 ⊂ Bσ(tj)(5ρ). (3.18)

So C is 5ρ homotopic to σ. Thus σ is not 5ρ homotopic to any collection of curves in C. If k ≤ N
then L(σ) ≤ 5kρ ≤ 5Nρ and we are done.

If k > N then by the pigeon hole principle and the fact that σ(tj) ∈ Y for j = 0..k. with
σ(t0) = σ(tk). We see that there must exist a pair m, n ∈ {0, ...k − 1} with |m − n| ≤ N such that
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σ(tn) = σ(tm). This allows us to break our loops σ into two loops one of which is of length ≤ 5ρN .
If the other loop is longer, apply the pigeon hole principle to that loop, and break off another loop
of length ≤ 5ρN . Repeating this at most finitely many times, we see that our original curve σ is
really a concatenation of loops all of which have length ≤ 5ρN .

I claim one of these short loops must not be 5ρ homotopic to any collection of curves in C. Oth-
erwise, all the of them are 5ρ homotopic to some collection of curves in C and so their concatenation
must be 5ρ homotopic to a concatenation of that collection.

4 The Cut-off Covering Spectrum

It is natural when studying complete noncompact spaces to remove the ends of the manifolds before
beginning the analysis. In fact, it is standard to refer pointed spaces (X, x) with a special base point
x ∈ X . In this vein of thought, we define the cut-off covering spectra. We begin by defining the
R cut-off δ covers and R cut-off covering spectra, CovSpecR

cut(X), which are blind to everything
outside a fixed ball of radius R as trivial. Next we define the cut-off δ covers by taking R → ∞ and
define the cut-off covering spectrum, CovSpeccut(X), based on them.

While the covering spectrum is not well related to the length spectrum on complete non-
compact spaces as was seen in Example 2.4, we do prove the CovSpecR

cut(X) ⊂ (1/2)L(X) and
CovSpeccut(X) ⊂ Cllower((1/2)L(X)). We then review the loops to infinity property, and prove
such loops are not detected by the cut-off covering spectra. We close the section with two technical
subsections: one establishing that the R cut-off covering spectrum is truly localized and the other
describing how CovSpecR

cut(X) changes as one varies R. These results will be applied to establish
the continuity properties of these cut-off spectra in Section 5.

4.1 The R cut-off δ covers and CovSpecR

cut
(X)

The R cut-off covering spectrum is a basepoint dependant concept. It is defined on pointed length
spaces (X, x) which are length spaces with given basepoints. We begin with the corresponding
covering spaces. Recall Defn 2.4 of a Spanier Cover.

Definition 4.1 Given a pointed length space (X, x), the R cut-off δ cover based at x, denoted X̃δ,R
cut

or X̃δ,R
cut x, is the Spanier cover corresponding to the open sets

{Bp(δ) : p ∈ X} ∪ {X \ B̄x(R)}. (4.1)

When the basepoint is obvious we will omit it.

Lemma 4.2 The R cut-off δ cover based at x is covered by the δ cover. In fact

X̃δ,R
cut = X̃δ/G(R) (4.2)

where G(R) is the subgroup of π1 generated by elements with representative loops of the form α◦β◦α
where β ∈ M \ B̄x(R).

Proof: By definition π1(X̃
δ,R
cut ) is generated by loops of the form α ◦ β ◦ α−1 where β is either in a

ball of radius δ or in M \ B̄x(R). So it is generated by elements in π1(X̃
δ) and elements in G(R).

Thus
X̃δ,R

cut = X̃/π1(X̃
δ,R
cut ) = (X̃/π1(X̃

δ))/G(R) = X̃δ/G(R). (4.3)

Lemma 4.3 If Bx1
(R1) ⊂ Bx2

(R2) and δ1 ≤ δ2, then X̃δ1,R1

cut based at x1 covers X̃δ2,R2

cut based at
x2.
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Proof: Just apply Lemma 2.5 which is proven in Spanier.

Example 4.1 A cylinder is its own R cut-off δ cover for all R > 0 and all δ > 0.

Definition 4.4 Given a pointed length space (X, x), the R cut-off δ spectrum, denoted CovSpecR
cut(X)

or CovSpecR
cut(X, x), is the collection of δ > 0 such that

X̃δ1,R
cut 6= X̃δ,R

cut (4.4)

for all δ1 > δ.

Note that by Lemma 4.3 and Theorem 7.5, CovSpecR
cut(X) is a lower semiclosed set.

The following lemma was known for compact spaces in [SoWei3]:

Lemma 4.5 Given a complete length space X, if [δ1, δ0)∩CovSpecR
cut(X) = ∅, then X̃δ1,R

cut = X̃δ0,R
cut .

Proof: Let
A = {δ ∈ [δ1, δ0) : X̃δ,R

cut = X̃δ1,R
cut } ⊂ [δ1, δ0). (4.5)

Claim: sup{A} = δ0. Otherwise sup{A} = δ′ < δ0. By assumption, δ′ 6∈ CovSpecR
cut(X, x).

Therefore there is δ′′ > δ′ such that X̃δ′,R
cut = X̃δ′′,R

cut , contradicting that δ′ is the supremum.
So there exist δi increasing to δ0 such that

X̃δ1,R
cut = X̃δi,R

cut . (4.6)

To prove the lemma, we proceed by contradition, assuming

X̃δ0,R
cut 6= X̃δ1,R

cut . (4.7)

Then there is a curve C which lifts closed to X̃δ0,R
cut but open to X̃δ1,R

cut . Then C is δ0 homotopic to
a collection of curves outside B̄(x, R). Applying Lemma 3.5 we know that for δi sufficiently close

to δ0, H is δi homotopy. So C lifts closed to X̃δi,R
cut . By (4.6), C lifts closed to X̃δ1,R

cut which is a
contradiction.

4.2 The cut-off δ covers and CovSpeccut(X)

The following definition will be shown to be well defined in Proposition 4.7 below.

Definition 4.6 The cut-off δ cover of X, denoted X̃δ
cut is the Gromov-Hausdorff limit of the R

cut-off δ covers as R → ∞.

Note that as in the case with the cylinder, whose R cut-off δ covers are all just they cylinder itself,
the cutoff δ cover is also just the cylinder. This is in contrast with the δ cover which is Euclidean
space for small enough values of δ.

Proposition 4.7 For any complete length space, the Gromov-Hausdorff limit of the R cut-off δ
covers as R → ∞ exists and does not depend on the base point x. Furthermore we have the following
covering maps:

X̃δ 7→ X̃δ
cut 7→ X̃δ,R

cut . (4.8)
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Proof: First we fix a base point x ∈ X . By Lemma 4.2 we have a sequence of covering maps

fR : X̃δ → X̃δ,R
cut (4.9)

and a sequence of covering maps
hR : X̃δ,R

cut → X (4.10)

both of which are isometries on balls of radius δ. Let the maximal number of disjoint balls of radius
ǫ in a ball of radius r in a space Y be denoted N(ǫ, r, Y ). By the covering maps we have

N(ǫ, r, X̃δ,R
cut ) ≤ N(ǫ, r, X̃δ) (4.11)

so by Gromov’s Compactness Theorem, a subsequence X̃
δ,Rj

cut converges. We call the limit X̃δ
cut.

Furthermore by the Grove-Petersen Arzela-Ascoli Theorem subsequences of fRj
and hRj

converge
to functions f and h such that

f : X̃δ → X̃δ
cut (4.12)

h : X̃δ
cut → X (4.13)

which are still isometries on balls of radius δ/2 > 0 and are thus covering maps. This implies that
any limit space satisfies (4.8).

To show we have a unique limit that doesn’t depend on the base point, take an alternate base
point x′ and an alternate sequence R′

j → ∞ and assume it converges to some other limit space Z.
Taking a subsequence so that

Bx(Rj) ⊂ Bx′(R′
j) ⊂ Bx(Rj+1) (4.14)

and applying Lemma 4.3 we have covering maps

fj : X̃
δ,Rj+1

cut → X̃
δ,R′

j

cut (4.15)

hj : X̃
δ,R′

j

cut → X̃
δ,Rj

cut (4.16)

which are isometries on δ balls. Subsequences converge by Grove-Petersen Arzela-Ascoli to covering
maps:

f∞ : X̃δ
cut → Z and h∞ : Z → X̃δ

cut. (4.17)

So the covering maps are isometries and the limit is unique.

We leave the following proposition as an exercise as it can be proven using similar limits of
covering maps:

Proposition 4.8 For all δ1 < δ2 we have

X̃δ1

cut 7→ X̃δ2

cut. (4.18)

Definition 4.9 The cut-off covering spectrum, denoted CovSpeccut(X), is the collection of δ > 0
such that

X̃δ1

cut 6= X̃δ
cut (4.19)

for all δ1 > δ.

Note that by Proposition 4.8, Theorem 7.5 and this definition, we have:

Lemma 4.10 The cut-off covering spectrum is a lower semiclosed set.

The following proposition is easy to prove from the definitions.
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Proposition 4.11 If X is a bounded metric space with D = diam(X), then

X̃δ,R
cut = X̃δ ∀R ≥ D, and X̃δ

cut = X̃δ. (4.20)

So CovSpeccut(X) = CovSpec(X).

Thus the cut-off covering spectrum is really only useful to study complete length spaces which
are not bounded.

In the next subsection we explore the distinction between these two spectra in general.

4.3 Relating the various spectra

The intuitive idea behind the next theorem is that the covering spectrum can detect any holes that
the cut-off covering spectrum sees.

Theorem 4.12 The cut-off covering spectrum of a complete length space is a subset of its covering
spectrum.

This follows from Lemma 4.13 and Proposition 4.15 which we state and prove below.

Lemma 4.13 For any basepoint x ∈ X,

CovSpecR
cut(X, x) ⊂ CovSpec(X), (4.21)

and
CovSpecR1

cut(X, x) ⊂ CovSpecR2

cut(X, x) for R1 < R2. (4.22)

Proof: If δ ∈ CovSpecR
cut(X), then X̃δ1,R

cut 6= X̃δ,R
cut for all δ1 > δ. So there is a nontrivial loop γ

which lifts to X̃δ,R
cut nontrivially and lifts to X̃δ1,R

cut trivially. In particular we can choose γ which lies

in a ball of radius δ1. Otherwise if all such loops lift trivially to X̃δ,R
cut then the covering groups are

the same.
If δ /∈ CovSpec(X), then X̃δ = X̃δ1 for some δ1 > δ. Then γ which lifts trivially to the δ1 cover,

also lifts trivially to the δ cover, and must then project trivially back down to X̃δ,R
cut nontrivially.

causing a contradiction.
Similarly if δ /∈ CovSpecR2

cut(X), then X̃δ,R2

cut = X̃δ1,R2

cut for some δ1 > δ and we can lift γ trivially

to both of these covers which contradicts that it lifts to X̃δ,R
cut nontrivially.

Proposition 4.14 If X is a complete length space then for any basepoint x ∈ X,

⋃

R>0

CovSpecR
cut(X, x) ⊂ CovSpeccut(X). (4.23)

Proof: If δ ∈ CovSpecR0

cut(X), by (4.22), then δ ∈ CovSpecR
cut(X) for all R ≥ R0. So the covering

map
πR : X̃δ,R

cut → X̃δ1,R
cut (4.24)

is nontrivial for all δ1 > δ. Then as R → ∞, the limit map

π : X̃δ
cut → X̃δ1

cut (4.25)

is nontrivial. So δ ∈ CovSpeccut(X). Hence
⋃

R>0 CovSpecR
cut(X) ⊂ CovSpeccut(X).

At first one might think that the inclusion in (4.23) is equal. This is not true.
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Example 4.2 Let X be a line with circles attached at the integers j 6= 0 of circumference 2πrj

where rj = 1 + 1/|j|. Using 0 as the base point we have

CovSpecR
cut(X) = {π + π/j : j ∈ N, j + 1 ≤ R} (4.26)

because R cut-off δ covers unravel all loops such that j+1 ≤ R and π+π/j ≥ δ. Taking the Gromov-
Hausdorff limit of these covers we see that the cut off δ covers of X unravel all loops π + π/j ≥ δ.
Thus CovSpeccut(X) is the lower semiclosure of {π + π/j : j ∈ N, j + 1 ≤ R} which includes the
number π because for all δ′ > π we have X̃δ′

cut 6= X̃π
cut. However the union of CovSpecR

cut(X) over
all R > 0 does not include the number π.

Proposition 4.15 If X is a complete length space then the lower semiclosure of the union of all R
cut-off spectra is the cut-off covering spectrum:

Cllower

(

⋃

R>0

CovSpecR
cut(X)

)

∪ {0} = CovSpeccut(X) ∪ {0}. (4.27)

Proof: Take the the lower semiclosure to both sides of (4.23), since CovSpeccut(X) is lower semi-
closed by Theorem 7.5, we have

Cllower

(

⋃

R>0

CovSpecR
cut(X)

)

⊂ CovSpeccut(X). (4.28)

Now suppose δ > 0 is not in the lower semiclosure of
⋃

R>0 CovSpecR
cut(X). Then by Lemma 7.4

there exists ǫ > 0 such that
[δ, δ + ǫ) ∩

⋃

R>0

CovSpecR
cut(X) = ∅. (4.29)

So for all R > 0,
[δ, δ + ǫ) ∩ CovSpecR

cut(X) = ∅ (4.30)

which implies (by Lemma 4.5) that

X̃δ+ǫ,R
cut = X̃δ,R

cut . (4.31)

Taking the R → ∞ and the Gromov-Hausdorff limits of these spaces, we get

X̃δ+ǫ
cut = X̃δ

cut (4.32)

which implies that δ /∈ CovSpeccut(X).

Proof of Theorem 4.12: Combining (4.21) with Proposition 4.15 the result follows since CovSpec(X)
is a lower semiclosed set.

4.4 The length spectrum and the cut-off spectrum

Recall that a complete locally compact length space is a metric space whose closed bounded sets
are compact. Riemannian manifolds, for example, are complete locally compact length spaces. The
length space created by connecting a countable collection of circles of equal size are not locally
compact since they are themselves closed and bounded but not compact. Example 4.2 is locally
compact.

Theorem 4.16 If X is complete locally compact length then

CovSpecR
cut(X) ⊂ (1/2)L(X). (4.33)

That is, if δ ∈ CovSpecR
cut(X) then 2δ ∈ L(X).
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The assumption that the space be locally compact is necessary:

Example 4.3 Let X be the collection of circles of circumeference 2π + 2π/k, then

CovSpeccut(X) = CovSpec(X) = {π + π/k : k ∈ N} ∪ {π} (4.34)

while the (1/2) length spectrum of the collection of circles is all finite sums:

(1/2)Length(X) = {
∞
∑

k=1

akπ(1 + 1/k) : ak ∈ N} (4.35)

which does not include π.

Before we prove Theorem 4.16, we prove the corresponding proposition which does not require
local compactness:

Proposition 4.17 If X is a complete length space and δ ∈ CovSpecR
cut(X, x) then there exist δj

decreasing to δ and loops, σj, with L(σj) < 2δj, which are not δ homotopic to a collection of loops
lying outside B̄(x, R).

Proof of Proposition 4.17: Given δ ∈ CovSpecR
cut(X, x) we know there exists δj decreasing to δ

such that
X̃δ,R

cut 6= X̃
δj,R
cut . (4.36)

So there exist loops Cj in X which are δj homotopic to loops outside B̄x(R) but are not δ homotopic
to such a curve. Note that Cj is homotopic to a combination of curves αβα−1 where β lie outside
B̄x(R) or inside Bp(δj). If all the β curves lie outside B̄x(R) then Cj is δ homotopic to such curves,
so this is impossible. In fact there must be a βj which lies in a ball Bpj

(δj) which is not δ homotopic
to a collection of loops outside B̄x(R).

By Lemma 2.12 βj is freely homotopic to a collection of curves of length < 2δj. At least one of
these curves is not δ homotopic to a collection of loops outside B̄x(R) because βj is not. This is the
loop σj .

We can now add the condition that the space is locally compact:
Proof of Theorem 4.16: By Proposition 4.17 we have a sequence of curves σj in X . Note that
Im(σj) ∩ B̄x(R) is nonempty for all j. Since L(σj) < 2δj < 4δ for j sufficiently large

σj : [0, L(σj)] → B̄x(R + 2δ). (4.37)

By the local compactness this closed ball is compact for j , so we can apply the Arzela-Ascoli theorem
to produce a converging subsequence and a limit loop σ∞.

It is easy to construct a δ homotopy from σ∞ to σj for j sufficiently large so σ∞ is also not δ
homotopic to a loop outside B̄x(R) and, in particular, not δ homotopic to a point. Since

L(σ∞) ≤ lim inf
i→∞

L(σi) ≤ lim inf
i→∞

2δi = 2δ (4.38)

we can apply Lemma 3.2 to say that σ∞ is a closed geodesic and has length 2δ so 2δ ∈ L(X).

Combine this with Proposition 4.15, we get

Corollary 4.18 For a complete locally compact length space X,

CovSpeccut(X) ⊂ (1/2)Cllower(L(X)). (4.39)

That is, if h/2 ∈ CovSpecR
cut(X) then either h ∈ L(X) or there exist hj ∈ L(X) such that hj

decrease to h.

Example 4.2 shows that the lower semiclosure is needed here. In the next section we will see
that for nonlocally compact spaces, one can have a cut-off covering spectrum which is not even in
the closure of the length spectrum.
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4.5 Topology and the CovSpeccut(X)

In this section we prove that the cut-off covering spectrum is empty given certain topological condi-
tions on the space X : particularly Theorem 4.20 and its converse and Theorem 4.22. Recall that the
covering spectrum of a simply connected compact metric space is empty while the cut-off covering
spectrum of a cylinder is empty. We begin with the loops to infinity property defined in [So]:

Definition 4.19 Given a complete length space, X, a loop γ : S1 → X is said to have the loops
to infinity property, if for every compact set K ⊂ X, there is another loop σ : S1 → X \ K freely
homotopic to γ.

The space X is said to have the loops to infinity property if all its noncontractible loops have this
property.

Theorem 4.20 A complete length space X with the loops to infinity property has an empty cut-off
covering spectrum.

Proof: If X is simply connected it has an empty cut-off covering spectrum. So we assume X is not
simply connected.

Let us assume X has the loops to infinity property. Fix x0 ∈ X and δ > 0. For every R > 0
let K = Bx0

(R) and for any g ∈ π1(X, x0) let γ be a representative of g based at x0. So there
exists β freely homotopic to γ outside K which means there is a curve α ◦ β ◦ α−1 which represents
g such that β ⊂ X \ B̄p(R). So every g ∈ π1(X, x0) is in the covering group of X̃δ,R

cut , which means

X̃δ,R
cut = X . Taking the limit R → ∞ we get X̃δ

cut = X for all δ so the cut-off covering spectrum is
trivial.

This theorem is applied to manifolds with nonnegative Ricci curvature in Theorem 6.6. Such
manifolds have only one end.

Recall that a length space X is said to have k ends if for all sufficiently large compact sets K,
X \ K has k path connected components.

A length space is semilocally simply connected if every point has a neighborhood around it such
that any curve in that neighborhood is contractible. A Riemannian manifold is semilocally simply
connected.

Theorem 4.21 Let X be a complete, locally compact and semilocally simply connected length space
with an empty cut-off covering spectrum, then any curve in X is homotopic to a product of curves
which have the loops to infinity property. If in addition X has only one end then it has the loops to
infinity property.

Proof: If the cut-off covering spectrum is empty then X̃δ
cut = X for all δ > 0 and, by Proposition 4.7,

X̃δ,R
cut is between these two spaces, so it is isometric to X as well. Thus for all δ > 0 and for all

R > 0, the fundamental group of X is generated by elements of the form α ◦ β ◦ α where β is either
in a ball of radius δ or in X \ B̄x0

(R).
Choose any nontrivial loop γ and any compact set K ⊂ X . Take R > 0 large enough that

K ∪ Im(γ) ⊂ Bx0
(R/2). (4.40)

Since X is complete, locally compact and semilocally simply connected, we can take δ > 0 small
enough that balls of radius δ in Bx0

(R) are semilocally simply connected so that any loop β in such
a ball is contractible. Thus [γ] ∈ π1(X, x0) must be generated by loops of the form α◦β ◦α−1 where

β ∈ X \ B̄x0
(R) ⊂ X \ K. (4.41)

When X has only one end, the set X \ K is path connected, thus the various β used to generate
X can be connected via new paths α ∈ X \ K to a point x1 ∈ X \ K. Thus we have constructed
σ ∈ X \ K which is freely homotopic to γ.
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Example 4.4 One end is necessary as can be seen by taking the length space X formed by joining
two closed half cylinders at a point. The loop γ running around a figure eight which goes once around
each cylinder, does not have the loops to infinity property. It is generated by 2 different loops βj each
of which goes to infinity in a different direction. This can be made smooth by taking the connected
sum of two manifolds that are not simply connected that have only one end each, like Nabonnand’s
example [Na].

Example 4.6 demonstrates the necessity of the local compactness condition in Theorem 4.21.

Theorem 4.22 If a complete length space X is homeomorphic to the product of complete length
spaces, M × N , then X has the loops to infinity property and CovSpeccut(X) = ∅ if either of the
following holds:

i) both M and N are noncompact
ii) M is noncompact and CovSpec(M) = ∅.

Proof: Let C be a loop in X , so C = (a, b) where a and b are closed loops in M and N respectively.
C is freely homotopic to (a, b0) followed by (a0, b) where b0 = b(0) and a0 = a(0).

In both cases M is complete and noncompact, so there exists pj ∈ M which diverge to infinity
and there exist minimal paths σj from any fixed point p0 to pj . If b is a loop in N , then (p0, b) is
freely homotopic to (pi, b) via (σj , b). Any compact K ⊂ X , is a subset of the image of KM × KN

where KM is compact in M , taking pj ∈ M \ KM we have (pj , b) outside K. Thus (p0, b) has the
loops to infinity property.

In case i, N is also noncompact so both (a, b0) and (a0, b) have the loops to infinity property. So
any loop C in X is a combination of curves with the loops to infinity property and we just apply
Theorem 4.20.

Before we begin case ii we note that: if a has the loops to infinity property then so does (a, b0).
This is seen by taking the homotopies hi from a to ai that diverge to infinity. Mapping them to
X , we get homotopies (hi, b0) from (a, b0) to (ai, b0). So for any compact set K ⊂ X , we have
K ⊂ KM ×KN where KM is compact. So we can choose ai in M \KM and have (ai, b0) outside K.

In case ii, we don’t have ray in N for the loops in M , but CovSpeccut(M) = ∅. Applying
Theorem 4.21, we see that the loop a in M is freely homotopic to a combination of loops which
have the loops to infinity property. Thus (a, b) is freely homotopic to a combination of loops (ai, b)
each of which is homotopic to (ai(0), b) following (ai, b(0)). Each (ai, b(0)) has the loops to infinity
property via the loops to infinity property of each ai. As in case i), each (ai(0), b) has the loops to
infinity property via rays in M based at ai(0). So CovSpeccut(X) = ∅ here as well.

Corollary 4.23 If X is a complete noncompact length space homeomorphic to M × R then

CovSpeccut(X) = ∅. (4.42)

4.6 Pulled Ribbon Spaces

In this section we provide examples demonstrating that Theorem 4.16 does not hold without the
assumption of local compactness. We call the method of construction the “pulled ribbon construc-
tion”. It is similar to an idea in Burago-Burago-Ivanov called a “pulled string”, where a collection
of points lying on a path in a space is identified creating a new complete length space. Their con-
struction is called the pulled string construction because it looks something like a cloth which has
had a thread pulled tight. In our case we first attach a ribbon along the line in the space and then
we pull a string on the opposite edge of the ribbon.

We will make our construction precise. Those who wish to understand their construction may
consult [BBI].
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Definition 4.24 The pulled ribbon space is a space Y = R× [0, 1] with the lower boundary R×{0}
identified with a point and endowed with the induced length structure. This is the same as saying
that the metric on Y is

dY ((r1, s1), (r2, s2)) = min{
√

(r1 − r2)2 + (s1 − s2)2, s1 + s2} (4.43)

This is a quasi metric and becomes a metric when we make the identification (r1, 0) = (r2, 0).

Note that Y is the suspension of a line. There is a geodesic γ : R → Y which runs along the “top
edge”: γ(r) = (r, 1). This geodesic is not a line in the induced length structure.

Proposition 4.25 The pulled ribbon space is a bounded complete length space which is not locally
compact.

Proof: It is bounded because Y ⊂ B̄y(1) where y is the special identified point. It is not compact
because the sequence of points (2j, 1) are all a distance 2 apart from each other. It is a complete
length space because between any pair of points we can find a minimal geodesic between them:
it is either the line segment in the strip or a pair of vertical lines dropping from the points to
the common point. Given any Cauchy sequence (ri, si) in the induced length structure either the
sequence converges in the standard metric on the strip or it approached the bottom edge which is
the common point.

Definition 4.26 Given a manifold M with a line γ : R → M , we say that we attach a pulled ribbon
to M creating a space, Mγ, if we attach the pulled ribbon so that its top edge is identified with the
line. Then we endow Mγ with the induced length metric.

Note that in this induced length metric the original line γ is no longer a line and is now bounded.
However, unlike spaces with a pulled thread, a space with an attached pulled ribbon keeps its
topology. In fact:

Proposition 4.27 If x, y ∈ M and dM (x, y) < 2 then after adding the pulled ribbon to M , we do
not change the distance between x and y.

Proof: If the distance between x and y has been shortened then there is a path from x to y of
length < 2 which passes into the ribbon. However, such a short path could not reach the far edge of
the ribbon, and so it’s length is determined by the Euclidean structure on the ribbon and it would
be shorter if it did not enter the ribbon at all.

Corollary 4.28 Given a space M and a map f : X → M then f is continuous from X to M iff f
is continuous from X to Mγ with the ribbon attached.

Corollary 4.29 M is simply connected iff Mγ is simply connected. Furthermore, M is semilocally
simply connected iff Mγ is semilocally simply connected.

The following example demonstrates the necessity of the local compactness condition in Theo-
rem 4.21.

Example 4.5 Let M2 be the cusped manifold,

R ×f S1, (4.44)

where f(r) = 2Arctan(−r) + π and γ be any line in this space.
Then Mγ is not simply connected but is semilocally simply connected by Corollary 4.29. It is a

bounded space. Adding a halfline attached at any point, would just create a space which does not
have the loops to infinity property and has one end. Nevertheless,

CovSpeccut(Mγ) = CovSpecR
cut(Mγ) = CovSpec(Mγ) = ∅. (4.45)
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Note that we just pulled a thread in this example identifying a line to be a point and using the
induced length structure, the space would become simply connected: loops shrinking along the cusp
would in fact converge to the identified point which is the line. The loops in this example do not
have a converging subsequence because they are always a fixed distance away from the line.

It should be noted that the double suspension of the Hawaii Ring is a compact space which is
not simply connected and yet it is its own universal cover so its covering spectrum is empty as well
[Sp].

We next demonstrate that local compactness is necessary in Theorem 4.16.

Proposition 4.30 If the length spectrum of M is empty and there are no geodesics starting and
ending perpendicular to the line γ, then the length spectrum of Mγ is also empty.

Proof: Suppose on the contrary that there is a closed geodesic σ : S1 → Mγ . If its image lies in
M ⊂ Mγ , then it is also a closed geodesic in M by Proposition 4.27. Since M has an empty length
spectrum this cannot be the case, so its image must intersect with the ribbon. The image of a closed
geodesic cannot lie completely within the ribbon, because there are no closed geodesics formed using
Euclidean line segments. So the geodesic σ must enter and leave the ribbon. The only way σ could
turn around is if it passes through the far edge and comes back. Thus the geodesic must be vertical
and must intersect the line γ vertically. So the part of σ which lies in M contradicts the hypothesis.

Example 4.6 Let M be asymptotically cylindrical

R ×f S1 (4.46)

where f(r) = 2Arctan(−r) + 2π and γ be any line in M , then Mγ is a bounded complete length
space such that

CovSpeccut(Mγ) = CovSpecD
cut(Mγ) = CovSpec(Mγ) = {π} (4.47)

but the length spectrum is empty. The length spectrum can be seen to be empty by applying Propo-
sition 4.30.

4.7 Localizing the R cut-off covering spectrum

In this section we show that one can compute CovSpecR
cut(X, x) ∩ [0, D] using only the information

contained in B(x, r) when r is taken sufficiently large [Prop 4.36]. In fact we give a precise estimate
on r independant of X which will allow us to stufy sequences of spaces.

Note that there is a complete hyperbolic manifold M of constant sectional curvature −1 such
that for any r, there exists a contractible curve lying in B(p, 1) which is not homotopically trivial
in B(p, r) [BoMe][Po]. In other words, the homotopies required to contract these loops to a point
extend further and further out in M . A simpler example with this property is formed by taking the
Hawaii Ring with circles of circumference 1/k and attaching a cylinders of length k to the kth circle
and then capping off the cylinder. This is a simply connected space none of whose balls about the
basepoint are simply connected.

The covering spectrum of these spaces could not be computed using a localization process like the
one we obtain here for the R cut-off covering spectrum. It is crucial that we can chop off homotopies
as in Figure 4 when computing the R cut-off covering spectrum.

Recall the definition of δ homotopy in Definition 3.1 and Lemma 3.4 and Defn 3.6. Now we
define:

Definition 4.31 Two loops γ1, γ2 in X are R-cutoff δ homotopic in X if πδ,R(γ1) = πδ,R(γ2), where
πδ,R : π(X) → π(X)/π(X, δ, R).
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It is not hard to see from the definition of the R cut-off δ cover that we have the following simpler
description which will allow us to apply the lemmas from the section on δ homotopies to study this
new kind of homotopy:

Lemma 4.32 A loop γ is R-cutoff δ homotopic to a point in A iff it is δ homotopic in A to a
collection of loops βj lying outside B̄p(R).

Our next lemma will be useful for localizing the δ homotopies so that we can use compactness
to control them.

Lemma 4.33 Given δ > 0, R > 0, and a loop C in B(x, R + 2δ) ⊂ X, if C is δ homotopic in X
to a collection of curves αβα−1 where β are in δ-balls or outside B̄(x, R), then C is δ-homotopic
in B(x, R + 2δ) to a collection of curves αβα−1 where β are in δ-balls or outside B̄(x, R). So C is
R-cutoff δ homotopic to a point in B̄(x, R + 2δ).

See Figure 4 where the darker balls are B(x, R) and the lighter balls are B(x, R + 2δ).

C C

B

Figure 4: Here C is δ homotopic to a single β = B outside B̄x(R).

Proof: This proof follows from Lemma 3.7 where our set A = X and B = B(x, R + 2δ) so we see
that C is δ homotopic in B to a collection of curves γ1, γ2, ...γj such that each γj lies in B and the
tubular neighborhood

T2δ(A \ B). (4.48)

In particular the γi lie outside B̄(x, R). Thus by Lemma 4.32, C is a curve which is R-cutoff δ-
homotopic in B(x, R+2δ) to a collection of curves αβα−1 where β are in δ-balls or outside B̄(x, R).

Using Lemma 4.33 we have the following relation between the R-cutoff spectrums of balls and
the total space which will be very useful later.

Lemma 4.34 If
δ ∈ CovSpecR

cut(B(x, r))

for some r > 3(R + 2δ) then
δ ∈ CovSpecR

cut(X).

Proof: We prove the contrapositive. Assume δ /∈ CovSpecR
cut(X). By the definition, there exists

δ′ > δ such that
X̃δ,R

cut = X̃R,δ′

cut . (4.49)

This means that any curve C whose image lies in a ball of radius δ′ is δ-homotopic in X to a path
created as a combination of αβα−1 where β are either in a ball of radius δ or lie outside B̄x(R).
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If the image of C lies in B(x, R + 2δ′), then by Lemma 4.33 C is a curve which is δ-homotopic
in B(x, R + 2δ′) to a collection of curves αβα−1 where β are in δ-balls or outside B̄(x, R). When
r > 3(R + 2δ) and δ′ is close to δ, the metric on Bx(R + 2δ′) restricted from the induced length
metric on Bx(r) agrees with its metric restricted from X , we have that any such curve C lifts closed

to B̃(x, r)δ,R
cut .

Now any curve σ which lifts closed to B̃(x, r)R,δ′

cut is homotopic in B(x, r) to a collection of αβα−1

where β are now either in a ball of radius δ′ or outside B̄x(R). Note that any β which lies outside

B̄x(R) lifts as a closed loop to B̃(x, r)δ,R
cut . Those β which pass within B̄x(R) and fit in a ball of

radius δ′, the images must be contained in B(x, R + 2δ′), therefore also lifts closed to B̃(x, r)δ,R
cut .

Since σ is homotopic in B(x, r) to a combination of curves which lift as closed loops to B̃(x, r)δ,R
cut ,

then σ must do the same. Thus by the Curve Lifting property (c.f. [Ma] page 123) and Lemma 4.8
we see that

B̃(x, r)δ′,R
cut = B̃(x, r)δ,R

cut (4.50)

and so δ /∈ CovSpecR
cut(B(x, r)).

In the opposition direction we have

Lemma 4.35 If
δ ∈ CovSpecR

cut(X)

then for all r ≥ 3(R + 2δ),
δ ∈ CovSpecR

cut(B(x, r)).

Proof: If
δ ∈ CovSpecR

cut(X), (4.51)

then, for δi decreasing to δ, we have loops Ci lies inside δi balls of X which can not be represented in
X by loops lying inside δ-balls of X or loops in X \ B̄(x, R). Since Ci lies inside δi balls and is not in
X \ B̄(x, R) it must be in B(x, R + 2δi). Since r ≥ 3(R + 2δ) the balls in B(x, R + 2δi) are same for
B(x, r) and X . Therefore Ci lies inside δi balls of B(x, r). Since Ci can not be represented in X by
loops lying inside δ-balls of X or loops in X \ B̄(x, R) it can not be represented by loops lying inside
δ-balls of B(x, r) or loops in B(x, r) \ B̄(x, R) in B(x, r). This shows that δ ∈ CovSpecR

cut(B(x, r)).

An immediate consequence of these two lemmas is the following:

Proposition 4.36 Given two length spaces X and Y with isometric balls, B(x, r) = B(y, r), then

CovSpecR
cut(X, x) ∩ [0, D] = CovSpecR

cut(Y, y) ∩ [0, D] (4.52)

whenever 3(R + 2D) ≤ r.

Proof: If δ ∈ CovSpecR
cut(X, x) ∩ [0, D], then δ ≤ D so apply Lemma 4.35 and have

δ ∈ CovSpecR
cut(B(x, r)) = CovSpecR

cut(B(y, r)). (4.53)

Then apply Lemma 4.34 gives the result.

Remember that the R cut-off covering spectrum of a capped cylinder and a cylinder are both
empty regardless of basepoint while the ordinary covering spectrum of the cylinder is nonempty..

Without restricting to a uniform [0, D], the R cut-off covering spectrum will not match. This
can be seen in the following example:

Example 4.7 Let Xs be a unit interval with xs on one end and a circle of circumference 2πs on
the other end. Let Y be a unit interval with y at one end and two half lines at the far end. Taking
R = 2 and s > 1 we have CovSpecR

cut(Xs, xs) = {πs} and CovSpecR
cut(Y, y) = ∅. Yet for any r we

have B(xs, r) isometric to B(y, r) for s > r.

26



4.8 Varying R in the R cut-off covering spectra

In the next section on the Gromov-Hausdorff convergence of metric spaces and the cut-off covering
spectra we need to relate the R cut-off covering spectra for various values of R.

Proposition 4.37 Given R0 < R1,

δ ∈ CovSpecR1

cut(X) \ CovSpecR0

cut(X)

implies
X̃δ,R1

cut → X̃δ,R0

cut .

is nontrivial.

Proof: If δ ∈ CovSpecR1

cut(X), then X̃δi,R1

cut 6= X̃δ,R1

cut for all δi > δ. So there is a nontrivial loop γi

which lifts to X̃δ,R1

cut nontrivially and lifts to X̃δi,R1

cut trivially. Since R1 is the same for both covering
spaces, we can choose γi which lies in a balls of radius δi. Otherwise if all such loops lift trivially to
X̃δ,R

cut then the covering groups are the same.
Suppose δ /∈ CovSpecR0

cut(X), then for i sufficiently large,

X̃δi,R0

cut = X̃δ,R0

cut . (4.54)

Since γi lies in a ball of radius δi it lifts trivially to the first cover, and thus also the second. So we
have a nontrivial covering:

X̃δ,R1

cut → X̃δ,R0

cut . (4.55)

In the next proposition we assume our space Y is compact. To apply this proposition to complete
noncompact spaces X which are only locally compact we will use our localization results from the
last section.

Proposition 4.38 If Y is a compact length space, and CovSpecRi

cut(Y )∩ [δ1, δ2) = ∅ for a sequence
of Ri decreasing to R1, then for Ri sufficiently close to R1 we have

Ỹ δ1,Ri

cut → Ỹ δ2,R1

cut (4.56)

is trivial. In particular, without any assumption on the spectrum, we have

Ỹ δ,Ri

cut → Ỹ δ,R1

cut (4.57)

is trivial whenever Ri is sufficiently close to R1.

Combining this with Proposition 4.13, we only need to assume there exists R2 > R1 with
CovSpecR2

cut(Y ) ∩ [δ1, δ2) = ∅ to conclude (4.56). In fact, by Proposition 4.14 we could assume
CovSpeccut(Y ) ∩ [δ1, δ2) = ∅ and draw the same conclusion. See Theorem 5.2 for an application of
this proposition.
Proof: Assume on the contrary that Ỹ δ1,R2 → Ỹ δ2,R1 is not trivial for all R2 > R1. So there is a γ
which lifts trivially to the latter cover, but not to the first. In particular we can either choose γ to
lie inside a ball of radius δ2, or outside B̄p(R1).

In the first case, γ lifts trivially to Ỹ δ2,R2 which implies CovSpecR2

cut(Y ) ∩ [δ1, δ2) is nonempty.
In the second case γ lies outside B̄p(R1) and is not δ1 homotopic to a loop outside B̄p(R2). In

particular l(γ) ≥ 2δ1 and γ is not δ homotopic to a loop outside B̄p(R2) for any δ ≤ δ1.
Suppose we take R2 = Ri decreasing to R1 and have nontrivial covers. So we get a sequence of

γi, each γi lies outside B̄p(R1) and is not δ1 homotopic to a loop outside B̄p(Ri).
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Note that Y \B̄p(R1) is precompact. It is still a precompact length space if we give it the induced
length structure (c.f. [BBI]). So there exists some finite number N such that it can be covered by
at most N balls of radius δ1/5. Note that balls in the induced length metric are smaller than those
in the metric on Z, so γi is also not δ1 homotopic in the space Z = Y \ B̄p(R1) to a loop outside
B̄p(Ri). For the rest of the proof we will use the induced length metric on Z when referring to the
δ1 homotopies..

Applying Lemma 3.9, we see that we can always find a γi in Z with L(γi) ≤ Nδ1 which is not
δ1 homotopic to a loop outside B̄p(Ri).

Since the γi have length bounded above uniformly and since Y is compact, by Arzela Ascoli we
have a subsequence which converges to some γ∞. Note that γ∞ need not be located outside B̄p(R1),
so instead of relating γi to γ∞, we will use the fact that γi must be a Cauchy sequence in Z. That
is , there exists N ′ sufficiently large such that γi are δ1/2 homotopic to γj for all i, j ≥ N ′. Fix this
N , note that γN lies outside the closed ball B̄p(R1) and Rj are decreasing to R1, so γN is outside
B̄p(Rj) for j sufficiently large. This contradicts γj is not δ1 homotopic to a loop outside B̄p(Rj).

Note that the compactness here is essential as the following example shows.

Example 4.8 Let Y be the Hawaii ring with circles of circumference 2π ± π
j , γj, all attached at a

point. Take δ = π/2, Ri = (1 + 1/i)π, R1 = π, then the cover Ỹ δ,Ri

cut → Ỹ δ,R1

cut is nontrivial for all i.
This Y is not a compact length space.

5 Gromov-Hausdorff Convergence

In [SoWei3], we proved that when compact spaces Mj converge to a compact limit M in the Gromov-
Hausdorff sense then CovSpec(Mi)∪ {0} converges to CovSpec(M) ∪ {0} in the Hausdorff sense as
subsets of the real line. In particular, if Mj are simply connected, then the limit space has an empty
covering spectrum and is its own universal cover.

In the next subsection we provide examples demonstrating that we do not get such a strong
result when the spaces are noncompact. In fact the limit space of simply connected Mi might be a
cylinder [Example 5.2].

In the subsequent sections we prove the continuity of the cut-off covering spectra [Theorem 5.2].
In particular the limit of simply connected manifolds will be seen to have an empty cut-off covering
spectrum [Corollary 5.6].

First recall the definition of Gromov Hausdorff distance:

Definition 5.1 Given compact length spaces Xi and Y we say Xi converges to Y in the Gromov
Hausdorff sense if there exists δi Hausdorff approximations fi : Xi → Y such that

|dY (fi(x1), fi(x2)) − dXi
(x1, x2)| < δi (5.1)

and Y ⊂ Tδi
(f(Xi)) with δi → 0. Note that once this is true there are also δ′i Hausdorff approxima-

tions from Y to Xi with δ′i → 0.

When complete noncompact spaces are said to converge in the Gromov-Hausdorff sense, they are
considered as pointed spaces. We write (Xi, xi) converges in the pointed Gromov-Hausdorff sense
to (X, x) when for every R > 0, the closed balls with the restricted metric B̄xi

(R) ⊂ Xi converge to
balls in the limit space B̄x(R) ⊂ X .

Gromov’s Compactness Theorem says that whenever Xi have a uniform bound on the number
of disjoint balls of radius r in any ball of radius R, then a subsequence of the Xi converge in this
sense to a complete pointed length space X . Crucial here is that the balls do piece together to form
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a complete limit space. However, one must keep in mind that the balls can converge at different
rates. The next section depicts a few examples where this aspect of the pointed Gromov-Hausdorff
convergence is crucial.

5.1 Examples

First recall that even for the covering spectrum on compact spaces it is possible for a sequence of
spaces to become simply connected in the limit:

Example 5.1 Let M be a simply connected surface and let Xk be created by adding a small handle
onto M , such that the handle fits inside a ball of radius 1/k. These Xk converge to M as k → ∞.
Note that both CovSpec(Xk) = {δk} and CovSpeccut(Xk) = {δk} while CovSpec(M) = ∅.

Nevertheless in [SoWei3] we proved that the difficulty seen here was the only cause for a lack of
continuity in the covering spectrum. We proved for compact Mi converging to compact limits Y ,
then if λj ∈ CovSpec(Mi) converge to λ > 0 then λ ∈ CovSpec(Y ) and if λ ∈ CovSpec(Y ) there
exists λj ∈ CovSpec(Mi) such that λj → λ. In particular, if the Mi are simply connected, then Y
has an empty covering spectrum.

Without the assumption of compactness, however, we can have simply connected manifolds which
have a limit with a nonempty covering spectrum:

Example 5.2 Let M be a capped off cylinder and let pi ∈ M diverge to infinity. Then the se-
quence (Mi, pi) converges in the pointed Gromov-Hausdorff sense to a cylinder because the cap has
disappeared off to infinity.

Thus we have a sequence Mi → Y such that CovSpec(Mi) = ∅ but CovSpec(Y ) = {π}. Now by
Propositions 4.13 and 4.14 CovSpeccut(Mi) = CovSpecR

cut(Mi) = ∅ as well. Since a cylinder has
the loops to infinity property CovSpeccut(Y ) = CovSpecR

cut(Y ) are also empty.

While in the above example, the limit gained an element in its covering spectrum due to longer
and longer homotopies, it is also possible to gain an element in the covering spectrum without
changing the topology of the space:

Example 5.3 We construct an example where an element of the covering spectrum appears in the
limit. As in Example 2.5, let M2 be the warped product manifold R ×f(r) S1 where

f(r) = 2Arctan(−r) + π. (5.2)

Since limr→∞ f(r) = 0, πslip(M) = π1(M) and the covering spectrum is empty.
Now let (Xi, xi) = (M, pi) where r(pi) = ri → −∞. Note that B̄xi

(R) is then equipped with a
warped product metric and

fi(r) = f(r − ri) = 2Arctan(−r + ri) + π (5.3)

which converges uniformly on [−R, R] to

f∞(r) = 2π. (5.4)

Thus the pointed Gromov Hausdorff limit is the standard cylinder whose covering spectrum is {π}.
As above the cut-off covering spectra of these examples is empty both for the Xi and the limit space.

Next we construct an example where an element of the covering spectrum disappears in the limit
without decreasing to 0. This issue is not immediately solved by using the cut-off covering spectrum.
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Example 5.4 Let M2 be a cylinder with a small handle near a point p. Let (Xi, xi) = (M, pi) where
d(pi, p) → ∞. Then CovSpec(Xi) = CovSpec(M) since the covering spectrum does not depend on
the base point and the spectrum has its first element, λ1 < π corresponding to the small handle. Yet
for all R > 0 just take NR large enough that

d(pi, p) ≥ 2R ∀i ≥ NR. (5.5)

Then B̄pi
(R) are all isometric to balls of radius R in a cylinder. So (Xi, xi) converge to a cylinder

with a point. So the covering spectrum of the limit space does not include λ1 and its only element is
π. So we have locally compact Xi converging to locally compact X with

δi ∈ CovSpec(Xi) such that δi = λ1 → δ /∈ CovSpec(X). (5.6)

In fact we have

δi = λ1 ∈ CovSpeccut(Xi) such that δi → δ /∈ CovSpeccut(X). (5.7)

On the other hand any R > 0, there exists NR sufficiently large that CovSpecR
cut(Xi, xi) = {π}

because the handle is located outside B̄xi
(R).

Finally we have the possibility that elements of the covering spectrum can grow to infinity. In
this example we see that in essence a hole could expand until it snaps and is no longer a hole in the
limit space:

Example 5.5 Let (Xr, xr) be formed where Xr is a unit interval with xr on one end and a circle
of circumference 2πr attached to the other end with a half line attached on the opposite side of the
circle. Then CovSpec(Xr) = {πr}.

Note that if one takes a sequence of ri diverging to infinity, (Xri
, xri

), converges in the pointed
Gromov-Hausdorff sense to (X∞, x∞) where X∞ is a unit interval attached to x∞ at one end and
two half lines at the other end. So X∞ is simply connected and has an empty covering spectra.

This example is not simplified by using the cut-off covering spectra. In fact for any R ≥ 1
CovSpecR

cut(Xr) = {πr} and so CovSpeccut(Xr) = {πr}.

5.2 Convergence of the R cut-off covering spectrum

In light of the above examples, it is natural to try to to prove continuity of the R cut-off covering
spectra and then perhaps to apply this continuity to prove some form of continuity for the cut-off
covering spectrum. Surprisingly the statement of the continuity theorem for the cut-off spectrum is
somewhat tricky:

Theorem 5.2 Let (Xi, xi) be locally compact metric spaces converging in the pointed Gromov-
Hausdorff sense to a locally compact space (X, x). Bounded elements do not disappear: if we have a
converging sequence,

δi ∈ CovSpecR1

cut(Xi, xi) and δi → δ > 0, then δ ∈ CovSpecR1

cut(X, x). (5.8)

Nor do elements suddenly appear: for any R2 > R1 and if we have an element,

δ ∈ CovSpecR1

cut(X, x) there are δi ∈ CovSpecR2

cut(Xi, xi) such that δi → δ. (5.9)

Examples 5.1 and 5.5 demonstrate why one must assume δi converge in (0,∞). We now present
examples demonstrating why we cannot take R1 = R2 in (5.9).
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Example 5.6 Appearing element in the R cut-off covering spectrum. Let (Xr, xr) be formed by
attaching a line segment of length r to a circle of circumference 2π, and then continuing with a half
line on the opposite side of the circle. The point xr will be the endpoint of the line segment not
attached to the circle. If ri → r∞ it is easy to see that (Xri

, xri
) converges to (Xr∞

, xr∞
).

Note that CovSpec(Xr) = {π} and so does CovSpeccut(Xr). However CovSpecR
cut(Xr) = ∅

when r > R because then the circle is contained in Xr \ B̄xr
(R). Otherwise CovSpecR

cut(Xr) = {π}.
Thus the sequence Xrj

with rj decreasing to R1 has

δ = π ∈ CovSpecR1

cut(Xr∞
) (5.10)

but CovSpecR1

cut(Xri
) = ∅. However, taking R2 > R1, eventually we have ri < R2 so we have

δi = π ∈ CovSpecR2

cut(Xri
). (5.11)

The next example also illustrates the same phenomenon with a distinct cause:

Example 5.7 Let M be a warped product manifold of the form R ×f S1 where f(t) = e−t2 . Fix p
in the level t = 0.

Let Xr = B̄p(r). So it is a closed ball and if we wish to make it noncompact, we just attach a
half line to it. We give it the induced length metric from M .

Let ri decrease to some r∞ > π. Then Xi = Xri
converges to X∞ = Xr∞

.
Let R1 = r∞. The R1-cutoff covering spectrum of X∞ includes δ equal to half the length of

one of the components of the boundary of B(p, R1), because this curve is not homotopic to anything
outside B̄p(R1). However the R1-cutoff covering spectra of the Xi are all empty because the loop is
homotopic to a loop in ∂Bp(ri) which is outside B(p, R1). So once again we need R2 > R1 and need
to wait for ri < R2 to get the cut-off covering spectra to converge.

One might also construct manifolds Mi converging to X∞ by taking smoothed tubular neighbor-
hoods of the Xi in five dimensional Euclidean space.

Note that in the above examples, if one were to take rj increasing to R0 the covering spectrum
are all {π}. The difficulty arises because rj decreasing to R∞ are leaving the open set (R∞,∞) in
the limit.

At first we thought we needed to take R2 > R1 in (5.8) as well as (5.9) but due to the lack
of examples proving this was necessary, we investigated further and discovered we could boost our
proof of (5.8) using the local compactness of the limit space.

In order to prove this theorem we need extend several results for covering spaces of compact
spaces to R-cutoff spaces. The first is an adaption of Theorem 3.4 in [SoWei1].

Proposition 5.3 Let B(pi, si) ⊂ B(pi, Si) ⊂ Yi, i = 1, 2 be balls each with intrinsic metrics. Let

G(p1, s1, S1, δ1) be the group of deck transformations of B̃(p1, S1)
δ1,s1

cut .
If there is a pointed ǫ-Hausdorff approximation f : B(p1, S1) → B(p2, S2) then for any δ1 > 10ǫ

and δ2 > δ1 + 10ǫ and s2 < s1 − 5ǫ, there is a surjective homomorphism,

Φ : G(p1, s1, S1, δ1) → G(p2, s2, S2, δ2). (5.12)

Proof of Proposition 5.3: We begin by describing a map for closed curves. For a closed curve
γ : [0, 1] → B(p1, S1) with γ(0) = γ(1) = p1, construct a 5ǫ-partition of γ as follows. On Γ := γ([0, 1])
choose a partition 0 = t0 ≤ t1 ≤ · · · ≤ tm = 1 such that for xi = γ(ti), one has d(xi, xi+1) < 5ǫ for
i = 0, · · · , m − 1. {x0, · · · , xm} is called a 5ǫ-partition of γ.

Let ym = y0 = p2 and for each xi, we set yi = f(xi), i = 1, · · · , m − 1. Connect yi and yi+1 by
minimal geodesics in Bp2

(S2). This yields a closed curve γ̄ in B(p2, S2) based at p2 consisting of m
minimizing segments each having length ≤ 6ǫ.
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Any α ∈ G(p1, s1, S1, δ1) can be represented by some rectifiable closed curve γ in B(p1, S1), so
we can hope to define

Φ(α) = Φ([γ]) := [γ̄] ∈ G(p2, s2, S2, δ2).

First we need to verify that Φ doesn’t depend on the choice of γ such that [γ] = α.
Using the facts that 18ǫ < δ2 and loops which fit in balls of radius δ2 do not effect the representa-

tive of a class in G(p2, s2, S2, δ2), one easily see that [γ̄] doesn’t depend on the choice of minimizing
curves γ̄i, nor on the special partition {x1, · · · , xm} of γ([0, 1]).

Moreover using additionally the uniform continuity of a homotopy one can similarly check that
if γ and γ′ are homotopic in B(p1, S1), then [γ̄] = [γ̄′] in G(p2, s1 − 5ǫ, S2, δ2). That is, we can
take a homotopy h : [0, 1] × [0, 1] → B(p1, S1), we can take a grid on [0, 1] × [0, 1] small enough
that homotopy maps the grid points to points xi,j that are less than 5ǫ apart from the images of
their grid neighbors. Then we take yi,j = f(xi,j) and connect neighbors according to the rules in
the first paragraph. Finally we use the argument in the paragraph above this to see that the net
created using the yi,j is a δ2 homotopy so [γ̄] = [γ̄′] in G(p2, s2 − 5ǫ, S2, δ2). Thus we see that Φ
is a homomorphism from π1(B(p1, S1), p1) to G(p2, s2, S2, δ2). However α ∈ G(p1, s1, S1, δ1) not
π1(B(p1, s1), p1).

Suppose γ1 and γ2 are both representatives of α ∈ G(p1, s1, S1, δ1). Then γ1∗γ−1
2 is, in B(p1, S1),

homotopic to a loop γ3 generated by loops of the form α ∗ β ∗ α−1, where β is a closed path lying
in a ball of radius δ1 or in B(p1, S1) \ B̄(p1, s1). So [γ̄1] = [γ̄3] ∗ [γ̄2] in π1(B(p1, s1), p1). So we need
only show that [γ̄3] is trivial in G(p2, s2, S2, δ2).

In fact γ̄3 can be chosen as follows. The yi’s corresponding to the xi’s from the β segments of
γ3 are all within δ1 + ǫ of a common point and the minimal geodesics between them are within
δ1 + (1 + 6/2)ǫ < δ2. Furthermore, the yi’s corresponding to the xi’s from the α and α−1 segments
of the curve can be chosen to correspond. Thus γ̄3 is generated by loops of the form α ∗ β ∗ α−1

lying in B(p2, S2), where β is a closed path lying in a ball of radius δ2 or B(p1, S2) \ B(p1, s1 − 5ǫ)
and α is a path from p2 to β(0). So it is trivial.

Last, we need to show that Φ is onto. If ᾱ ∈ G(p2, s2, S2, δ2), it can be represented by some
rectifiable closed curve σ in B(p2, S2) based at p2. Choose an ǫ-partition {y0, · · · , ym} of σ. Since
f : B(p1, S1) → B(p2, S2) is an ǫ-Hausdorff approximation, there are xi ∈ B(p1, s1), y′

i = f(xi) ∈
B(p2, S2) where y′

0 = y′
m = p2, x0 = xm = p1 and dB(p2,S2)(yi, y

′
i) ≤ ǫ. Connect y′

i, y
′
i+1 with a

length minimizing curve in B(p2, S2); this yields a piecewise length minimizing closed curve σ′ in
B(p2, S2) based at p2, each segment has length ≤ 3ǫ. So [σ′] = [σ] in G(p2, s1 − 5ǫ, S2, δ2). Now
connect xi, xi+1 by length minimizing curves in B(p1, S1) this yields a piecewise length minimizing
γ : [0, 1] → B(p1, S1) with base point p1, each segment has length ≤ 4ǫ. So the curve γ allows a
5ǫ-partition and [γ] ∈ G(p1, s1, S1, δ1). By the construction, Φ([γ]) = ᾱ.

Therefore Φ is surjective.

Proposition 5.4 If a sequence of locally compact complete length spaces Xi converges to a length
space X in the Gromov-Hausdorff topology, then for any δ > 0, R > 0, r > 3R there is a subsequence
of Xi and a sequence ri → r such that B̃(xi, ri)

δ,R
cut also converges in the pointed Gromov-Hausdorff

topology. Moreover, the limit space B(x, r)δ,R
cut is a covering space of B(x, r) satisfying

B̃(x, r)δ,R
cut → B(x, r)δ,R

cut → B̃(x, r)δ′ ,R′

cut (5.13)

for all 0 < R′ < R and δ′ > δ.

Proof: By the Appendix of [SoWei2] we know that for a sequence ri converging to r, B(xi, ri)
converge with the induced length metric to B(x, r).

By [SoWei3][Proposition 7.3] and the fact that the closed balls B(xi, ri) are compact sets, we
know that B̃(xi, ri)

δ have a converging subsequence. So by Gromov’s compactness theorem, they
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have a uniform bound N(a, b), the number of disjoint balls of radius a in a ball of radius b. By

Proposition 4.7, B̃(xi, ri)
δ
cut covers B̃(xi, ri)

δ,R
cut , so N(a, b) can be used to count balls in B̃(xi, ri)

δ,R
cut

as well. So by Gromov’s compactness theorem, a subsequence of these spaces converges and we will
denote the limit space: B(x, r)δ,R

cut .

To complete the proof we adapt Theorem 3.6 of [SoWei1]. The fact B̃(xi, ri)
δ,R
cut were isometries

on balls of radius δ and outside B̄p(R) guarantees that the limit is as well, so B(x, r)δ,R
cut is a covering

space for B(x, r).

The isometries also guarantee it is covered by B̃(x, r)δ,R
cut . This can be seen using the Unique

Lifting Theorem (c.f. [Ma] Lemma 3.1, p123) and noting that if C is a closed curve in B(x, r)

whose lift to B̃(x, r)δ,R
cut then it is homotopic to a curve which is created from curves of the form

α · β · α−1 where the β are either in a ball of radius δ or outside B̄x(R). So its lift to B(x, r)δ,R
cut is

also closed since πδ is an isometry on δ-balls and an isometry outside B̄x(R). Therefore B̃(x, r)δ,R
cut

covers B(x, r)
δ,R

To complete the proof we apply the Unique Lifting Theorem by contradiction. We assume there

is δ′ > δ and R′ < R and C is a curve which lifts closed to B(x, r)δ,R
cut but lifts open to B̃(x, r)δ′,R′

cut .
Since this lift of C is not closed, [C] ∈ G(x, r, R′, δ′) is nontrivial.

Let ǫ > 0 be chosen sufficiently small that

ǫ < min{δ/10, (δ − δ′)/10, (R − R′)/5}. (5.14)

Take i sufficiently large that we have an ǫ-Hausdorff approximation fi : B(xi, ri) → B(x, r).
Applying Proposition 5.3, we know there are a surjective homomorphisms, Φ : G(xi, ri, R, δ) →
G(x, r, R′, δ′), so there are closed loops Ci ∈ B(xi, ri) such that Φ([Ci]) = [C].

By the construction of Φ, Ci can be chosen so these lifted curves C̃i converge to the lift of the
limit of the curves, C̃ in B(x, r)δ,R

cut and

dB(x,r)δ,R
cut

(C̃(0), C̃(1)) = lim
i→∞

d(C̃i(0), C̃i(1)). (5.15)

However the [Ci] are nontrivial, so their lifts to B̃(xi, ri)
δ,R run between points C̃i(0) 6= C̃i(1)

satisfying
d(C̃i(0), C̃i(1)) ≥ δ. (5.16)

Combining this with (5.15), we see that C̃ is not closed and we have a contradiction.

At this point we could imitate the proof of Theorem 8.4 in [SoWei3] to prove Theorem 5.2 for
Xi which are compact balls. However, this would not help us prove Theorem 5.2 for noncompact
spaces as the cut-off covering spectrum of a ball does not match the cut-off covering spectrum of the
space. Recall Examples 5.5 and 5.2 demonstrate that not only can holes become increasingly large,
but homotopies may as well. One needs to control such phenomenon to complete the proof.

Proof of Theorem 5.2: In order to prove the first statement (5.8) we first prove that given any
R2 > R1 if

δi ∈ CovSpecR1

cut(Xi) and δi → δ > 0, then δ ∈ CovSpecR2

cut(X). (5.17)

Later we will boost this result to (5.8).
Assume

δi ∈ CovSpecR1

cut(Xi) (5.18)

and δi → δ > 0. By Lemma 4.35, δi ∈ CovSpecR1

cut(B(xi, r)) for r ≥ 3(R1 + 2δi). So B̃(xi, r)
δi,R1

cut →

B̃(xi, r)
δ′,R1

cut is nontrivial for all δ′ > δi. So for all δ′ > δ > 0 and ǫ ∈ (0, δ) we have δ − ǫ < δi < δ′

for i sufficiently large and

B̃(xi, r)
δ−ǫ,R1

cut → B̃(xi, r)
δ′,R1

cut (5.19)
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is nontrivial. Now take the limit as i → ∞ and we get

B(x, r)δ−ǫ,R1

cut → B(x, r)δ′ ,R1

cut (5.20)

is nontrivial.
This is true for all ǫ ∈ (0, δ) and δ′ > δ. By the properties of limit covers in Proposition 5.4 we

have for all ǫ ∈ (0, δ), δ′′ > δ′, and R′ ∈ (R1, R2),

B̃(x, r)δ−ǫ,R1

cut → B(x, r)δ−ǫ,R1

cut and B(x, r)δ′,R1

cut → B̃(x, r)δ′′ ,R′

cut . (5.21)

Therefore B̃(x, r)δ−ǫ,R1

cut → B̃(x, r)δ′′,R′

cut is nontrivial.
By Proposition 4.38, we then know that since B(x, r) is compact and R2 > R′ we have

CovSpecR2

cut(B(x, r)) ∩ [δ − ǫ, δ′′) 6= ∅. (5.22)

Taking ǫ to 0 and δ′′ to δ, we get
δ ∈ CovSpecR2

cut(B(x, r) (5.23)

This is true for all sufficiently large r, so by Lemma 4.34,

δ ∈ CovSpecR2

cut(X) (5.24)

which completes proof of (5.17).
We now boost the statement (5.17) to prove (5.8). Again fix R1 > 0. Suppose

δi ∈ CovSpecR1

cut(Xi) (5.25)

and δi → δ > 0, Let X be the Gromov-Hausdorff limit of the Xi.
Proposition 4.38 says that that for R2 = Ri sufficiently close to R1

X̃δ,R2

cut = X̃δ,R1

cut (5.26)

putting this together with Proposition 4.37 says

δ /∈ CovSpecR2

cut(X) \ CovSpecR1

cut(X) (5.27)

We apply (5.17 to say
δ ∈ CovSpecR2

cut(X). (5.28)

But then
δ ∈ CovSpecR1

cut(X), (5.29)

which gives us (5.8).
Now we prove the second statement (5.9): given

δ ∈ CovSpecR1

cut(X) (5.30)

and any R2 > R1, show there exists

δi ∈ CovSpecR2

cut(Xi) (5.31)

such that δi → δ.
We assume on the contrary that there is a gap:

∃ǫ > 0 such that CovSpecR2

cut(Xi) ∩ (δ − 2ǫ, δ + 2ǫ) = ∅. (5.32)
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By Lemma 4.34, for r ≥ 3(R2 + 2δ + 4ǫ),

CovSpecR2

cut(B(xi, r)) ∩ (δ − 2ǫ, δ + 2ǫ) = ∅. (5.33)

By Lemma 4.13 we then have for any R′
2 ≤ R2:

CovSpec
R′

2

cut(B(xi, r)) ∩ (δ − 2ǫ, δ + 2ǫ) = ∅. (5.34)

So the covering

B̃(xi, r)
δ−ǫ,R′

2

cut → B̃(xi, r)
δ+ǫ,R′

2

cut (5.35)

is trivial. By Proposition 5.4 we have a subsequence of the i such that:

B̃(xi, r)
δ−ǫ,R′

2

cut → B(x, r)
δ−ǫ,R′

2

cut (5.36)

and
B̃(xi, r)

δ+ǫ,R′

2

cut → B(x, r)
δ+ǫ,R′

2

cut . (5.37)

since the sequence of the covering map is trivial, the covering limit map

B(x, r)
δ−ǫ,R′

2

cut → B(x, r)
δ+ǫ,R′

2

cut (5.38)

is also trivial.
By Proposition 5.4 for any R2 ≥ R′

2 > R1

B(x, r)
δ−ǫ,R′

2

cut → B̃(x, r)δ,R1

cut → B̃(x, r)δ+ǫ,R1

cut → B(x, r)δ+ǫ,R1

cut . (5.39)

By Proposition 4.38, for any R′
2 > R1 sufficiently close to R1, the covering

B̃(x, r)
δ−ǫ,R′

2

cut → B̃(x, r)δ+2ǫ,R1

cut (5.40)

is trivial. Using Proposition 5.4, we have for R′′
2 < R′

2, the covering

B(x, r)
δ−ǫ,R′′

2

cut → B(x, r)δ+ǫ,R1

cut (5.41)

is trivial.
Apply this R′′

2 to (5.39) we get trivial covers in 5.39). So δ /∈ CovSpecR1

cut(B(x, r)).
By Lemma 4.35, δ /∈ CovSpecR1

cut(X). That is a contradiction.

5.3 Convergence of the cut-off covering spectrum

Theorem 5.2 combined with Proposition 4.15 gives the following result that elements in the cut-off
covering spectrum do not suddenly appear in limits. Example 5.4 demonstrates that elements of the
cut-off covering spectrum can disappear in the limit by sliding out to infinity. Unlike the R cut-off
covering spectrum, all handles are now visible.

Theorem 5.5 Let (Xi, xi) be locally compact metric spaces converging in the pointed Gromov-
Hausdorff sense to a locally compact space (X, x), then

for any δ ∈ CovSpeccut(X), there is δi ∈ CovSpeccut(Xi) (5.42)

such that δi → δ.

This provides an immediate application:
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Corollary 5.6 If Xi are simply connected locally compact length spaces converging in the pointed
Gromov-Hausdorff sense to a locally compact space (X, x) then CovSpeccut(X) = ∅.

Proof of Theorem 5.5: If δ ∈ CovSpeccut(X), by Proposition 4.15,

δ ∈ Cllower ∪R>0 CovSpecR
cut(X). (5.43)

So there are Rk increasing to infinity and

δk ∈ CovSpecRk

cut(X) (5.44)

such that δk → δ . By Proposition 5.2 and Rk+1 > Rk, for each δk, we have

δi
k ∈ CovSpec

Rk+1

cut (Xi) ⊂ CovSpeccut(Xi) (5.45)

such that δi
k → δk.

By a diagonal process, we have

δi = δi
ki

∈ CovSpeccut(Xi) (5.46)

such that δi → δ.

Question 5.7 Is local compactness a necessary condition in our convergence theorems [Theorem 5.2
and Theorem 5.5]? This condition is used in a few crucial steps of the proof. It is used in Lemma 3.9
to apply the pigeonhole principle to control the lengths of shortest representative curves. It is also
used in Proposition 5.4 to prove that the delta covers of balls converge in the Gromov-Hausdorff sense
when these balls converge in the Gromov-Hausdorff sense. This proposition is based on a result in
[SoWei3] which requires compactness. Proposition 4.38 which requires compactness is applied to balls
in the proof. Finding examples demonstrating the necessity of local compactness or compactness in
any of these results would be of interest.

Recall the pulled ribbon construction introduced in Section 4.6 was used to obtain important
examples which are not locally compact. Here however the ribbon construction does not immediately
help:

Remark 5.8 Suppose one were to attach pulled ribbons to the sequence of manifolds in Example 5.3
in an attempt to prove that local compactness is necessary in Theorem 5.5. The difficulty is that as
soon as the spaces are bounded, there is no way to effectively use a base point to differentiate the
spaces from one another. Thus the sequence is just a repeating space and converges to itself. It does
not produce a counter example. The same effect happens if we try to attach pulled ribbons to capped
cylinders which converge to cylinders in the pointed Gromov Hausdorff sense (see Example 5.2).

If we choose Mj to be warped products with two cusps that are isometric to cylinders on [−j, j]
such spaces would converge in the pointed Gromov-Hausdorff sense to a cylinder, but when we attach
pulled ribbons to them, the sequence does not even converge: each space is a definite Gromov-
Hausdorff distance apart from each other. The only reason the Mj converged was because the pointed
GH convergence only saw the center cylindrical region, but when the whole space is bounded, the whole
space needs to behave in a uniform way.

5.4 Applications of Convergence

In this section we observe the following topological consequence of our convergence results:
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Theorem 5.9 If Xi are locally compact metric spaces that satisfy the loops to infinity property and
converge in the pointed Gromov-Hausdorff sense to a locally compact limit space X then either X
has at least two ends or X has the loops to infinity property.

Proof: By Theorem 4.20, CovSpeccut(Xi) are trivial. So by Theorem 5.5, CovSpeccut(X) must be
trivial. To complete the proof we just apply Theorem 4.21.

One can think of this theorem as the complete version of the theorem in [SoWei1] which says that
compact Gromov-Hausdorff limits of simply connected compact manifolds are simply connected.

Example 5.8 The [SoWei1] theorem is not true for noncompact limits with pointed Gromov-Hausdorff
convergence as can be seen by taking sequences of ellipsoids M2

j which stretch out to a cylinder S1×R

or M2
j × R converging to S1 × R2. Thanks to our new theorem we see that while holes may form in

a limit they cannot be handles.

Example 5.9 Notice if one takes a disk and stretches two points out to infinity then the limit is
a disk with two cusps, which is no longer simply connected. Nor does it has the loops to infinity
property. This is because a loop wrapping once around each cusp is not homotopic to loops approach-
ing infinity. However the fundamental group of the space is generated by elements with the loops to
infinity property.

Example 5.10 Note that one can have compact Mj with π2(Mj) converging to a space with non-
trivial π2. This can be seen by taking Mj diffeomorphic to the plane with warped product metrics

dr2 + f2
j (r)dθ2 (5.47)

where f(r) = r((1−r)2+(1/k)), so that the Gromov-Hausdorff limit as k → ∞ is homoemorphic to a
sphere attached to a plane. So we cannot hope to control higher homotopy, although an investigation
of [ShSo1] reveals a close relationship between the loops to infinity property and the codimension one
integer homology of the space.

5.5 Tangent Cones at Infinity

A complete noncompact space, X , is said to have a tangent cone at infinity if the Gromov-Hausdorff
limit of a sequence of inward rescalings (X/rj , x) with rj → ∞, has a limit in the pointed Gromov-
Hausdorff sense. While this limit space is called a cone, it is not a metric cone except in very special
situations, like when X has nonnegative sectional curvature REF. In fact the tangent cone at infinity
of a manifold need not even be simply connected as can be seen in this well-known example:

Example 5.11 Let M2 be created by taking a cone, smoothing off the tip and adding handles, riH,
at a distance ri from the old tip. We write riH because we are rescaling the handle H by ri, so that
the handles are growing. Then M2/ri converges to a cone with a handle attached at a distance 1
from the tip. If lim ri+1/ri = ∞, then the tangent cone has only one handle, but if lim ri+1/ri = d,
then the tangent cone has infinitely many handles located at {dj : j ∈ Z}, so the tangent cone at
infinity, Y , has locally infinite topological type at its tip. Furthemore Y has no universal cover and
CovSpec(Y ) = CovSpeccut(Y ) have infinitely many elements.

Remark 5.10 Menguy has created similar examples demonstrating that the tangent cone at infinity
of a manifold with nonnegative Ricci curvature can have locally infinite topological type, although
his examples are simply connected because his handles are higher dimensional (c.f. [ShSo2]). In
[SoWei3] we proved the tangent cones at infinity of manifolds with Ricci ≥ 0 have universal covers.

Using our results we can prove
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Theorem 5.11 If X is a locally compact metric space and CovSpeccut(X) is bounded then any
tangent cone at infinity for X has a trivial cut-off covering spectrum.

First note that the following lemma holds

Lemma 5.12 If we rescale a length space X to get a new length space X/r then the elements of the
covering spectrum and cut-off covering spectrum scale proportional to the distance:

CovSpec(X/r) = CovSpec(X)/r (5.48)

and
CovSpeccut(X/r) = CovSpeccut(X)/r. (5.49)

Furthermore, we have

CovSpec
R/r
cut (X/r) = CovSpecR

cut(X)/r. (5.50)

This lemma follows immediately from the definitions.
Proof of Theorem 5.11: If we rescale a space dividing the metric by r then by Lemma 5.12 we
have

CovSpec
R/r
cut (X/r) = CovSpecR

cut(X)/r (5.51)

So applying Proposition 4.15 we have

CovSpeccut(X/r) = CovSpeccut(X/r) ⊂ [0, Max(CovSpec(X))/r] (5.52)

Any tangent cone at infinity, Y , is the Gromov-Hausdorff limit of X/ri with ri → ∞, so by Theo-
rem 5.5, CovSpeccut(Y ) ⊂ {0} and is, thus, trivial.

This proposition implies that the tangent cones at infinity of manifolds with bounded covering
spectra have trivial cutoff covering spectra. However, they need not have trivial covering spectra
even when the manifold has a trivial covering spectrum:

Example 5.12 Let M be the length space constructed by attaching a sequence of widening cylinders
to a plane as follows. Take a flat Euclidean plane and remove disks of radius 2j/4 about the points
(2j , 0) where j = 1, 2, 3.... Now attach standard cylinders of radius 2j/4 and length 4j to each edge.
Then attach the removed disks back on the far side of the cylinders. This creates a simply connected
space with a trivial and thus bounded covering spectrum.

If we rescale M by 1/2j we get a tangent cone at infinity which is not even semilocally simply
connected. It is a plane with disks of radius 2j/4 centered at (2j , 0) removed and half cylinders
attached for all values of j ∈ Z. Its cut-off covering spectrum is clearly still trivial but its covering
spectrum is very large.

Note that without much difficulty, we could smooth M to make it a manifold and still get the
same tangent cone at infinity.

6 Applications with Curvature Bounds

In this section we describe applications to complete noncompact Riemannian manifolds with lower
bounds on their sectional and Ricci curvature and their limit spaces.
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6.1 Sectional Curvature and the Soul Theorem

Cheeger-Gromoll [ChGr] proved that complete manifolds with nonnegative sectional curvature are
diffeomorphic to normal bundles over totally geodesic compact submanifolds called souls. Shara-
futdinov [Sh] then proved there was a distance nonincreasing retraction to the soul: P : M → S.
Perelman [Pe1, Pe2] showed that P is a Riemannian submersion and extended the distance nonin-
creasing retraction to complete Alexandrov’s spaces with nonnegative curvature. Using the distance
nonincreasing retraction we can show that the covering spectrum of these spaces behave exactly like
the covering spectrum of a compact space.

Theorem 6.1 If Mn is a complete noncompact Alexandrov space with nonnegative curvature, then

CovSpec(Mn) = CovSpec(Sk) = CovSpec(T̄R(Sk)) (6.1)

where Sk is a soul and T̄R(S) is the R-closed tubular neighborhood around S.

In light of the above paragraph Theorem 6.1 follows directly from the following theorem which
we also use apply at the end of the paper.

Theorem 6.2 If M has a totally geodesic soul S with a distance nonincreasing retraction P : M →
S then

CovSpec(Mn) = CovSpec(Sk) = CovSpec(T̄R(Sk)). (6.2)

Note that this is significantly stronger than the loops to infinity property which says that curves
are homotopic outward. In fact the curves are homotopic inward to curves in the soul.
Proof: If δ ∈ CovSpec(Mn), then M̃ δ′

6= M̃ δ for all δ′ > δ. Namely π(M, δ) 6= π(M, δ′) for all
δ′ > δ. So for each δ′ > δ, there is γδ′ in π1(M) such that gδ′ is generated by elements lying δ′-balls
of M but not generated by elements lying δ-balls of M . Since P : M → S is distance nonincreasing,
P maps balls of M to the same or smaller size of ball of S. Hence P (γδ′) is generated by elements
lying δ′-balls of S. Since P is a retraction P (γδ′) is freely homotopic to γδ′ so it can not be generated
by elements lying δ-balls of M , therefore not δ-balls of S. Now for each δ′ > δ, we have P (γδ′) is
generated by elements lying δ′-balls of S but not δ-balls of S. This means δ ∈ CovSpec(S).

Conversely, if δ ∈ CovSpec(S), for each δ′ > δ, there is γδ′ in π1(S) such that gδ′ is generated
by elements lying δ′-balls of S but not generated by elements lying δ-balls of S. gδ′ is not generated
by elements lying δ-balls of M either by above argument. Therefore δ ∈ CovSpec(Mn).

Since π1(M
n) = π1(S) = π1(T̄R(Sk)), we have

CovSpec(T̄R(Sk)) ⊂ CovSpec(Sk) and CovSpec(Mn) ⊂ CovSpec(T̄R(Sk)). (6.3)

Hence they are all equal.

6.2 An Almost Soul Theorem

In this section we apply our results to complete noncompact Riemannian manifolds with nonnegative
sectional curvature. To do so we first study sequences of manifolds with sect ≥ −ǫi where ǫi converges
to 0 and prove an almost soul theorem:

Theorem 6.3 If (Xi, xi) are locally compact length spaces converging in the pointed Gromov-Hausdorff
sense to a locally compact length space (Y, y) such that Y is the normal bundle over a totally geodesic
soul with a distance nonincreasing retraction P : Y → S then there exist compact almost-souls
Si ⊂ Xi with

diam(Si) = Di → diam(S) and dXi
(xi, Si) → dY (y, S) (6.4)
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such that for any b > a > 0 and any R2 > R1 > 0 we have

dH(CovSpec(T̄R1
(Si)) ∩ [a, b], CovSpec(T̄R2

(Si)) ∩ [a, b]) → 0 (6.5)

where T̄r(A) denotes the closed tubular neighborhood about A with the induced length metric.

Note that the almost souls constructed here are not totally geodesic but are compact. They are
only soul like in the sense that loops slide toward them, so that the covering spectrum is the same
on two distinct tubular neighborhoods.
Proof: Note that T̄R2

(S) is contained in some large ball BR3
(y), and that there must be an ǫi

almost isometry fi : Bxi
(Ri) → By(R3). Let Si be the closure of the preimage of the soul S ⊂ Y :

Si = Cl(f−1
i (S)). (6.6)

Suppose the theorem is false. Then there exists b > a > 0 and R2 > R1 > 0 and δi ∈ [a, b] such
that

δi ∈ CovSpec(T̄R1
(Si)) \ CovSpec(T̄R2

(Si)) ∪ CovSpec(T̄R1
(Si)) \ CovSpec(T̄R2

(Si)). (6.7)

Since δi ∈ [a, b] a subsequence converges to some δ ∈ [a, b].
By Theorem 8.4 of [SoWei3], applied to T̄R1

(Si) and T̄R2
(Si) which converge to T̄R1

(S) and
T̄R2

(S), we know

δ ∈ CovSpec(T̄R1
(S)) \ CovSpec(T̄R2

(S)) ∪ CovSpec(T̄R1
(S)) \ CovSpec(T̄R2

(S)). (6.8)

However no such δ exists by Theorem 6.2.

The following corollary follows immediately from Theorem 6.3 and Theorem 6.1.

Corollary 6.4 Given any h > 0, any b > a > 0 and any R2 > R1 > 0 there exists ǫ =
ǫ(h, a, b, R1, R2) > 0 sufficiently small that if Mn has sect ≥ −ǫ then there is a compact S ⊂ Mn

such that the Hausdorff distance:

dH(CovSpec(T̄R1
(S)) ∩ [a, b], CovSpec(T̄R2

(S)) ∩ [a, b]) < h. (6.9)

Rescaling this corollary and consulting Theorem 6.3 to locate the almost souls we get:

Corollary 6.5 Given any h, r, D > 0, any b > a > 0 and any R2 > R1 > 0 there exists ǫ =
ǫ(h, a, b, R1, R2) > 0 sufficiently small that if Mn has sect ≥ −1 and p ∈ Mn then there is a
compact S ⊂ Mn with diam(S) ≤ D and d(S, p) < r such that

dH(CovSpec(T̄R1ǫ(S)) ∩ [aǫ, bǫ], CovSpec(T̄R2ǫ(S)) ∩ [aǫ, bǫ]) < hǫ. (6.10)

We can call such sets S satisfying (6.10) subscaled souls and manifolds with this property man-
ifolds with many subscaled souls.

Note that a single space with thinner and thinner cylindrical subsets would satisfy this corollary
but a space with tiny handles would not. A hyperbolic manifold will not have arbitrarily small
handles, but rather either looks locally thick like Euclidean space, or thin like in a cusp where is it
somewhat cylindrical. Intuitively, this corollary is saying manifolds with a uniform lower bound on
sectional curvature have a similar behavior.
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6.3 Nonnegative Ricci Curvature

When a complete noncompact manifold has nonnegative Ricci curvature then it doesn’t always have
a soul. However the first author proved that such a manifold wither has the loops to infinity property
[Defn 4.19] or it is the flat normal bundle over a compact totally geodesic soul [So] [Theorem 11].
An example where the latter occurs is the infinite Moebius strip. Notice that the double cover of
the infinite Moebius strip is a flat cylinder. In fact Theorem 11 of [So] states that a double cover
always splits isometrically when the space fails to have the loops to infinity property. This means
that is is the isometric product of a line with another metric space.

This has profound implications on the cut-off covering spectrum:

Theorem 6.6 Let X be a complete noncompact manifold with Ricci ≥ 0. If CovSpeccut(X) is not
empty then X has a double cover which splits isometrically and X is a flat normal bundle over a
compact totally geodesic soul, in which case X has one element in the covering spectrum and it is
half the length of the shortest closed geodesic which lifts as an open curve to this double cover.

Corollary 6.7 If M is a Riemannian manifold with Ricci curvature strictly positive at one point
and Ricci ≥ 0 everywhere then CovSpeccut(M) = ∅.

Proof of Theorem 6.6: In [So] it is proven that a complete noncompact manifold, Mm, with non-
negative Ricci curvature has the loops to infinity property unless a double cover splits isometrically
and Mm is the flat normal bundle over a compact totally geodesic soul Theorem 7, Theorem 11].

When M has the loops to infinity property, we just apply Theorem 4.20.
When M has a soul S and a split double cover, R×K, there is a collection of loops C which lift

open to this double cover. Each C lifts to a curve of the form (a, b) where a is a loop in R and b is
a loop in, K, the compact double cover of the soul. Note that any curve C is freely homotopic to
the projection C̄ of the loop (0, b) and C̄ is shorter than C.

Let δ0 = inf L(C)/2 = inf L(C̄)/2. Then 2δ0 is the length of the shortest open path in K which
projects to a loop in the soul. So it is positive and is achieved by a closed geodesic γ with represents
some element g ∈ π1(S, γ(0)) ⊂ π1(M, γ(0)).

We claim CovSpeccut(X) = {δ0}.
Given any closed curve σ based at γ(0) either σ lifts to an open path or to a closed loop in the

double cover. If σ lifts as a closed loop to the split double cover, then its lift has the loops to infinity
property, so we can project the homotopy down and see that σ has the loops to infinity property
and will not contribute to the cut-off covering spectrum.

So suppose σ lifts as an open path to X̃δ,R
cut for all values of δ and R. Since the split double cover

is a double cover, σ must be homotopic to γ following a loop which lifts to a closed loop to the
double cover. Since all loops in the split double cover have the loops to infinity property, that loop
must as well. So σ must be δ, R homotopic to γ for any value of δ and R.

Thus γ alone suffices to detect the distinct X̃δ,R
cut . So there is only one element in the R cut-off

covering spectrum for any value of R. This element must be δ0 because γ was the shortest loop in
the class that doesn’t have the loops to infinity property.

6.4 Further Directions

Here we discuss potential applications to manifolds with Ricci ≥ −(n − 1). These applications will
arise by studying limits of manifolds with Ricci ≥ −ǫi.

Let X be the Gromov-Hausdorff limit of complete noncompact Riemannian manifolds Mi with
Ricci(Mi) ≥ −ǫi → 0 Such a length space is very similar to a Riemannian manifold with nonnegative
Ricci curvature. Cheeger and Colding have proven that the splitting theorem holds on such a space
[ChCo1] and the authors have proven that such spaces have universal covers [SoWei2]. Combining
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these facts with the proof of Theorem 7 in [So], the authors proved that X either has the loops to
infinity property or the universal cover splits isometrically [SoWei2][Cor 4.9].

Thus, using the proof of Theorem 6.6, we can conclude the following:

Theorem 6.8 If X is a limit space as described above, then either CovSpeccut(X) is empty or its
universal cover splits isometrically.

Now Theorem 11 in [So], which states that when X doesn’t have the loops to infinity property
then X has a split double cover and X has a compact soul, was never extended. Its proof involves
differentiation. In light of Cheeger’s recent work on differentiability of metric measure spaces, we
conjecture that the full theorem holds:

Conjecture 6.9 If X is a limit space as in the above paragraph, then either X has the loops to
infinity property or it has a split double cover and it is the flat normal bundle over a compact totally
geodesic soul.

If Conjecture 6.9 holds then the proof of Theorem 6.6 extends to that setting and the following
conjecture holds:

Conjecture 6.10 Theorem 6.6 holds for such limit spaces X.

Conjecture 6.10 is of particular interest because it has implications to manifolds with Ricci ≥
−(n − 1). In particular, the application looks something like a Margulis lemma but with distinct
implications:

Conjecture 6.11 Given a complete Riemannian Mn with Ricci ≥ −1 or a Gromov-Hausdorff limit
of such spaces, for all b > a > 0 there exists ρ = ρ(a, b, n) such that

CovSpecρ
cut(M, p) ∩ [aρ, bρ] = ∅ (6.11)

or there is a subscaled soul as in (6.10) near p.

Note that ρ does not depend on the manifold or the basepoint. It is essentially saying that the
manifold looks locally like a manifold with sect ≥ −1 in neighborhoods where loops don’t slide
outward. One might think of this as saying that most small loops on the manifold slide around, and
when you hit a location where they don’t slide there is a kind of twisting effect similar to a Moebius
strip.

Returning from the intuitive to the concrete, we can prove:

Theorem 6.12 Conjecture 6.10 implies Conjecture 6.11

Proof of Theorem 6.12 Suppose (Mi, di) have Ricci ≥ −1 and ρi → 0 with

δiρi ∈ CovSpecρi

cut(Mi, di, pi), (6.12)

where δi ∈ [a, b]. Rescaling Mi by rhoi, Lemma 5.12 says

δi ∈ CovSpec1
cut(Mi, di/ρi, pi). (6.13)

Gromov’s compactness theorem implies that a subsequence of the (Mi, pi, di/ρi) converge to some
(Y, y, d) which satisfies the conditions of Theorem 6.6. Thus CovSpeccut(Y ) = ∅ or a split double
cover.

Taking a further subsequence we can guarantee δi → δ ∈ [a, b]. By Theorem 5.2 (5.8)

δ ∈ CovSpec1
cut(Y, d, y) ⊂ CovSpeccut(Y ). (6.14)

Thus Y has a split double cover and is the flat normal bundle over a compact totally geodesic soul
S.

Finally we apply Theorem 6.3 to Y .
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7 Appendix

As the concept of lower semiclosure does not seem to appear in the literature, we include a brief
exposition here.

Definition 7.1 A lower semiclosed subset of the real line is a set A such that limj→∞aj ∈ A
whenever aj is a decresing sequence of elements of A.

Definition 7.2 The lower semiclosure of a set A, denoted Cllower(A), is the intersection of all
lower semiclosed sets containing A.

Lemma 7.3 The lower semiclosure of A is the union of A and the limits of any decreasing sequence
of aj ∈ A.

Lemma 7.4 If x /∈ A and A is lower semiclosed, then there exists ǫ > 0 such that

[x, x + ǫ) ∩ A = ∅. (7.1)

The following theorem implies that CovSpec(X), CovSpeccut(X), and CovSpecrescaled(X) are
all lower semiclosed subset of (R).

Theorem 7.5 Let Xs be a collection of metric spaces parametrized by a real line, s ∈ (R), such
that whenever s1 < s2 we have Xs1

covers Xs2
. Any set A defined as follows:

A := {s : ∀s′ > sXs′ 6= Xs} (7.2)

then A is lower semiclosed.

Proof: Let sj ∈ A a decreasing sequence converging to s∞. We need to show s∞ ∈ A. Let s′ > s∞.
Then for j sufficiently large, we have s′ > sj . Since sj ∈ A this means Xs′ 6= Xsj

so Xsj
is a

nontrivial cover of Xs′ . And since Xs∞
covers Xsj

, it must be a nontrivial cover of Xs′ as well.

Example 7.1 If Aj are all lower semiclosed sets, the
⋃

j∈N
Aj need not be lower semiclosed. For

example, let Aj = {1 + 1/k : k = 1, 2, ...j}.
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