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ABSTRACT. We derive a uniform bound for the total betti number of a closed manifold 
in terms ofa Ricci curvature lower bound, a conjugate radius lower bound and a diameter 
upper bound. The result is based on an angle version of Toponogov comparison estimate 
for small triangles in a complete manifold with a Ricci curvature lower bound. We also 
give a uniform estimate on the generators of the fundamental group and prove a fibration 
theorem in this setting. 

1. Introduct ion  

Let M be a compact Riemannian manifold of dimension n. In [G 1 ] Gromov proved the following 
celebrated result for manifolds with lower sectional curvature bound. 

T h e o r e m  1.1 (Gromov) .  Given n, D > 0, H, and afield F, if 

KM > H, diam(M") < D,  

then 

y~bi(M"; F) < C(n, HD2). (].l) 

For manifolds with just Ricci curvature bounded below Gromov showed that (see [GLP]) if 
RiCM >_ H,  diam(M") < D, then b l (M;  R) < C(n, HD2). For higher betti numbers this 
estimate does not hold anymore (see, e.g., [SY]). Recently Perelman [PI ] showed that the estimate 

( 1.1 ) is not valid even with an additional lower bound on volume. (Note that in this case the manifolds 

cannot collapse.) 
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For the class of manifolds M" satisfying 

RiCM > (n -- I )H ,  conjugate radius 

we have the following estimate for betti numbers. 

> r0, diam(M) < D,  (1.2) 

Theorem 1.2 (Un i fo rm betti number estimate). For the class o f  manifolds M"  satisfying 

(1.2), we have 

~ b i ( M  '') <_ C ( n ,  H,  r0, D).  
i 

R e m a r k .  The class of manifolds satisfying (1.2) could have infinitely many different homo- 

topy types, e.g., the space forms, 

We also have 

Theorem 1.3. For the class o f  manifold M" satisfying (1.2), the fundamental group can be 

generated by s < s (n, H,  r0, D)  elements, where s (n, H,  ro, D)  is a constant depending only on 

n , H ,  ro, D. 

Theorem 1.4. Given n, i0 > 0, ro > 0, there exists a positive number e(n,  i0, r0) such 

that i fcompletemanifolds M" ,  N m satisfying RicM > --1, conjM > ro, IKNI _< 1, injN > io and 

d14(M, N )  < e(n ,  io, ro), then there exsits a fibration f :  M ~ N.  

For p,  q E M letep.q(X) = d ( p ,  x )  + d ( q ,  x )  - d ( p ,  q),  We have 

P ropos i t ion  1.5. There exists an e(n,  H,  ro, 3) > 0 such that for  any ~ > 0 if a manifold 

M ~ has a metric with Ric > H, conjugate radius > ro, and for some  p ,  q C M ep.q(X) <_ E for  

all x, then any x E M - {B~(p) U B~(q)} is a regular point for  p as well as for  q. 

Assuming ~l (M)  is finite and with additional upper bound on sectional curvature, it is proved 
in [PZ] that the manifold M n is a twisted sphere when n :/: 3, and M or a double cover of M is a 

lens space when n = 3. 

Combining Proposition 1.5 with a result in [GP] immediately gives 

C o r o l l a r y  1.6. There exists an e(n,  r0, 3) > 0 such that for  any ~ > 0 if a manifold 

M" has a metric with Ric > (n -- l), conjugate radius >_ ro, and diam > 7r - ~, then any 

x ~ M - {B~(p) U B~(q)} is a regularpoint,fi~r p as well a s f o r q ,  where p , q  C M with 

IPq] :- diatoM. 
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Theorem 1.2 and 1.4 are not true without the conjugate radius lower bound (see [SY, A2]). But 
the results all hold with sectional curvature lower bound instead of conjugate radius lower bound (see 
[GI], [Y], [GP]). In this case Theorem 1.4 can be strengthened so that f is an almost Riemannian 
submersion and the fibre is a manifold of almost nonnegative sectional curvature (see [Y] for detail, 

and also [F], [CFG]); Corollary 1.6 can be strengthened so that it is true for 3 = 0, proving that M" 

is a twisted sphere (see [P2]). So far the only natural way to obtain conjugate radius lower bound is 
via sectional curvature upper bound. But one can easily construct examples of manifolds satisfying 

(!.2) where the sectional curvatures are not uniformly bounded. 

The class of manifolds satisfying (1.2) could collapse, e.g., the space forms. In the noncollapsing 
case (i.e., with an additional lower bound on the volume), this class is well understood. In fact, by 
[CGT] the injectivity radius can be bounded below by Ricci curvature, conjugate radius, and volume 
lower bounds. (This is pointed out to me by Peter Petersen.) Combining this with [AC] one knows 

that the class of manifolds satisfying (1.2) and with volume bounded below are C '~ compact. See 

[A1], [W] for other results in the noncollapsing case. Thus our results here can be thought of as a 
first step in understanding the manifolds with Ricci curvature lower bound which could collapse. 

We refer to [Co], [CC] for some recent significant developments for Ricci curvature. 

The essential tool in proving Theorems 1.2 and 1.3 and Proposition 1.6 is an angle version 

Toponogov comparison estimate for Ricci curvature which we state below. First we introduce some 

notations. 

In the paper, a geodesic triangle {Y0, Y~, V2} consists of three minimal geodesics, Vi, of length 

L[Vi] = li, which satisfy 

yi(li) = yi+,(O) mod3 (i = 0, 1, 2). 

The angle at a comer, say y0(0), is by definition, /(-V2(12), yd(0)). The angle opposite Vi 

will be denoted by oti. 

Theorem 1.7 (Toponogov-type comparison-estimate). For any E > 0 there is a con- 

stant r = r (n ,  ~, H,  ro) > 0 such that if manifold M"  is a complete Riemannian manifold with 

RicM >_ H, con j>  r0, and {V0, Yl, )/2} is a geodesic triangle contained in Bp(r)  for  some p E M, 

then there is a geodesic triangle {~o, YI, Y2} in the Euclidean plane with L[f/i] = L[Vi] = li and 

(ILI-'~ l/2+l _'--I 2) 
o t i>  ~i - r = cos -I  k 21i_jli+j - ~" (I .3) 

Note that in [DW] a hinged version of a Toponogov-type comparison estimate for Ricci curvature 

is given. Contrary to the original Toponogov comparison theorem the angle version here cannot be 
derived from the hinged version directly. Instead, the angle version here and the hinged version in 

[DW] are a kind of complement to each other. 
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It is not clear whether the other natural version of the angle comparison estimate, namely 

oti > /z~i (0 < /z < I), as suggested by the hinged version in [DW], is true or not. This was kindly 

pointed out to me by P. Petersen. 

The basic structure of the proof of Theorems !.2, 1.3, and 1.4 and Proposition 1.5 is the same as 
in the case with sectional curvature lower bound. In the presence of sectional curvature lower bound 
we have the powerful Toponogov comparison theorem. Here we try to replace that by Theorem 1.7, 

the Toponogov comparison estimate. There are situations where the rigid structure of the Toponogov 
comparison theorem is essential. But, as we will see, the Toponogov comparison estimate suffices for 

the above results. There is also the problem of going from local to global in applying Theorem !.7. 

That is dealt with differently in each case. 

Theorem 1.7 depends essentially on the result of [AC]. To apply the C~-compactness of [AC], 
we pullback the metric to the tangent space by the exponential map, and this is where the conjugate 
radius comes in. The difficulty with lifting triangles is overcame by relating the angle comparison 

radius (see w below for the definition) on the manifold with the angle comparison radius on the 
tangent space (with a different base point). We also used the regularity result of Calabi and Hartman 

for geodesics [CH]. 

Acknowledgments. I would like to acknowledge interesting discussions with Shunhui Zhu 
concerning [DW] which leads to the rescaling argument used here. Thanks are also due to Peter 

Petersen and Rugang Ye for pointing out gaps in the earlier versions of this paper and for constructive 

suggestions. I am also grateful to M. Anderson, J. Cheeger, D. Gromoll, D. Moore, K. Grove, and 

S. Zhu for helpful discussions and comments. 

2. Angle comparison for Ricci curvature 

In this section we prove the angle comparison estimate (Theorem 1.7) following the ideas of 
[AC]. In order to get the desired C~-convergence, we lift everything to the tangent space and this 
is exactly where the hypothsis on the conjugate radius comes in. We consider balls for which (1.3) 
holds for any geodesic triangles inside it and show that we have a uniform positive lower bound for 

the radius. 

For the applications in this paper, we can take ~ = zr/36. For the sake of simplicity of notation 
we will show Theorem 1.7 for this particular ~. The general case is exactly the same. 

Definition. Let M" be a Riemannian manifold and p ~ M a fixed point.  We define the 

angle comparison radius at p 

ro,.(p) = max r IV{Y0, y~, y2} c Bp(r) ,  oti > cos -j  \ 21i-ili+l -- ~ " 
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Thus ra,.(p) is the radius of the largest geodesic ball about p on which the angle version of 
Toponogov estimate (1.3) holds. As p varies, r,, (p)  defines a function on M. We first note that 
r~c(p) is strictly positive for any fixed compact smooth Riemannian manifold. 

L e m m a  2.1. For anv fixed M and p E M, we have 

ra, (p) > O. 

Proof .  Let - K  (K > 0) be a lower bound on Bp(l)  of the sectional curvature of M. 
Applying the Toponogov comparison theorem reduces to the case where M has constant sectional 

curvature - K .  Now by rescaling, instead of considering triangles of smaller and smaller size, we 

consider a sequence of metrics of constant sectional curvature - K ,  where K ~ 0. An easy 

computation gives 

Ot i 
_, (cosh cosh cosh . . . . . .  

= cos sinh ~v/-Kli_~ sinh x/~li+l 

I 
COS 

2li-jli+l 
+ o ( K ) )  , 

where o(K)  is uniform in {li <~ 1};.~1. Therefore there exists K0 > 0 such that for any K < K0, 

and li ~ 1, 

0ti COS-1 \ 21i_ll i+ I 36" 

This implies, via rescaling, r,, (p) > O. [] 

What we would like to have is, of course, a uniform bound. For this purpose we now prove the 

following basic property about the angle comparison radius. 

Proposition 2.2. If (M,, gi, p,) converges to (M, g, p) in the C ~ topology, then 

r,,,(p) < l imi_~r, , (p i ) .  

In particular, ~f the limit (M, g, p) is the Euclidean space, then 

lim r,, (pi) = +oo. 
i---~ ~ 

(2.1) 

To prove Proposition 2.2, one needs the following result of Calabi and Hartman [CH] on the 

smoothness of isometries. 
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T h e o r e m  2.3 [CH].  Let ( M ,  g) be a C a Riemannain manifold with respect to some coor- 

dinate. Then its geodesics are C J,a with respect to the same coordinate. Moreover, the C La norm of  

the geodesics can be bounded by the C a norm of  the metric. 

An immediate corollary of this result is the following lemma. 

L e m m a  2.4. Irf ( M i" , gi , Pi ) converges to (M",  g, p)  in C a topologv,, then for  any geodesic 

triangles {yd, Y[, Y~} in Bp, (r)  C M, for  some r > O, a subsequence o f{y~, F[, Y~} converges 

to a geodesic triangle {F0, YJ, Y2} in M in C I"a' topology, or' < or. 

Proof of Proposition 2.2. If (2.1) does not hold, then there exsits an ~ > 0 and a subsequence 
which we still denote by {i } such that for i large 

ra,.(pi) < G, (P) -- 6. 

So there are geodesic triangles {F~, F[, F~} in Bp, (G,.(P) - ~), for which the angle comparison 
estimate (1.3) does not hold. By Lemma 2.4 a subsequence of { F('), F[, F~ } converges to a geodesic 
triangle {F0, Yl, F2} in Br(r,, .  - 4) C M .  If {F0, YI, F2} is a nontrivial triangle (i.e., at least one of 
the sides has positive length), then we have a contradiction (since angle converges to angle). In the 
case {F0, FJ, F2} is a point, we rescale the metrics before passing to the limit. That is, we let qi be one 
of the vertices of the geodesic triangle {F~ Y~, ' i i i , F:; },/_ = max{/D, Ii,/2}, and gi = ( l i)-2gi.  Since 
l i m ~ / _ i  = 0 as i ~ e~, (Mr,., ~ ,  q,) converges in Ca-topology to the Euclidean space. Now the 
geodesic triangles {F~, Y[, F~ } are contained in Bq, (2) in the rescaled metric gi, so a subsequence 
converges to some nontrivial geodesic triangle {1)0, Yi, F2} C R". But {Y0, ?'J, F2} does not satisfy 
the angle comparison estimate (1.3), which is also a contradiction. [ ]  

We now turn to the proof of the angle comparison estimate. 

Proof of Theorem 1.7. We show that G , ( P )  has a uniform lower bound depending only 
on the bounds 

Ricm >__ H,  conj > r0. (2.2) 

To establish this lower bound on ra , (p) ,  we argue by contradiction. Thus if Theorem 1.7 were false, 
then there must exist a sequence of Riemannian manifods ( M  7, gi) satisfying (2.2) but with 

A 
r i  -~- ra,.(pi) ~ 0 

for some p, E Mi.  Rescale the metric gi by r/-2, i.e., define metrics hi = r72gi. Thus G,.(Pi) = l 

for (Mi ,  hi),  while 

Ric > Hr~ ~ O, conjcM,.I,,) > ro/ri  --+ +00 .  
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Since r,,,.(pi) = 1, we have a geodesic triangle {F(;, F[, F~} C Bp, (2) such that one of its angles 
does not satisfy the angle comparison estimate ( 1.3). Without loss of generality we assume the angle 

i Let Bo;(ro/r,) be the ball of radius ro/r, in the is at the vertex q~ = Fj (0) and denote it by ot 0. 
tangent space Tq[M i with the pullback metric hi. We show that 

~ ~ i  r,,.(q0) < 6. (2.3) 

To prove this, note that for i large we can lift the geodesics 7[,  ) zi2 to minimal geodesics g[,~' ~ 
in Bo,;(ro/r,) with L@[) = L ( y [ ) ,  L@~) = L(7~), Y[(ll) = ~'~(0) = qo,~' and o%~' = 

i Connect ~'[ (0) and ~ i , /(-~'[(11), ~(0)) oe o. _ = F~ (12) by a minimal geodesic 1)~, then 

>_ Ley( ). 

(This was pointed out to me by Rugang Ye.) This implies that the comparison angle for ot 0,~i ot o:i is 
greater than or equal to the comparison angle for ot~, ot 0.-i Therefore 

~ t  " - i  :7"E :, < 
o6) = ~ < ~ 36 ~ 36'  

i.e., the geodesic triangle {}5~, ~)i, ~)~l does not satisfy the angle comparison estimate (1.3), which 
proves (2.3). 

On the other hand the injectivity radius of tlo;(ro/ri) is equal to ro/r,. By [AC] (the version 

for manifolds with boundary) a subsequence of the manifolds (B~,(ro/ri), hi, Pi) converges in 

the C ~'' topology, or' < of, to a complete (noncompact) C" Riemannain manifold (N,  h, q) ,  with 
= lim ~). Moreover by [AC, Propositions 1.2, 1.3] N is isometric to R", with the canonical flat 

metric. But r,,, = + o c  for R". By Proposition 2.2 this contradicts (2.3). [ ]  

3. U n i f o r m  bett i  n u m b e r  e s t i m a t e  

The proof will use the original ideas of Gromov [G1], but we will follow more closely the 
beautiful exposition of Cheeger [C]. 

To localize the problem, Gromov introduced the content of a ball, 

cont(p,  r )  = ~ dim lm(Hi(Bp(r)) ---> H, (Bp(5r))). 
i 

Note that if r > diam(M),  then cont (p ,  r) ----- Y'~i bi(M) �9 Thus the basic idea is to estimate 
cont(p ,  r )  in terms of that of smaller balls (using the Mayer-Vietoris principle). 

Now there are two ways of reducing the size of the ball. First by the Mayer-Vietories principle, 

one has [C, Corollary 5.7] 
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Lemma 3.1. Let N(10-1"+l)r, r) be the number of balls in a ball covering Bl,(r) 
[_JiNi Bt, ' (10-1"+l)r). Then 

cont(p, r)  < (n + i)2 Nr176 .... "r.r) max cont(p',  10-Jr).  
p'EBr(r),j=l.....n+l 

C 

The second reduction is the compression; for its definition we refer to [G1], [C]. The content 
of a ball is bounded from above by that of its compression. 

Combining the two, we first compress the ball until it is incompressible, then reduce to a ball 
of one-tenth of the size and compress again. The number of steps to go from B/, (r)  to a contractible 
ball is defined to be the rank, rank (p, r).  (For the precise definition, see [GI], [CI.) Clearly, by 
Lemma 3.1 together with the fact that content does not decrease under compression and the definition 

of rank, we have [C, Corollary 5.13] 

Lemma 3.2. Let N(10-1"+Jlr, r) be as in Lemma 3.1. Then 

cont(p, r)  < ((n + 1)2 N~j~ . . . . . .  r'r)) rank(l''r). 

The number N(10-1"+llr, r)  is known to be uniformly bounded in the presence of a Ricci 
curvature lower bound. 

Proposition 3.3 (Gromov)  (see [C, Proposition 3.11]. Let the Ricci curvature of M" 
satisfy RicM,, >_ (n -- I )H.  Then given r, E > 0 and p E M", there exists a covering, Bt,(r ) C 
Ut( BI,, (E), (Pi in Be(r)) with N < N t (n, H r 2, r / E ). Moreover, the multiplici~, of this covering 
is at most N2(n, Hr2). 

The key ingredient in the estimate of the rank is the following lemma of Gromov. In the Gromov's 
proof of the uniform betti number estimate (Theorem 1.1 ), the sectional curvature hypothesis is only 
used here. 

Lemma 3.4 (Gromov ' s  lemma).  Let q~ be critical with respect to p and let q2 satisfy 

IPqzl >-_ vlpq~l, 

for some v > 1. Let Yl, Y2 be minimal geodesics from p to qj, q2 respectively and put 0 = 
L(y((0), y2(0)). If KM >_ n .  (H < O) and ]Pqzl < D, then 

tanh( x/-Z-~ D / v ) ) 
0 > _ _ c o s  . 
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Correspondingly, we prove the following local version of this lemma for Ricci curvature. 

L e m m a  3.5. Let qj be critical with respect to p and let q2 satisj~ 

IPq2[ >- v ipq l i ,  

l+sin ~ - -  1 1959404. Let y j ,  Y2 be minimal geodesics from p to qj ,  q2 for  some v > ~-sin C O S  rr . . . .  

/ ! 

respectively andput  0 : /(Yi (0), ~y2(O))./fRicM >_ (n -- 1)H, conj >_ ro and IPq2[ <- r . , ( p ) / 4 ,  

then 

O > c o s _ ~ ( s i n : r  ( J r ) l )  :r - -  -Jr 1 + s i n -  
- 3 6  3 6  3 6  

Proof.  Put ]Pqll = x ,  Iqlq2[ = Y, [Pq2l = z. Let cr be minimal from qf to q2. Since ql 
is critical to p, there exists r, minimal from q~ to p with 

Y( 
0, = z ( a ' ( 0 ) ,  r ' (0 ) )  _< - .  

2 

Let O, 01 be the corresponding angles in R 2. Then by applying Theorem 1.7 to the geodesic triangle 
{r, Y2, o-}, we have 

y./- 
01 _> 01 

36 

Therefore 

19 
81 < - - Y r .  

- -  3 6  

Now 

Z 2 = X 2 q_ y2 _ 2 x y  cos 0j 

( 19:rr "~ 
< x 2 + 3, 2 -- 2 x y  cos \ - -~- - ]  , (3.1) 

and 

y2 = X 2 q_ 72 _ 2XZ COS 0. (3.2) 

Combining (3.1) and (3.2) gives 

197r 
zcos0  _< x -- y c o s - -  

36 
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which gives 

cos 0 
x + y s in  

36 

Z 

x + ( x  + Z) sin _-~ 
< since y < x + z  

Z 

< s i n - - +  l + s i n  - since - < -  
- 36  v z - v 

Therefore 

0 > cos -I  s i n ~ - ~ +  I + s i n  

Now applying Theorem 1.7 to the geodesic triangle {Fi, ).'2, cr } gives 

- - - -  > c o s - I  sin + 1 + s i n  - - - -  > 0 .  [ ]  
- -  3 6  - -  ~ 36 

C o r o l l a r y  3.6. Let q L . . . . .  qN be a sequence of  critical points o f  p, with 

IPqi+~l >-_ lzlpq~l (/z > 1.196). 

/.fRicM > H,  conj > ro, and IPqNI < r , , ( p ) / 4 ,  then 

N < A/'(n, lz, Hr2, ) .  

P r o o f .  This is standard. We follow the one in [C]. Take minimal geodesics, Fi from p to qi. 
t l  View {F'(0)} as a subset of S ' ' - I  C MI,. Then Lemma 3.5 gives a lower bound on the distance, 0, 

between any pair F,'(0), Fj(0). The balls of  radius 0 / 2  about F/(0) E S ' ' - I  are mutually disjoint. 

Hence, if we denote by V,,_l. i ( r ) ,  the volume of a ball of radius r on S ' ' - I ,  we can take 

V,,_,.,(n) 
A/ ' -  

V,,_ I. I ( 0 / 2 ) '  

where V,_ i, i(rr)  = VoI(S ' ' - I )  and 0 is the minimum value allowed by Lemma 3.5. [ ]  

Now the size of rank(p ,  r )  is related to the existence of critical points as follows [C, Lemma 
6.4]. 

L e m m a  3.7. Let M"  be Riemannian and let rank (r, p)  = j .  Then there exists y C Bp(5r)  
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and x i . . . . .  xl E Bp(5r), such that for all i < j ,  xi is critical with respect to y and 

5 
IxiYl >_ ~ l x i - , y l .  

503 

Combining Lemma 3.7, Corollary 3.6, and Lemma 3.2 gives 

Proposition 3.8. For manifolds satis.~ing (1.2) 

cont(p ,  r) < C(n ,  r~,H) foral l  r < r , , /4 ,  

where r,,. is the angle comparison radius defined in Section 2. 

Using Proposition 3.8 and Lemma 3. I inductively completes the proof of  Theorem 1.2. 

4. Uniform estimate of generators of fundamental groups 

As in [G2], [BK] we use the short basis trick to prove Theorem 1.3. To localize the problem, 
we introduce 

:r] (p ,  r )  = I m  (nl (Bp(r)  ---> rcf ( M ) ) ,  

where the map is induced by inclusion. The following lemma is a weak version of the Van Kampen 

theorem, which can be found in [M]. 

Lemma 4.1. l f  { Br, (r)} is a ball covering of M, then 7rl ( M )  is generated by {zr, (p , ,  r)}. 

From this lemma and Proposition 3.3, we see that it suffices to establish the estimate for 
] min{r, , ,  r0}. To show this, first we have generators of : r l  (p ,  r l )  for all p E M and rl - -  g 

Lemma 4.2. The .fundamental group rr ] ( Bp ( r l ) ) (and hence 7t'] (p ,  r l ) ) is generated by 
geodesic loops at p of length < 2rj. 

Proo f .  For any closed curve c at p contained in Bp(rj),  we can choose an r I < rt such that 
c is contained in Bp(rl).  Now the same argument as in the proof of  Proposition 2.1.5 of [BK] shows 

that c is represented as a product of  geodesic loops at p of  length < 2r I < 2rl.  [ ]  

Now represent each element ofzrl (p ,  r] ) by a shortest geodesic loop ot at p and call lot l = l (or) 

the length of the homotopy class. We point out that this may not be possible for yrl (B t, (r])) .  Note 
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also that c~ is not necessarily contained in Bp(rl) .  We now pick a short basis {oq . . . . .  ot.~} for 
n'l (p ,  r l )  as follows: 

(I) otj represents a nontrivial homotopy class of minimal length. 

(2) If oq . . . . .  otk have already been chosen, then otk+l represents a homotopy class of minimal 
length in the complement of the subgroup generated by {or1 . . . . .  otk}. 

L e m m a  4.3. We have 

and 

Furthermore, 

Io~,1 <__ 1~21 _<_ " "  (4 .1)  

Io~io~/J I ~ max{Iotil, Iotjl}. 

Ioli l < 2r, .  

(4.2) 

P roo f .  Equations (4.1) and (4.2) are clear by definition (otherwise oti or otj were not chosen 
minimally). To see the last statement we assume on the contrary that 

I~kl ~ 2r l .  

By Lemma 4.2, [otk ] is a product of homotopy classes represented by geodesic loops of length < 2r~. 
At least one of the class, say Iota] is in the complement of the subgroup (otj . . . . .  otk_l ), otherwise 
[otk] E (oq . . . . .  otk_]) contradicting the choice of otk. But then 

Iot'kl < 2rl < Iotkl 

also contradicting the minimality of otk. [ ]  

L e m m a  4.4.  

of  rr l (p ,  rl): 
We have unifi~rm bound on the number of  elements in a short basis {or I . . . . .  o G } 

s < (72" ] " - ]  
_ \ ~ 1  . (4.3) 

Proo f .  By definition ai ,  otj are geodesic loops of M at p of length Iotil, Iotjl respectively. 
Moreover, otiotf I is homotopic to a geodesic loop otij of M of length Iotiotf]l. We lift oti, otj, Olij to 

the universal cover ing/~/and obtain a triangle with edge lengths I~i I, Iotj I, Iotiotf I I. Note that the 
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triangle is contained in B~ (6r)  and the conjugate radius of  ,~/is also equal to r0. Thus Theorem 1.7 
7r Jr I lzr  applies. In particular, the angle opposite to Iot~ot~l I is greater than or equal to 3 .% --  ~ �9 

Now the proof of Corollary 3.6 gives (4.3). [ ]  

5. F ibrat ion  t h e o r e m  

We first construct the map f :  M ~ N as in [F], [Y]. 

By the definition of the Hausdorff distance, if dn (M,  N )  < e, then there exsits a metric d on 
the disjoint union of M and N satisfying the following: 

(1) The restriction of d to M and N coincide with the original Riemannian distance of M 

and N.  

(2 )Foreve ryx  E M,y '  E N, thereexis tx '  ~ N , y  E Msuchthatd(x, x ' )<E,d(y ,  y ')<6. 

Hence we can take a discrete subset {mi} C M and {ml} C N such that 

(1) They are 7e-dense in M and N respectively, 

(2)d(mi,mj)  > 6, d (ml ,m ~) > 6 f o r a l l i  :~ j ,  

(3) d(mi, m I) < 6. 

i min{i0, ro, r,, }, S = #{mi} = #{m I}, cr < R, and X : [0, oo)  ---> [0, I] a smooth Let R = 

function such that 

) ~ ( t ) = 0  i f t  > o r  
1 X ( t ) =  I i f t  < 7o- 

I X'( t )  < 0 if ~ :or < t < a .  

Then we define fN: N ~ R s and fM: M ~ R s by 

fN(X) = (x(d(x ,  ml))), 

[ f,.EB, I,) d(x, y)dy \ 

Since IKNI < 1 and injN > i0, fu  is an embedding. Let .M'(N) be the normal bundle o f f u ( N )  in 
R s and JV'~(N) = {v c A/ ' (N)I lvi  < 6}. Then there exists 3 > 0 such that the normal exponential 

map restricted to N'~ ( N )  is a diffeomorphism between .M~ ( N )  and B6 ( fu (N)), the 8-neighborhood 

of fu (N) .  Let rr: B~(fu(N)) ---> f u ( N )  be the projection along the fibre of  normal bundle. 
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Now the map f = fN  I O 7r o fM: M --~ N is well defined. From the construction we see that 

d ( x ,  f ( x ) )  < r ( e )  fo reachx  E M. Here r (E)  is a positive numberdependingonlyon ~, n, io, ro 
and satisfying iim,__,0 r (~) = 0. 

From now on, we use a notation r (a . . . . .  blc) to denote a positive number depending only on 

n, i0, r0 and a . . . . .  b, c and satisfying lim,~0 r ( a  . . . . .  blc) = 0 for fixed a . . . . .  b. 

To prove that f is a fibration, it suffices to see that f is of maximal rank. The basic lemma 
follows. (This corresponds to Lemma 2.6 in [Y] and Lemma 2.1 in [F].) 

t 
C i �9 

t 
d(ci(O), ci(0)) < v, d(ci ( t i ) ,  ci(t i))  < v, l / lO  < tl < l, 

( DcL (0"~ De2 O' Oc' I O,'; Denote 0 = L, at , , '  --~-t (0)) '  = /(--~-t (0), --Zt- (0)). Then we have 

7r 
10 - 0'1 < r ( / )  + r ( / ,  I'tv) § r ( l , / ' 1 ~ )  § - - -  

36 

L e m m a  5.1. Let v, l, I' be positive numbers with I < l' < R, and let ci: [0, ti] --+ M and 

[0, t;] ~ N ( i  = 1, 2) be minimal geodesics with cl (0) = c2(0), cPl (0) = c;(O) such that 

1'/10 < t2 < I'. 

(5.1) 

P r o o f .  As in [Y, Lemma 2.5] we may assume I = I'. Let c be the geodesic such that c(0) = 

cl(0) ,  ~~ = - ~  , v , . T a k e a p o i n t x ' ~  N s u c h t h a t d ( x ' , c ( t l ) )  < ~ . L e t c ' :  [0, t ~ ] ~  N 

be a minimal geodesic joining c I (0) to x ' .  Then by Theorem i.7 

0 > 0  Jr 
36 '  

where 0 denote the comparison angle in the Euclidean plane. By the Toponogov comparison theorem 

0 '  < 0 ' ,  

where 0 '  denote the comparison angle in the sphere. Therefore 

yr 
0 > 0 '  - r ( / )  - r ( / l v )  - - - .  (5.2) 

- 36 

Denote 01 = / ( - ~ ( 0 ) ,  0,2 ' = / (~  (O~ 0'"2 "0"" --d~ - (0 ) ) '  01 , at , , '  ,'Tfi-t ( ))" Then similarly we have 

0~ > 01 - r ( / )  - r ( l l v )  - r ( / IE)  - 3--6" (5.3) 

Since Id(c'(to), c ; ( t l ) )  - (t o + tl) [ < 2e § 4v, we have 

L / Dc'~ Dc'  "~ 
~,--~-t (o), - - ~ - ( o ) 1  - Jr __< r ( l l e )  + r ( l l v ) .  (5.4) 
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O,.', D,' (0)) < 0 '  + 0 I. Combining inequalities (5.2), (5.3), (5.4) Note that 0 + 01 = Jr, L ( ~ - ( 0 ) ,  7 - 
yields (5.1). [ ]  

By Lemma 5.1 and the construction of f N  and f M ,  we have the following lemma (for details 

see [Y, Lemma 2.8]). 

L e m m a  5.2. For each x E M and unit vector ~' E Tr(x)N,  let c': [0, t'] ~ N be the 

o , ' (0 )  = ~',  I < t '  < R ,  l > or. Take a minimal  geodesic  c: [0, t] --+ M geodesic  such that ~ 

such that c ( O ) = x ,  d ( c ( t ) , c '  ( t ') ) < e and put  ~ : ~  ( O ~ 7if , ~" Then we have 

Jr 
I d f ( ~ )  - ~'l < r (cr)  + r(cr, l ie)  + - - .  

36 

Now it is clear that when (y, e are sufficiently small, f is a submersion, hence a fibration. 

6. Proof  of  Proposi t ion 1.5 

For Pc), Pl C M,  the excess function emp, : M" -+  R is defined by 

ep,,.~, ( p )  = d ( p o ,  p )  + d ( p t ,  p )  - d ( p o ,  P l ) .  

It measures the "excess" in the triangle inequality. 

! 

Note that the excess function is "monotonic" in the following sense. If P0, P'I are any two 

points lying on a minimal geodesic connecting P0, P and p j ,  p respectively, then 

ep,,./,, ( p )  > el,;,.t,; ( p ) .  (6. I) 

This is an easy consequence of the triangle inequality. 

Now Proposition 1.6 follows from Theorem 1.7 and (6. I). 

Proof  of  P r o p o s i t i o n  1.6. It suffices to prove that the angle between any minimal geodesic 

FJ,F2 from x to p and from x to q respectively is > 7" L e t p ,  E FJ,F2 such that [xp'[ = 

[xq'[ = min{r , , , /4 ,  3}. By (6.1) 

et,, q,(x ) < el,,q(X ) < e. (6.2) 

Applying Theorem 1.7 to the triangle p ' x g ' ,  we have 

s  > cos - j  Ixp'lZ + Ixq'[2 - IP'q'12 Jr 

2 1 x p ' l l x q '  I 36 
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=COS - ' (  - -1 - -  e2t,,.q,(X)--4e_~[_~p,~,q,(X)lxp'[]] 36rr 

2~ ) Jr 
> cos- '  --1 + ]xp'[ 36 

Here the last inequality follows from (6.2). Now it is clear that there is an ~(n, 8, r0, H)  such that 
the a n g l e / p x q  = Lp'xq'  > 5" [] 

Corollary 1.6 follows from Proposition 1.5 and the following lemma (cf. [GP, Lemma 1 ]). 

Lemma 6.1. 
and let p, q E M with IPq[ = diamM, then 

e p . q ( X )  "< K ( E )  for all x C M ,  

where to(e)is a positivefunction of E and K(~) --+ 0 as ~ ---* O. 

Let M be a complete Riemannain manifi~ld with RicM > n -- 1, diam > 7r -- E, 

(6.3) 

[All 
[A2] 

[ACI 

IBK] 
[CH] 
ICI 

ICCI 

[CFG] 

[CGT] 

[Col 
[DWI 

[FI 
[GI] 
[G21 
IGLPI 

[GP1 
[MI 
IPII 

[P21 
IPZI 
[SYI 
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