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Abstract

Comparison theorems are fundamental tools. In particular, the classical Bishop-
Gromov volume comparison has many geometric and topological applications. There-
fore it is natural to study its extensions. We will survey some applications of
the volume comparison and discuss its generalizations to integral Ricci curvature,
Bakry-Emery Ricci curvature, Ricci flow and, briefly, non-smooth metric measure
spaces. We will also discuss some related questions.
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I met Prof. Chern several times. The first time it was in the fall of 1991 at
MSRI when I was a postdoctoral member there. Long heard of Prof. Chern’s
kindness and being easily approachable, it was still amazing to see it first hand.
Prof. Chern hosted a brunch for all the Chinese postdocs at MSRI. It is still a
wonderful memory. In the summer of 1998 when Xianzhe and I visited Nankai
Institute (now the Chern Institute) Prof. Weiping Zhang took us to meet with
Prof. Chern at his residence there. We spent some exquisite time talking with
Prof. Chern and had a terrific lunch together. It was a mesmerizing experience.

1 Volume comparison and its applications

The classical Bishop-Gromov relative volume comparison is the following mono-
tonicity fact.

Theorem 1.1 (Bishop-Gromov’s Relative Volume Comparison). Suppose Mn is
a complete Riemannian manifold with RicM ≥ (n− 1)H. Denote VolH(B(r)) the
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volume of r-ball in the model space Mn
H , the n-dimensional simply connected space

form with sectional curvature H. Then for p ∈M ,

Vol (∂B(p, r))
VolH(∂B(r))

and
Vol (B(p, r))
VolH(B(r))

are nonincreasing in r. (1.1)

In particular,
Vol (B(p,R)) ≤ VolH(B(R)) for all R > 0, (1.2)

Vol (B(p, r))
Vol (B(p,R))

≥ VolH(B(r))
VolH(B(R))

for all 0 < r ≤ R. (1.3)

Moreover equality holds if and only if B(p,R) is isometric to BH(R).

This is very useful because it is a global comparison. The volume of any ball is
bounded above by the volume of the corresponding ball in the model, validating
the intuitive picture: the bigger the curvature, the smaller the size. Moreover, and
this is much less intuitive, if the volume of a big ball has a lower bound, then all
smaller balls also have lower bounds. It enjoys many geometric and topological
applications.

By applying volume comparison on the covering spaces and with good choice
of generators one gets following results on the fundamental group and first Betti
number.

Theorem 1.2 (Milnor [27]). If Mn is complete Riemannian manifold with RicM ≥
0, then any finitely generated subgroup of π1(M) has polynomial growth of degree
≤ n.

Theorem 1.3 (Gromov [18], Gallot [15]). For closed Riemannian manifolds Mn

with
RicM ≥ (n− 1)H, diamM ≤ D, (1.4)

the first Betti number b1(M) is uniformly bounded by C(n,HD2). Moreover if
HD2 is small, b1(M) ≤ n.

In fact, very recently, Kapovitch-Wilking [20] showed that for this class of
Riemannian manifolds the number of generators for the fundamental group can
be uniformly bounded. Earlier the author showed this assuming in addition the
conjugate radius is bounded from below [43].

Theorem 1.4 (M. Anderson [2]). For the class of manifolds M with RicM ≥
(n − 1)H, VolM ≥ V and diamM ≤ D there are only finitely many isomorphism
types of π1(M).

Remark Gromov [17] showed that a finitely generated group Γ has polynomial
growth iff Γ is almost nilpotent, i.e. it contains a nilpotent subgroup of finite
index. Combining this with Theorem 1.2 we know that any finitely generated sub-
group of π1(M) of manifolds with nonnegative Ricci curvature is almost nilpotent.
One naturally wonders if all finitely generated almost nilpotent groups occur as
the fundamental group of some complete non-compact manifold with nonnegative
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Ricci curvature. By constructing examples Wei [41] and Wilking [47] showed this
is indeed true.
Remark For a compact Riemannian manifold with nonnegative Ricci curvature
Cheeger-Gromoll [11] showed that the fundamental group is almost abelian us-
ing their splitting theorem. In the compact case, using Theorem 1.4 and volume
comparison, Wei [42] generalized Milnor’s result to non-collapsed almost nonneg-
atively Ricci curved spaces. Very recently, Kapovitch-Wilking [20] showed that
the fundamental groups of almost nonnegatively Ricci curved manifolds are al-
most nilpotent. Its proof is much more involved, and uses strongly the work of
Cheeger-Colding on the structures of Gromov-Hausdorff limits of manifolds with
lower Ricci curvature bound. In fact Kapovitch-Wilking proved a Margulis Lemma
for lower Ricci curvature bound, generalized Theorem 1.4 to collapsed case.
Remark When Mn has nonnegative Ricci curvature and Euclidean volume growth
(i.e. VolB(p, r) ≥ crn for some c > 0), using a heat kernel estimate P. Li showed
that π1(M) is finite [21]. M. Anderson also derived this using volume comparison
[1].

The following geometric results can be proved directly using relative volume
comparison, see e.g. [54].

Theorem 1.5 (Cheng’s maximal diameter sphere theorem [12]). If Mn has RicM ≥
n− 1 and diamM = π, then Mn is isometric to the unit sphere Sn.

Theorem 1.6 (Calabi, Yau [53]). The volume of a ball in a complete non-compact
manifold with nonnegative Ricci curvature grows at least linearly.

Volume comparison has many other geometric applications, e.g. in the Gromov-
Hausdorff convergence theory, in rigidity and pinching results.
Remark There is no volume comparison for Ricci curvature upper bound. In
fact, Lohkamp [23] showed that for n ≥ 3, any Mn admits a complete metric with
RicM < 0. Therefore Ricci curvature upper bound has no topological implications
when n ≥ 3.

2 Volume estimate for integral Ricci curvature

Why do we study integral curvature? Many geometric problems lead to integral
curvatures, for example, the isospectral problems, geometric variational problems
and extremal metrics, and Chern-Weil’s formula for characteristic numbers. Since
integral curvature bound is much weaker than pointwise curvature bound, one
naturally asks what geometric and topological results can be extended to integral
curvature.

The volume comparison theorem can be generalized to an integral Ricci lower
bound [33], see also [16, 51]. For convenience we introduce some notation.

For each x ∈ Mn let λ (x) denote the smallest eigenvalue for the Ricci tensor
Ric : TxM → TxM, and RicH− (x) = max {0, (n− 1)H − λ(x)} — the amount of
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Ricci curvature lies below (n− 1)H. Let

‖RicH−‖p(R) = sup
x∈M

(∫
B(x,R)

(RicH− )p dvol

) 1
p

. (2.1)

‖RicH−‖p measures the amount of Ricci curvature lying below (n− 1)H in the Lp

sense. Clearly ‖RicH−‖p(R) = 0 iff RicM ≥ (n− 1)H.
We have

Theorem 2.1 (Relative Volume Estimate, Petersen-Wei [33]). Let x ∈Mn, H ∈ R
and p > n

2 be given, then there is a constant C(n, p,H,R) which is nondecreasing
in R such that if r ≤ R and when H > 0 assume that R ≤ π

2
√
H

we have

(
VolB (x,R)
VolH (B(R))

) 1
2p

−
(

VolB (x, r)
VolH (B(r))

) 1
2p

≤ C (n, p,H,R) ·
(
‖RicH−‖p(R)

) 1
2 . (2.2)

Furthermore when r = 0 we obtain

VolB (x,R) ≤
(

1 + C (n, p,H,R) ·
(
‖RicH−‖p(R)

) 1
2

)2p

VolH (B(R)) . (2.3)

Note that when ‖RicH−‖p(R) = 0, this gives the Bishop-Gromov relative volume

comparison, Theorem 1.1. Let ‖RicH−‖p(R) be the normalized Lp-norm,

‖RicH−‖p(R) = sup
x∈M

(
1

VolB(x,R)

∫
B(x,R)

(RicH− )p dvol

) 1
p

.

From (2.2) one can estimate the volume doubling constant when the normalized
Lp-norm of the Ricci curvature below (n− 1)H is small.

Corollary 2.2 (Volume Doubling Estimate). Given α < 1 and p > n
2 , there is

an ε = ε(n, p,H, α,R) > 0 such that if ‖RicH−‖p(R) < ε, then for all x ∈ Mn and
r1 < r2 ≤ R (assume R ≤ π

2
√
H

when H > 0),

VolB(x, r1)
VolB(x, r2)

≥ α VolH(r1)
VolH(r2)

. (2.4)

With these, for p > n
2 , many pinching and compactness results for ‖RicH−‖p(r) =

0 (Ricci curvature bounded from below pointwisely) can be extended to the case
when ‖RicH−‖p(r) is very small (Ricci curvature bounded from below in Lp), show-
ing a gap phenomenon. See e.g. [16, 33, 13, 34, 14].

On the other hand, unlike pointwise Ricci curvature lower bound, Ricci curva-
ture bounded from below in Lp does not automatically lift to the covering spaces.
Therefore certain topological implications, such as those on the fundamental group,
for Ricci curvature bounded from below in Lp does not follow immediately since
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we need to apply volume comparison on the covering space. By using a star-
shaped region in the covering space and Petersen-Wei’s pointwise estimate [33]
Aubry showed the mean of the integral Ricci curvature on the geodesic balls of
the covering space can be controlled by the mean of the manifold, allowing several
topological extensions of pointwise Ricci curvature to integral Ricci curvature, see
[32, 3, 19, 4]. We conjecture that the recent result of Kapovitch-Wilking [20] can
also be extended to integral Ricci curvature.

Conjecture 2.3. For n ∈ N, p > n
2 , there exists a constant ε(n, p) > 0 such that

if a compact Riemannian manifold Mn has DiamM ≤ 1 and ‖Ric0
−‖p(1) ≤ ε(n, p)

then the fundamental group of M is almost nilpotent.

3 Comparison for Bakry-Emery Ricci Tensor

The Bakry-Emery Ricci tensor is a Ricci tensor for smooth metric measure spaces,
which are Riemannian manifold with a measure conformal to the Riemannian
measure. Formally a smooth metric measure space is a triple (Mn, g, e−fdvolg),
where M is a complete n-dimensional Riemannian manifold with metric g, f is a
smooth real valued function on M , and dvolg is the Riemannian volume density
on M . This is also sometimes called a manifold with density. These spaces occur
naturally as smooth collapsed limits of manifolds with lower Ricci curvature bound
under the measured Gromov-Hausdorff convergence. Recall

Definition 3.1. (Xi, µi)
mGH−→ (X∞, µ∞) (compact) in measured Gromov-Hausdorff

sense if for all sequences of continuous functions fi : Xi → R converging to
f∞ : X∞ → R, we have ∫

Xi

fidµi →
∫
X∞

f∞dµ∞.

Example 3.2. Let (Mn×FN , gε) be a product manifold with warped product met-
ric gε = gM+(εe−f )2gF , where f is a function on M . Then up to a constant scaling
in the measure (M × F, gε, d̃volgε) converges to (Mn, gM , e

−NfdvolgM ) under the
measured Gromov-Hausdorff convergence. Here d̃volgε = dvolgε/Vol(B(·, 1)) is a
renormalized Riemannian measure.

Therefore we have, as ε→ 0,

(Mn × FN , d̃volgε)
mGH−→ (Mn, e−fdvolgM ),

where gε = gM + (εe−
f
N )2gF . By O’Neill’s formula, the Ricci curvature of the

warped product metric gε in the M direction is

RicM + Hessf − 1
N
df ⊗ df.
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Hence for smooth metric measure spaces (Mn, g, e−fdvolg), the corresponding
Ricci tensor is the N -Bakry-Emery Ricci tensor

RicNf = Ric + Hessf − 1
N
df ⊗ df for 0 < N ≤ ∞. (3.1)

When N = ∞ we denote Ricf = Ric∞f = Ric + Hessf . Note that when f is
a constant function RicNf = Ric for all N and we can take N = 0 in this case.
Moreover, if N1 ≥ N2 then RicN1

f ≥ RicN2
f so that RicNf ≥ λg implies Ricf ≥ λg.

The Bakry-Emery Ricci curvature bounded from below (for N finite and infi-
nite) has a natural extension to non-smooth metric measure spaces [25, 39, 40] and
diffusion operators [5], see Section 5. Moreover, the equation Ricf = λg for some
constant λ is exactly the gradient Ricci soliton equation, which plays an important
role in the theory of Ricci flow; the equation RicNf = λg, for N positive integer,
corresponds to the warped product metric on M ×

e−
f
N
FN is Einstein, where FN

is an N -dimensional Einstein manifold with suitable Einstein constant, see [9].
One naturally asks if the Bishop-Gromov volume comparison extends to the

Bakry-Emery Ricci tensor. When N is finite, the answer is yes, one only needs
to compare to the “model space” of dimension n + N . Denote Volf (B(p,R)) =∫
B(p,R)

e−fdvol.

Theorem 3.3 (Volume comparison for N -Bakry-Emery, Qian [35]). If RicNf ≥
(n+N − 1)H, then Volf (B(p,R))

Voln+N
H (R)

is nonincreasing in R.

When N is infinite, this is not true as the following example shows.

Example 3.4. Let M = Rn be equipped with Euclidean metric g0, f(x1, · · · , xn) =
x1. Then Ricf = Ric = 0. But Volf (B(0, r)) =

∫
B(0,r)

e−fdvol is of exponential
growth.

On the other hand when f or ∇f is bounded we still have nice volume com-
parisons.

Theorem 3.5 (Volume Comparison for ∞-Bakry-Emery, Wei-Wylie [46]). Let
(Mn, g, e−fdvolg) be a complete smooth metric measure space with Ricf ≥ (n −
1)H. Fix p ∈Mn.
a) If ∂rf ≥ −a along all minimal geodesic segments from p then for R ≥ r > 0
(assume R ≤ π/2

√
H if H > 0) ,

Volf (B(p,R))
Volf (B(p, r))

≤ eaRVolnH(R)
VolnH(r)

. (3.2)

Moreover, equality holds if and only if the radial sectional curvatures are equal to
H and ∂rf ≡ −a. In particular if ∂rf ≥ 0 and Ricf ≥ 0 then M has f -volume
growth of degree at most n.
b) If |f(x)| ≤ k then for R ≥ r > 0 (assume R ≤ π/4

√
H if H > 0),

Volf (B(p,R))
Volf (B(p, r))

≤ Voln+4k
H (R)

Voln+4k
H (r)

. (3.3)
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In particular, if f is bounded and Ricf ≥ 0 then M has polynomial f -volume
growth.

Remark In fact, with a more careful estimate, one can show that if f is bounded
and Ricf ≥ 0 then M has polynomial f -volume growth of degree at most n, see
[52]. Therefore the exact same statement of Milnor’s result (Theorem 1.2) holds
for Ricf ≥ 0.
Remark The relative volume comparison Theorem 3.5 also implies theorems of
Gromov [18] (Theorem 1.3) and Anderson [2] (Theorem 1.4) extend to the case
when Ricf is bounded below and f or |∇f | is uniformly bounded. Similarly The-
orem 1.6 extends to noncompact manifolds with Ricf ≥ 0 when f is bounded. See
[46] for detail.

Recently Bakry-Emery Ricci tensor and its applications in Ricci solitons have
been actively investigated and there are many interesting results. Other than the
ones mentioned above, see [24, 6, 30, 7, 22, 49, 9, 28, 8, 26, 48] among others, see
also [45] for a short survey in the direction of comparison theorem.

When f is bounded, Ricf ≥ 0 gives the same topological obstruction on the
fundamental group as a metric with Ric ≥ 0. This raises the following question.

Question 3.6. If Mn is a compact Riemannian manifold with a measure such
that Ricf ≥ 0, does Mn have another metric on it with Ric ≥ 0?

For noncompact smooth metric measure space, one can ask if Milnor’s result
is true without any assumption on f . Namely

Question 3.7. If Mn is a Riemannian manifold with a measure such that Ricf ≥
0, does any finitely generated subgroup of its fundamental group have polynomial
growth of degree ≤ n?

4 Volume Comparison in Ricci Flow

Perelman’s reduced volume monotonicity [30], a fundamental and powerful tool
in his work on Thurston’s geometrization conjecture, is a generalization to Ricci
flow of Bishop-Gromov’s volume comparison. In fact Perelman gave a heuristic
argument that volume comparison on an infinite dimensional space (incorporating
the Ricci flow) gives the reduced volume monotonicity. We present his argument
[30, §6.1] here.

Recall (M, g(τ)) is a backward Ricci flow when

∂g

∂τ
= 2Ricgτ .

For a curve γ(τ), 0 ≤ τ1 ≤ τ ≤ τ2 on M , Perelman considers the energy function

L(γ) =
∫ τ2

τ1

√
τ
[
S(γ(τ)) + |γ̇(τ)|2g(τ)

]
dτ,

where S(γ(τ)) is the scalar curvature of the metric g(τ) at γ(τ). Fix x ∈ M , for
y ∈M, τ ∈ (0, T ), the L-distance is

L(y, τ) = inf{L(γ)|γ : [0, τ ]→M,γ(0) = x, γ(τ) = y}
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and the reduced distance is l(y, τ) = 1
2
√
τ
L(y, τ). Now the reduced volume is given

by

Ṽx(τ) =
∫

(M,g(τ))

τ−n/2e−l(y,τ)dy.

Theorem 4.1 (Perelman, [30]). Ṽx(τ) is monotonically decreasing in τ .

Heuristically this can be derived by applying Bishop-Gromov volume compar-
ison to infinite dimensional space. Let M̃ = R+ ×M × SN be equipped with the
metric:

g̃ =
(
N

2τ
+ S

)
dτ2 + g(τ) + 2Nτgαβ , (4.1)

where g(τ) is a backward Ricci flow on M , gαβ is the standard metric on SN .
Then mod N−1, the distance in M̃ corresponds to L-distance in M and M̃ is

Ricci flat. We derive the first statement here, for second statement, see [44] for
detail.

The shortest geodesic between (0, x) and (τ, q) is orthogonal to SN . Hence the
length of such curve γ(τ) is

l(γ(τ)) =
∫ τ(q)

0

√
N

2τ
+ S + |γ̇M (τ)|2 dτ

=
∫ τ(q)

0

√
N

2τ

√
1 +

2τ(S + |γ̇M (τ)|2)
N

dτ

=
√

2Nτ(q) +
1√
2N

∫ τ(q)

0

√
τ(S + |γ̇M (τ)|2)dτ +O(N−

3
2 ). (4.2)

When N is big the shortest geodesic would minimize
∫ τ(q)
0

√
τ(S+ |γ̇M (τ)|2)dτ ,

corresponds to the L-distance.
Since (M̃, g̃) is Ricci flat mod N−1, we can compare its area of geodesics sphere

to the model space Euclidean space.
Consider the metric sphere ∂B((0, x),

√
2Nτ(y)) ⊂ M̃ . If (τ, q) ∈ ∂B((0, x),

√
2Nτ(y)),

i.e. d((0, x), (τ, q)) =
√

2Nτ(y), by (4.2)

√
2Nτ(y) =

√
2Nτ(q) +

1√
2N

L(q, τ) +O(N−
3
2 ).

Hence the geodesics sphere ∂B((0, x),
√

2Nτ(y)) is O(N−1) close to the hypersur-
face τ = τ(y) and its area is given by

Vol(∂B((0, x),
√

2Nτ(y))) =
∫

(M,g(τ))

(2Nτ(q))N/2Vol(SN )dvolq

= Vol(SN )(2N)N
∫

(M,g(τ))

(√
τ(y)− 1

2N
L(q, τ) +O(N−2)

)N
dvolq.
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Compare this to the geodesics sphere in the model space Rn+N+1, we have the
ratio

Vol(∂B((0, x),
√

2Nτ(y)))
Vol(∂B((N + n+ 1, 0,

√
2Nτ(y)))

=
(2N
√
τ)NVol(SN )

∫
(M,g(τ))

(
1− L

2
√
τ

1
N +O(N−2)

)N
dvol

(
√

2Nτ)N+nVol(SN+n)

= C(n,N)
∫

(M,g(τ))

τ−
n
2

(
1− L

2
√
τ

1
N

)N
dvol +O(N−1).

As N → ∞,
(

1− L
2
√
τ

1
N

)N
→ e

− L
2
√
τ . By (1.1) the reduced volume Ṽ (τ) =∫

(M,g(τ))
τ−n/2e−ldvol is monotonically decreasing in τ .

Reduced volume monotonicity has rigidity result [30], it will be very interesting
to study its stability case.

5 Volume compariosn for non-smooth metric mea-
sure spaces

In [39, 40, 25] Sturm and Lott-Villani independently defined notion of Ricci curva-
ture lower bounds, called curvature dimension condition, for a metric space with
a measure. The curvature dimension conditions correspond to the convexity of
certain entropy functions on the space of probability measures. Any Gromov-
Hausdorff limits of manifolds with Ricci curvature bounded from below satisfy the
curvature dimension condition. For smooth metric measure spaces the curvature
dimension conditions exactly correspond to the Bakry-Emery Ricci tensors in Sec-
tion 3 are bounded from below, which give Bishop-Gromov volume comparison
when the dimension is finite.

For a Riemannian manifold Ricci curvature lower bound is not characterized
by Bishop-Gromov volume comparison. In fact, the local Bishop-Gromov volume
comparison (only true for small r) is characterized by scalar curvature lower bound.
Instead Ricci curvature lower bound is characterized by an infinitesimal Bishop-
Gromov volume comparison [29], see also [40, 10]. One can use this to define Ricci
curvature lower bound for metric space with measure, but there are ambiguity in
dimension.

With volume comparison it seems one readily get information about funda-
mental group again. Again we need to apply it to the universal. Hence we need to
first investigate if the universal cover of spaces satisfying the curvature dimension
condition exists. If it exits, whether the universal cover is simply connected. For
Gromov-Hausdorff limits of manifolds with Ricci curvature bounded from below,
Sormani-Wei [37, 38] showed the universal cover exists.

Acknowledgement: Part of this note represents author’s lecture at RTG
seminar, Michgan State University 2007 and four lectures given at summer school
on “New approaches to curvature, Les Diablerets, Switzerland, 2008. I would like
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