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Abstract

In this paper we present a proof of a Neumann type maximum principle
for the Laplace operator on compact Riemannian manifolds. A key p oint is
the simple geometric nature of the constant in the a priori estimate of this
maximum principle. In particular, this maximum principle can be applied to
manifolds with Ricci curvature bounded from below and diameter bounded
from above to yield a maximum estimate without dependence on a positive
lower bound for the volume.

1 Introduction

The main purpose of this paper is to present a proof of a Neumann type maximum
principle for the Laplace operator on a closed Riemannian manifold. As a key fea-
ture of this maximum principle, the constant in the maximum estimate depends on
the Riemannian manifold only in terms of the dimension and the volume-normalized
Neumann isoperimetric constant. This allows us to apply it to manifolds with Ricci
curvature bounded from below and diameter bounded from above to obtain a max-
imum principle without dependence on a positive lower bound for the volume. A
special case of this maximum principle, namely Theorem C with Φ = 0 has been be-
lieved to be true and used in [P] for establishing an eigenvalue pinching theorem for
manifolds with positive Ricci curvature. (The accounts in [P] also suggest a belief in a
general version.) But we cannot find any other reference for this maximum principle
(the special case or the general case) in the literature. A corresponding maximum
principle (in various formulations) for the Dirichlet boundary value problem on a do-
main is well-known. But its usual proof, which is an application of Moser iteration
based on the Sobolev inequality, is not suitable for the Neumann type problem of
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this paper for a number of reasons. In particular, the key independence from vol-
ume lower bound mentioned above requires new arguments for our Neumann type
problem. Another obvious difference is that no average of the subsolution appears in
the maximum principle for the Dirichlet boundary value problem, in contrast to the
situation of this paper.

Consider a closed Riemannian manifold (M, g) of dimension n, where g denotes
the metric. Let Lp(M) denote the Lp space of functions on M , Lp(TM) the Lp space
of vector fields on M , and W k,p(M) the W k,p Sobolev space of functions on M . The
Lp norm with respect to g will be denoted by ‖ · ‖p, i.e.

‖f‖p =

(∫
M

|f |p
) 1

p

, ‖Φ‖p =

(∫
M

|Φ|p
) 1

p

(1.1)

for f ∈ Lp(M) and Φ ∈ Lp(TM). (The notation of the volume form of g is often
omitted in this paper.) The following volume-normalized Lp norm ‖ · ‖∗p will play an
important role in this paper:

‖f‖∗p =

(
1

volg(M)

∫
M

|f |p
) 1

p

, ‖Φ‖∗p =

(
1

volg(M)

∫
M

|Φ|p
) 1

p

, (1.2)

where volg(M) denotes the volume of (M, g).
The average of a function u ∈ L1(M) on M will be denoted by uM , i.e.

uM =
1

volg(M)

∫
M

u. (1.3)

For a function u on M we denote its positive part by u+ and its negative part
by u−, i.e. u+ = max{u, 0} and u− = min{u, 0}. The Laplace operator ∆ is the
negative Laplacian, i.e. ∆u = div∇u. Let C∗

I,N(M, g) denote the volume-normalized
Neumann isoperimetric constant, which is defined in terms of the Neumann isoperi-
mentric constant CI,N(M, g), see Section 2.

Theorem A Assume n ≥ 3. Let u be a function in W 1,α(M) with α > n, which
satisfies

∆u ≥ f + div Φ (1.4)

in the weak sense for a measurable function f on M such that f− ∈ Lp(M) and a
vector field Φ ∈ L2p(TM) with p > n

2
, i.e.∫

M

∇u · ∇φ ≤ −
∫

M

fφ +

∫
M

Φ · ∇φ (1.5)
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for all nonnegative φ ∈ W 1,2(M) (equivalently, all nonnegative φ ∈ W 1, α
α−1 (M)).

Then we have

sup
M

u ≤ uM + C(n, p, C∗
N,I(M, g))(‖f−‖∗p + ‖Φ‖∗2p) (1.6)

with a positive constant C(n, p, C∗
N,I(M, g)) depending only on n, p and C∗

N,I(M, g).
This constant depends continuously and increasingly on C∗

N,I(M, g).

The classical strong maximum principle says that u ≡ uM if ∆u ≥ 0 (in the
weak sense). Theorem A includes this as a special corollary. But the main point of
Theorem A lies in the quantitative estimate (1.6) and the simple geometric nature
of the constant C(n, p, C∗

N,I(M, g)) in the estimate. As emphasized above, no other
data from the metric g such as the volume are involved in this constant.

In contrast to traditional estimates of the maximum principle type, the estimate
(1.6) is not scaling invariant. In other words, the estimate obtained with respect to
a rescaled metric and the corresponding rescaled f and Φ differs from the original
estimate. This non-invariace is brought into the estimate by a construction in the
proof of Lemma 4.2, see Remark 3 in Section 4. (For a discussion of the behavior
of the estimate under rescaling of the metric see Remark 4.) Without breaking the
scaling invariance it would be impossible to obtain a maximum estimate in which
the constant depends solely on the dimension n, the exponent p and the volume-
normalized Neumann isoperimetric constant. This is one of the key features of our
arguments. (Scaling invariant maximum estimates can also be derived, see [Y].)

As a consequence of Theorem A and S. Gallot’s estimate of the volume-normalized
Neumann isoperimetric constant in [Ga1] (see Theorem 2.10) we obtain the fol-
lowing result which involves a lower bound for the Ricci curvature and an upper
bound for the diameter. For convenience, we define the diameter rescaled Ricci
curvature of a unit tangent vector v to be R̂ic(v, v) = diamg(M)2Ric(v, v), where

diamg(M) denotes the diameter of (M, g). We set κR̂ic = minv∈TM,|v|=1 R̂ic(v, v) and
κ̂R̂ic = |κ−

R̂ic
| = |min{κR̂ic, 0}|.

Theorem B Assume n ≥ 3. Let u be a function in W 1,α(M) with α > n satisfying

∆u ≥ f + div Φ (1.7)

in the weak sense for a measurable function f such that f− ∈ Lp(M) and a vector
field Φ ∈ L2p(TM) with p > n

2
. Then we have

sup
M

u ≤ uM + C(n, p, κ̂R̂ic, diamg(M))(‖f−‖∗p + ‖Φ‖∗2p). (1.8)

with a positive constant C(n, p, κ̂R̂ic, diamg(M)) depending only on n, p, κ̂R̂ic and the
diameter. This constant depends continuously on its arguments and increasingly on
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κ̂R̂ic and diamg(M).

If we assume an upper bound D for the diameter and a nonpositive lower bound κ
for the Ricci curvature, then we have minM R̂ic ≥ D2κ and C(n, p, κ̂R̂ic, diamg(M)) ≤
C(n, p,D2|κ|, D). Hence the estimates (1.8) can be applied. We state a corollary
for the case of positive Ricci curvature. We formulate it under the assumption
Ric ≥ n− 1, which can always be achieved by rescaling.

Theorem C Assume n ≥ 3 and that the Ricci curvature satisfies Ric ≥ n − 1. Let
u be a function in W 1,α(M) with α > n satisfying

∆u ≥ f + div Φ (1.9)

in the weak sense for a measurable function f on M such that f− ∈ Lp(M) and a
vector field Φ ∈ L2p(TM) with p > n

2
. Then we have

sup
M

u ≤ uM + C(n, p)(‖f‖∗p + ‖Φ‖∗2p) (1.10)

with a positive constant C(n, p) depending only on n and p.

Analogous results hold true if we assume an upper bound for the diameter, and a
lower bound for the Ricci curvature in a suitable integral sense, thanks Gallot’s and
Petersen-Sprouse’s estimates for the Neumann isoperimetric constant in [Ga2] and
[PS]. We omit the obvious statements of those results.

Remark 1 In the above results we restrict to dimensions n ≥ 3. The 2-dimensional
analogues also hold true, see [Y]. We would also like to mention that it is straight-
forward to extend the above results to compact manifolds with boundary under the
Neumann boundary condition. One can also extend the above results to general el-
liptic operators of divergence form, see [Y].

Remark 2 Theorem A is also valid if we replace in the definition of C∗
I,N(M, g)

the Neumann isoperimetric constant CN,I(M, g) by the Poincaré-Sobolev constant
CP,S(M, g) (see Section 2 for its definition). Indeed, it is the Poincaré inequality
(2.3), the Poincaré-Sobolev inequality (2.4) and the Sobolev inequality (2.5) which
are employed in our arguments. The Neumann isoperimetric constant appears in
these inequalities. Obviously, the Poincaré-Sobolev inequality (2.4) can be reformu-
lated in terms of the Poincaré-Sobolev constant. Then the Poincaré inequality (2.3)
and the Sobolev inequality (2.5) follow as corollaries, with the constants suitably
modified. We formulate Theorem A in terms of the Neumann isoperimetric constant
because we consider it to be a more fundamental quantity.
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The proof of Theorem A involves several ingredients. One is Moser iteration based
on the Sobolev inequality. Various versions of this technique have been used in many
situations, but the way it is done in this paper is new, see the proof of Lemma 4.2.
It is in this proof that the scaling invariance is broken, as mentioned above. On the
other hand, from this proof one can see that the technique of Moser iteration alone
cannot lead to a maximum estimate for u − uM in terms of f and Φ. Instead, the
estimate one obtains also depends on the L2 norm of (u − uM)+. Without using
additional tools it seems impossible to go any further. Our strategy for overcoming
this difficulty is to employ the Green function G0 of the Laplace operator. First we
combine Lemma 4.2 with the Poincaré inequality to establish Theorem 4.3 which is
the corresponding maximum principle for solutions (rather than subsolutions). Using
this result we reduce the right hand side of (1.4) to a constant. Then we utilize the
Green function G0 to obtain the desired estimate. Employing the Green function is
crucial for the whole scheme.

There is an additional subtlety here. Usually, maximum principles based on Moser
iteration hold true for all subsolutions u in the Sobolev space W 1,2(M). (This is the
case in Lemma 4.2 (for subsolutions) and Theorem 4.3 (for solutions).) In the sit-
uation of Theorem A (hence also Theorem B and Theorem C), we have to require
u ∈ W 1,α(M) for α > n. This restriction stems from the involvement of the Green
function. Using additional tools, one can extend Theorem A to u ∈ W 1,2(M), pro-
vided that Φ = 0, see [Y]. It remains open whether one can extend the full Theorem
A to u ∈ W 1,2(M). (See also [Y] for a weaker maximum principle which holds true
for all u ∈ W 1,2(M).)

In the above scheme of utilizing the Green function G0, a lower bound for G0 is
needed. In [Si], a lower bound for G0 in terms of κ̂R̂ic, the volume and the diameter
is obtained. This lower bound is sufficient for establishing the estimate (1.8) in
Theorem B and the estimate (1.10) in Theorem C, but is not suitable for establishing
the general estimate (1.6) in Theorem A. Following the arguments in [CL] and [Si],
we derive in Section 3 a lower bound for G0 which is proportional to volg(M)−1 with
a factor given in terms of the volume-normalized Neumann isoperimetric constant.
This form of lower bound is exactly what we need for establishing Theorem A. It is
also of independent interest.

We would like to mention that Theorem C is sufficient for the purpose of [P]
because all involved functions in [P] are at least Lipschitz continuous. We would
also like to mention that Theorem A (or Theorem 4.2 ) leads to an estimate for the
Lp norm of the Green function G0 for each 0 < p < n

n−2
(thanks an observation by

Xiaodong Wang) and an estimate for the Lq norm of the gradient of G0 for each
0 < q < n

n−1
. This will be presented elsewhere.

We would like to thank Xiaodong Wang for bringing the question regarding the
validity of Theorem C (with Φ = 0) to our attention. The first named author would
also like to acknowledge many helpful discussions with Xiaodong Wang, and also with
Jian Song.
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2 The Neumann Isoperimetric Constant

Consider a closed Riemannian manifold (M, g) of dimension n. The Neumann isoperi-
metric constant of (M, g) is defined to be

CN,I(M, g) = sup{vol(Ω)
n−1

n

A(∂Ω)
: Ω ⊂ M is a C1 domain , volg(Ω) ≤ 1

2
volg(M)}. (2.1)

The Poincaré-Sobolev constant (for the exponent 2) of (M, g) is defined to be

CP,S(M, g) = sup{‖u− uM‖ 2n
n−2

: u ∈ C1(M), ‖∇u‖2 = 1}. (2.2)

We have the following Poincaré inequality, Poincaré-Sobolev inequality and Sobolev
inequality. See [Y] for their proofs. (For these inequalities with somewhat different
constants see [Si].) The Poincaré-Sobolev inequality (2.4) gives an upper bound of
the Poincaré-Sobolev constant in terms of the Neumann isoperimetric constant.

Lemma 2.1 There hold for all u ∈ W 1,2(M)

‖u− uM‖2 ≤
2(n− 1)

n− 2
CN,I(M, g)volg(M)

1
n‖∇u‖2, (2.3)

‖u− uM‖ 2n
n−2

≤ 4(n− 1)

n− 2
CN,I(M, g)‖∇u‖2, (2.4)

and

‖u‖ 2n
n−2

≤ 2(n− 1)

n− 2
CN,I(M, g)‖∇u‖2 +

√
2

volg(M)
1
n

‖u‖2, (2.5)

whenever n ≥ 3.

It is convenient to use the following volume-normalized Neumann isoperimetric
constant:

C∗
I,N(M, g) = CN,I(M, g)volg(M)

1
n , (2.6)

which was first introduced by J. Cheeger in his study of the first eigenvalue of the
Laplace operator [Che]. Note that CI,N(M, g) is scaling invariant, while C∗

I,M(M, g)
has the same scaling weight as the n-th root of the volume, or the diameter. In terms
of C∗

I,N(M, g) and the volume-normalized Lp norms, Lemma 2.1 can be reformulated
as follows.
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Lemma 2.2 There hold for all u ∈ W 1,2(M)

‖u− uM‖∗2 ≤
2(n− 1)

n− 2
C∗

N,I(M, g)‖∇u‖∗2, (2.7)

‖u− uM‖∗2n
n−2

≤ 4(n− 1)

n− 2
C∗

N,I(M, g)‖∇u‖∗2, (2.8)

and

‖u‖∗2n
n−2

≤ 2(n− 1)

n− 2
C∗

N,I(M, g)‖∇u‖∗2 +
√

2‖u‖∗2, (2.9)

whenever n ≥ 3.

The following estimate of the volume-normalized Neumann isoperimetric constant
easily follows from S. Gallot’s corresponding estimate in [Ga1].

Theorem 2.3 There holds

C∗
N,I(g,M) ≤ C(n, κ̂R̂ic)diamg(M), (2.10)

where C(n, κ̂R̂ic) is a positive constant depending only on n and κ̂R̂ic. It depends
continuously and increasingly on κ̂R̂ic.

Proof. We rescale to make the diameter equal one. Then we apply the estimate for
the Neumann isoperimetric constant in [Ga1]. Expressing the estimate in terms of
the original metric we arrive at (2.10).

3 The Green Function

Consider a closed Riemannian manifold (M, g) of dimension n as before. Let G0(x, y)
be the unique Green function of the Laplace operator ∆ such that

∫
M

G0(x, y)dy = 0
for all x ∈ M , where dy denotes the volume form of g. Thus we have

u(x) = uM −
∫

M

G0(x, y)∆yu(y)dy (3.1)

for all u ∈ C∞(M), where ∆y means ∆ with the subscript indicating the argument.
(Similar notations will be used below.) G0(x, y) is smooth away from x = y. More-
over, G0(x, y) = G0(y, x) for all x, y ∈ M, x 6= y. In this section we present some
basic facts about G0 and derive a lower bound of G0 in terms of CN,I(M, g) and the
volume.
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Lemma 3.1 Assume n ≥ 3. Then there holds

G0(x, ·) ∈ W 1,β(M) (3.2)

for all 0 < β < n
n−1

.

Proof. By e.g. [Theorem 4.17, A] we have |G0(x, y)| ≤ Cd(x, y)2−n and |∇yG0(x, y)| ≤
Cd(x, y)1−n for all x, y ∈ M, x 6= y and a positive constant C depending on g.
Consequently, we have

G0(x, ·) ∈ Lq1(M), ∇yG0(x, y) ∈ Lq2(M) (3.3)

for all 0 < q1 < n
n−2

and all 0 < q2 < n
n−1

. Then it follows easily that G(x, ·) ∈
W 1,p(M) for all x ∈ M and 0 < q < n

n−1
. Indeed, we have for an arbitary x ∈ M and

small ε > 0∫
M−Bε(x)

G0(x, y) divyΦ(y)dy = −
∫

M−Bε(x)

∇yG0(x, y) · Φ(y)dy

+

∫
∂Bε(x)

G0(x, y)Φ(y) · ν(y) (3.4)

for all smooth vector fields Φ on M , where ν denotes the inward unit normal of the
geodesic sphere ∂Bε(x). Since |G0(x, y)| ≤ Cε2−n on ∂Bε(x) we can let ε → 0 to
arrive at ∫

M

G0(x, y) divyΦ(y)dy = −
∫

M

∇yG0(x, y) · Φ(y)dy. (3.5)

By (3.3) and (3.5) we infer that G(x, ·) ∈ W 1,q(M) for all 0 < q < n
n−1

(M) and that
(3.5) holds true for all Φ ∈ W 1,p(TM) whenever p > n, where W 1,p(TM) denotes the
W 1,p Sobolev space of vector fields on M .

Lemma 3.2 Let u ∈ W 1,q(M) with q > n. Then

u(x) = uM +

∫
M

∇yG0(x, y) · ∇yu(y)dy (3.6)

holds true for a.e. x ∈ M .

Proof. By Lemma 3.1, we can integrate (3.1) by parts to deduce (3.6) for all u ∈
C∞(M). Applying Lemma 3.1 and a limiting argument we then conclude that (3.6)
holds true for each u ∈ W 1,q(M) a.e. as long as q > n.
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Next let H(x, y, t) be the heat kernel for ∆, i.e.

∂

∂t
H(x, y, t) = ∆yH(x, y, t) (3.7)

for t > 0 and

lim
t→0

H(x, y, t) = δx (3.8)

in the sense of distributions, where δx is the Dirac δ-function with center x. H is sym-
metric in x, y and smooth away from x = y, t = 0. We have the basic representation
formula

u(x, t) =

∫ t

0

dτ

∫
M

H(x, y, t− τ)(
∂

∂τ
−∆y)u(y, τ)dy +

∫
M

H(x, y, t)u(y, 0)dy (3.9)

for all smooth functions u and t > 0. Note that H(x, y, t) > 0 for t > 0 and all
x, y ∈ M . We set

G(x, y, t) = H(x, y, t)− 1

volg(M)
. (3.10)

Choosing u(x, t) ≡ 1 in (3.9) we deduce∫
M

H(x, y, t)dy = 1 (3.11)

and hence ∫
M

G(x, y, t)dy = 0 (3.12)

for all x ∈ M and t > 0.

Lemma 3.3 Assume n ≥ 3. Then there holds

G0(x, y) =

∫ ∞

0

G(x, y, t)dt. (3.13)

Proof. We have

|H(x, y, t)− 1

volg(M)
| ≤ Ct−

n
2 (3.14)
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for a certain positive constant C depending on g (for a geometric estimate of C see
[CL]). On the other hand, we have the inequality (see e.g. [Proposition VII.3.5, Ch])

|H(x, y, t)

H(x, y, t)
− 1| ≤ Cd(x, y) (3.15)

for all t > 0 and x, y ∈ M with d(x, y) ≤ 1
4
injg(M), where C is a positive constant

depending on g, injg(M) denotes the injectivity radius of (M, g), and

H(x, y, t) = (4πt)−
n
2 e−

d(x,y)2

4t . (3.16)

By (3.9) we have for a smooth function u(x)

u(x) = −
∫ t

0

dτ

∫
M

H(x, y, t− τ)∆yu(y)dy +

∫
M

H(x, y, t)u(y)dy

= −
∫ t

0

dτ

∫
M

G(x, y, t− τ)∆yu(y)dy +

∫
M

G(x, y, t)u(y)dy + uM

= −
∫ t

0

ds

∫
M

G(x, y, s)∆yu(y)dy +

∫
M

G(x, y, t)u(y)dy + uM (3.17)

By (3.14) and (3.15) we can let t →∞ in (3.17) to obtain

u(x) = −
∫

M

(

∫ ∞

0

G(x, y, s)ds)∆yu(y)dy + uM . (3.18)

On the other hand, by (3.12) we deduce∫
M

(

∫ ∞

0

G(x, y, s)ds)dy = 0 (3.19)

for all x ∈ M . We conclude that (3.13) holds true.

Lemma 3.4 There holds

G(x, y, t + s) =

∫
M

G(x, z, s)G(z, y, t)dz (3.20)

for all x, y ∈ M and t > 0, s > 0, where dz denotes the volume form of g with z ∈ M
as the argument. In particular, we have

G(x, x, t) =

∫
M

G(x, y,
t

2
)2dy (3.21)

and it follows that G(x, x, t) > 0 for all x ∈ M and t > 0.
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Proof. Note that G(x, y, t) satisfies the heat equation

∂

∂t
G(x, y, t) = ∆yG(x, y, t) = ∆xG(x, y, t). (3.22)

Choosing u(x, t) = G(x, y, t + s) in (3.9) for each fixed y we deduce, on account of
(3.22) and (3.12)

G(x, y, t + s) =

∫
M

H(x, z, t)G(z, y, s)dz =

∫
M

G(x, z, t)G(z, y, s)dz. (3.23)

Switching t with s we arrive at the desired equation (3.20).
The formula (3.21) follows immediately and hence G(x, x, t) ≥ 0. If G(x, x, t0) = 0

for some x and t0 > 0, then (3.21) implies that G(x, y, t0
2
) = 0 for all y ∈ M . Then

G(x, y, t) = 0 for all y ∈ M and t ≥ t0
2
, because G(x, y, t) satisfies the heat equation.

It follow that H(x, y, t) = volg(M)−1 for all y ∈ M and t ≥ t0
2
. This contradicts (3.9)

as is easy to see. We conclude that G(x, x, t) > 0 for all x ∈ M and t > 0.

Theorem 3.5 Assume n ≥ 3. Then there holds

G0(x, y) ≥ −C0(n)C∗
I,N(M, g)2volg(M)−1 (3.24)

for all x, y ∈ M, x 6= y, where

C0(n) =
8n2(n− 1)2

(n− 2)3

(
n− 2

2

) 4
n

. (3.25)

Proof. This follows from the arguments in [CL] and [Si] with some modification. By
the rescaling invariance of (3.24) we can assume volg(M) = 1. Differentiating the
equation (3.20), setting y = x and replacing t and s by t

2
we deduce for t > 0

∂G

∂t
(x, x, t) =

∫
M

∂G

∂t
(x, z,

t

2
)G(x, z,

t

2
)dz =

∫
M

(∆zG(x, z,
t

2
))G(x, z,

t

2
)dz. (3.26)

We integrate (3.26) by parts to derive

∂G

∂t
(x, x, t) = −

∫
M

|∇zG(x, z,
t

2
)|2dz. (3.27)

Applying the Poincaré-Sobolev inequality (2.4) we then obtain

−∂G

∂t
(x, x, t) ≥

(
4(n− 1)

n− 2
CN,I(M, g)

)−2(∫
M

|G(x, z,
t

2
)|

2n
n−2 dz

)n−2
n

. (3.28)
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By Hölder’s inequality we have(∫
M

|G(x, z,
t

2
)|2dz

)n+2
n

=

(∫
M

|G(x, z,
t

2
)|

4
n+2 |G(x, z,

t

2
)|

2n
n+2 dz

)n+2
n

≤
(∫

M

|G(x, z,
t

2
)|

2n
n−2 dz

)n−2
n
(∫

M

|G(x, z,
t

2
)|dz

) 4
n

.

(3.29)

Next observe that
∫

M
|G(x, z, t)|dz ≤ 2 because H(x, z, t) > 0. Hence we arrive at

−∂G

∂t
(x, x, t) ≥ C

(∫
M

|G(x, z,
t

2
)|2dz

)n+2
n

= CG(x, x, t)
n+2

n , (3.30)

where

C =

(
4(n− 1)

n− 2
CN,I(M, g)

)−2

. (3.31)

Integrating (3.30) we derive

G(x, x, t)−
2
n ≥ G(x, x, s)−

2
n +

n

2
C(t− s) (3.32)

for t > s > 0. (Note that G(x, x, t) > 0 by Lemma 3.4.) Letting s → 0 we infer

G(x, x, t)−
2
n ≥ n

2
Ct, and hence G(x, x, t) ≤ C−n

2 (n
2
)

n
2 t−

n
2 . Now we have by Lemma

3.4

|G(x, y, t)| = |
∫

M

G(x, z,
t

2
)G(z, y,

t

2
)dz|

≤
(∫

M

G(x, z,
t

2
)2dz

) 1
2
(∫

M

G(z, y,
t

2
)2dz

) 1
2

= G(x, x,
t

2
)

1
2 G(y, y,

t

2
)

1
2 ≤ C−n

2 (
n

2
)

n
2 t−

n
2 . (3.33)

Since H(x, y, t) > 0 we have G(x, y, t) ≥ − 1
volg(M)

= −1. We deduce for each
τ > 0

G(x, y) =

∫ ∞

0

G(x, y, t)dt ≥ −
∫ τ

0

dt−
∫ ∞

τ

C−n
2 (

n

2
)

n
2 t−

n
2

= −τ − n− 2

2
C−n

2 (
n

2
)

n
2 τ−

n−2
2 = −τ − C1τ

−n−2
2 , (3.34)

where C1 = n−2
2

C−n
2 (n

2
)

n
2 . The maximum of the function τ + C1τ

−n−2
2 is achieved at

τ = (C1(n− 2)/2)2/n and hence equals

n

n− 2
(C1

n− 2

2
)

2
n =

8n2(n− 1)2

(n− 2)3

(
n− 2

2

) 4
n

CI,N(M, g)2.
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we arive at

G(x, y) ≥ −8n2(n− 1)2

(n− 2)3

(
n− 2

2

) 4
n

CI,N(M, g)2, (3.35)

which leads to (3.24) by rescaling.

4 Neumann Type Maximum Principles

In this section we consider a fixed closed Riemannian manifold (M, g) of dimension
n ≥ 3 as before.

Lemma 4.1 1) There hold for f1 ∈ Lp(M) and f2 ∈ Lq(M) with p−1 + q−1 = 1

‖f1f2‖∗1 ≤ ‖f1‖∗p · ‖f2‖∗q. (4.1)

2) There holds for p ≥ q ≥ 1 and f ∈ Lp(M)

‖f‖∗q ≤ ‖f‖∗p. (4.2)

Proof. These follow straightforwardly from the classical Hölder inequality.

Lemma 4.2 Let n ≥ 3. Assume that u ∈ W 1,2(M) satisfies

∆u ≥ f + div Φ (4.3)

in the weak sense, i.e.∫
M

∇u · ∇φ ≤ −
∫

M

fφ +

∫
M

Φ · ∇φ (4.4)

for all nonnegative φ ∈ W 1,2(M), where f is a measurable function on M such that
f− ∈ Lp(M), and Φ ∈ L2p(TM), with p > n

2
. Then we have

sup
M

(u− λ) ≤ AC1(‖f−‖∗p + ‖Φ‖∗2p)

+A(C1 +
√

2)‖(u− λ)+‖∗2 (4.5)

for each λ ∈ R, where A and C1 are positive numbers depending only on n, p and
C∗

N,I(M, g). Their explicit values are given in the proof below.

13



Proof. The arguments here are inspired by some arguments in [GT]. A special new
feature in our argument is the use of the volume-normalized isoperimetric constant
(or Sobolev constant) and the volume-normalized Lp norms. We set

a = ‖f−‖∗p + ‖Φ‖∗2p. (4.6)

Then we set b = a if a > 0 and b = 1 if a = 0. For L > |λ| we set w = min{(u −
λ)+, L} + b. Then w ∈ W 1,2(M) and is bounded. It follows that wγ ∈ W 1,2(M) for
γ ≥ 1. Moreover, we have ∇w = 0 if u ≥ λ + L, ∇w = ∇u if λ < u < L + λ, and
∇w = 0 if u ≤ λ. Choosing φ = wγ(VolM)−1 with VolM = volg(M) in (4.4) we
obtain

γ

VolM

∫
M

|∇w|2wγ−1 ≤ − 1

VolM

∫
M

fwγ +
γ

VolM

∫
M

wγ−1Φ · ∇w

≤ 1

VolM

∫
M

|f−|wγ +
γ

VolM

∫
M

wγ−1Φ · ∇w. (4.7)

First we choose γ = 1 to deduce

‖∇w‖∗22 ≤ ‖f−w‖∗1 + ‖Φ · ∇w‖∗1
≤ 1

2
‖f−‖∗22 +

1

2
‖w‖∗22 +

1

2
‖Φ‖∗22 +

1

2
‖∇w‖∗22 , (4.8)

where we have used Lemma 4.1. It follows that

‖∇w‖∗22 ≤ ‖f−‖∗22 + ‖Φ‖∗22 + ‖w‖∗22 ≤ ‖f−‖∗2p + ‖Φ‖∗22p + ‖w‖∗22 , (4.9)

where the second inequality follows from Lemma 4.1. Applying the Sobolev inequality
(2.9) we then deduce

‖w‖∗2n
n−2

≤ 2(n− 1)

n− 2
C∗

N,I(M, g)‖∇w‖∗2 +
√

2‖w‖∗2

≤ C1(‖f−‖∗p + ‖Φ‖∗2p) + (C1 +
√

2)‖w‖∗2, (4.10)

where C1 = 2(n−1)
n−2

C∗
N,I(M, g).

Next we consider general γ ≥ 1. We deduce

γ

VolM

∫
M

|∇w|2wγ−1 ≤ 1

bVol(M)

∫
M

|f−|wγ+1 +
γ

bVol(M)

∫
M

wγ|Φ||∇w|

≤ 1

b
‖f−wγ+1‖∗1 +

γ

2
‖|∇w|2wγ−1‖∗1 +

γ

2b2
‖wγ+1|Φ|2‖∗1. (4.11)

It follows that, on account of Lemma 4.1
γ

2
‖|∇w|2wγ−1‖∗1

≤ 1

b
‖|f−wγ+1‖∗1 +

γ

2b2
‖wγ+1|Φ|2‖∗1

≤ 1

b
‖f−‖∗p · ‖w‖

∗(γ+1)

(γ+1) p
p−1

+
γ

2b2
‖w‖∗(γ+1)

(γ+1) p
p−1

· ‖Φ‖∗22p

≤ ‖w‖∗(γ+1)

(γ+1) p
p−1

+
γ

2
‖w‖∗(γ+1)

(γ+1) p
p−1

. (4.12)
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It follows that

‖∇w
γ+1
2 ‖∗22 ≤ (γ + 2)(γ + 1)2

4γ
‖w‖∗(γ+1)

(γ+1) p
p−1

. (4.13)

Now we apply the Sobolev inequality (2.9) and (4.13) to deduce

‖w‖∗
γ+1
2

(γ+1) n
n−2

= ‖w
γ+1
2 ‖∗2n

n−2
≤ Aγ‖w‖

∗ γ+1
2

(γ+1) p
p−1

+
√

2‖w
γ+1
2 ‖∗2

= Aγ‖w‖
∗ γ+1

2

(γ+1) p
p−1

+
√

2‖w‖∗
γ+1
2

γ+1

≤ (Aγ +
√

2)‖w‖∗
γ+1
2

(γ+1) p
p−1

, (4.14)

where

Aγ = C∗
N,I(M, g)

(n− 1)(γ + 1)

n− 2

√
γ + 2

γ
. (4.15)

Consequently, we obtain

‖w‖∗(γ+1) n
n−2

≤ (Aγ +
√

2)
2

γ+1‖w‖∗(γ+1) p
p−1

. (4.16)

Replacing γ + 1 by γ ≥ 2 we infer

‖w‖∗γ n
n−2

≤ (Aγ−1 +
√

2)
2
γ ‖w‖∗γ p

p−1
. (4.17)

Now we choose γ0 = 1 + n(p−2)+2p
(n−2)p

and γk = γk−1
n(p−1)
(n−2)p

for k ≥ 1, i.e. γk =

γ0(
n(p−1)
(n−2)p

)k. Since p > n
2
, we have γ0 > 2 and n(p−1)

(n−2)p
> 1. We also have γ0

p
p−1

= 2n
n−2

.
We deduce

‖w‖∗γk
≤

( ∏
1≤i≤k

(Aγi−1 +
√

2)
2
γi

)
‖w‖∗2n

n−2
. (4.18)

Since n(p−1)
(n−2)p

> 1, the product
∏

1≤i<∞
(Aγi−1 +

√
2)

2
γi converges. We denote its value by

A. Letting k →∞ we infer, on account of (4.10)

‖w‖∞ ≤ A‖w‖∗2n
n−2

≤ AC1(‖f−‖∗p + ‖Φ‖∗2p) + A(C1 +
√

2)‖w‖∗2. (4.19)

Letting L →∞ we then arrive at (4.5).
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Remark 3 An important point in the above proof is to break the scaling invariance.
Basically, the construction of the function w is not scaling invariant. More precisely,
if g is transformed to ḡ = αg for a positive constant α, then (4.3) is tranformed to

∆ḡu ≥ f̄ + divΦ̄, (4.20)

where f̄ = α−1f and Φ̄ = α−1Φ. We have

‖f̄‖∗p,ḡ + ‖Φ̄‖∗2p,ḡ = α−1(‖f̄‖∗p + ‖Φ̄‖∗2p). (4.21)

It follows that a and hence b are not scaling invariant. The fact that the estimate (4.5)
is not scaling invariant is a result of this. This unconventional feature is needed for
our purpose of controlling the constants in the estimates in terms of C∗

I,N(M, g) alone.

Remark 4 Since the estimate (4.5) is not scaling invariant, one may wonder what
happens to it if one lets the above scaling factor α go to 0 or ∞. The answer to
this question is simple: the estimate deteriorates in the process. Indeed, as α → 0,
the factor AC1 in the estimate converges to a positive constant depending only on
the dimension, but (the transformed) ‖f‖∗p + ‖Φ‖∗2p approaches ∞. As α →∞, AC1

approaches ∞ and ‖f‖∗p + ‖Φ‖∗2p approaches 0, but the former has more weight than
the latter. On the other hand, the non-invariance of the estimate allows us to vary
α to obtain the optimal estimate. We do not pursue this in this paper because it is
not needed for our main purpose.

The same question can be asked about the estimate in Theorem A. The answer is
obviously the same.

Theorem 4.3 Let n ≥ 3. Assume that u ∈ W 1,2(M), f ∈ Lp(M) and Φ ∈ L2p(TM)
for some p > n

2
, which satisfy

∆u = f + div Φ (4.22)

in the weak sense, i.e.∫
M

∇u · ∇φ = −
∫

M

fφ +

∫
M

Φ · ∇φ (4.23)

for all φ ∈ W 1,2(M). Then we have

sup
M

|u− uM | ≤ C2(‖f‖∗p + ‖Φ‖∗2p), (4.24)

where C2 = AC1

[
1 + 2 max{C1, 1}(C1 +

√
2)
]

with A and C1 being from Lemma 4.2.
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Proof. Choosing φ = (u−uM)(VolM)−1 in (4.23) we deduce by applying Lemma 4.1,
as in (4.8) and (4.9)

1

Vol(M)

∫
M

|∇u|2 = − 1

Vol(M)

∫
M

f(u− uM) +
1

Vol(M)

∫
M

Φ · (u− uM)

≤ ‖f‖∗2 · ‖u− uM‖∗2 + ‖Φ‖∗2 · ‖∇u‖∗2
≤ ‖f‖∗p · ‖u− uM‖2 + ‖Φ‖∗2p · ‖∇u‖2

≤ ‖f‖∗p · ‖u− uM‖∗2 +
1

2
‖Φ‖∗22p +

1

2
‖∇u‖∗22 . (4.25)

Hence

‖∇u‖∗22 ≤ 2‖f‖∗p · ‖u− uM‖∗2 + ‖Φ‖∗22p. (4.26)

Combining this with the Poincaré inequality (2.7) we then obtain

‖u− uM‖∗2 ≤ 2(n− 1)

n− 2
C∗

N,I(M, g)
(√

2‖f‖∗
1
2

p · ‖u− uM‖
∗ 1

2
2 + ‖Φ‖∗2p

)
≤ 1

2
‖u− uM‖∗2 + C2

1‖f‖∗p + C1‖Φ‖∗2p, (4.27)

where C1 = 2(n−1)
n−2

C∗
N,I(M, g) as before. It follows that

‖u− uM‖∗2 ≤ 2C2
1‖f‖∗p + 2C1‖Φ‖∗2p ≤ 2 max{C2

1 , C1}(‖f‖∗p + ‖Φ‖∗2p). (4.28)

Combining (4.5) with λ = uM and (4.28) we then arrive at

sup
M

(u− uM) ≤ C2(‖f‖∗p + ‖Φ‖∗2p). (4.29)

Replacing u by −u we obtain

inf
M

(u− uM) ≥ −C2(‖f‖∗p + ‖Φ‖∗2p). (4.30)

The estimate (4.24) follows.

Proof of Theorem A

Replacing f by f− we can assume f ≤ 0. There is a unique weak solution
v ∈ W 1,2p(M) of the equation

∆v = f − fM + div Φ (4.31)

with vM = 0. Indeed, we can minimize the functional

F (v) =

∫
M

(|∇v|2 − (f − fM)v − Φ · ∇v) (4.32)
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for v ∈ W 1,2(M) under the constraint vM = 0. By the Hölder inequality and the
Poincaré inequality (2.3) we have

F (v) ≥ c‖v‖2
1,2 − C(‖f − fM‖2

p + ‖Φ‖2
2p) (4.33)

for some positive constants c and C, where ‖v‖1,2 denotes the W 1,2 norm of v. Hence
a minimizer v exists, which is a desired solution of (4.31). Its uniqueness follows
from Theorem 4.3. The property v ∈ W 1,2p(M) follows from the regularity theory for
elliptic operators in divergence form. By Theorem 4.3 we have

sup
M

v ≤ C2(‖f − fM‖∗p + ‖Φ‖∗2p) ≤ C2(2‖f‖∗p + ‖Φ‖∗2p). (4.34)

We set w = u − v. Then we have w ∈ W 1,q(M) with q = min{2p, α} > n. There
holds

∆w = ∆u−∆v ≥ fM (4.35)

in the weak sense, i.e. ∫
M

∇w · ∇φ ≤ −fM

∫
M

φ (4.36)

for all nonnegative φ ∈ W 1, q
q−1 (M). Now we apply (3.6) to w to deduce

w(x) = wM +

∫
M

∇yG0(x, y) · ∇yw(y)dy (4.37)

for a.e. x ∈ M . Set σ = infx 6=y G0(x, y). By (3.24) there holds

σ ≥ −C0(n)C∗
I,N(M, g)2volg(M)−1. (4.38)

Next we set

G(x, y) = G0(x, y)− σ. (4.39)

We have G(x, y) ≥ 0 and

w(x) = wM +

∫
M

∇yG(x, y) · ∇yw(y)dy (4.40)

for a.e. x ∈ M . By Lemma 3.1 and the fact q
q−1

< n
n−1

, (4.36) holds true with

φ = G(x, ·) for each given x ∈ M , i.e.∫
M

∇yG(x, y) · ∇ywdy ≤ −fM

∫
M

G(x, y)dy. (4.41)
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We then deduce

w(x)− wM ≤ −fM

∫
M

G(x, y)dy

= |fM |(
∫

M

G0(x, y)dy)− σvolg(M))

= −σvolg(M)|fM |
≤ C0(n)C∗

I,N(M, g)2|fM | ≤ C0(n)C∗
I,N(M, g)2‖f‖∗1

≤ C0(n)C∗
I,N(M, g)2‖f‖∗p (4.42)

for a.e. x ∈ M . Since wM = uM , combining (4.34) and (4.42) yields

u(x) ≤ uM + (C0(n)C∗
I,N(M, g) + 2C2)‖f‖∗p + C2‖Φ‖∗2p (4.43)

for a.e. x ∈ M . We arrive at (1.6) (note that supM u means the essential supremum).

Proof of Theorem B

The estimate (1.8) follows straightforwardly from Theorem A and Theorem 2.10.

Proof of Theorem C

We have κ̂R̂ic = 0. By Bonnet-Myers Theorem we have diamg(M) ≤ π. Hence
Theorem B implies

u(x) ≤ uM + C(n, p, 0, π)(‖f−‖∗p + ‖Φ‖∗2p).
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