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iv



To my parents.

v



Contents
Acknowledgments viiIntroduction 1Background 31 Examples of manifolds with positive Ricci curvature 61.1 Almost 
at left invariant metrics on L . . . . . . . . . . . . . 81.2 Construction of metrics with Ric > 0 . . . . . . . . . . . . . . 131.3 Examples of near elliptic manifolds . . . . . . . . . . . . . . . 202 Ricci curvature and the fundamental group 242.1 The case Ric > 0 . . . . . . . . . . . . . . . . . . . . . . . . . 242.2 The case of almost nonnegative Ricci curvature . . . . . . . . 27Bibliography 33

vi



AcknowledgmentsI would like to thank �rst and foremost my research advisor, ProfessorDetlef Gromoll, for his inspiring guidance, valuable advice and kind helpbeyond the study of mathematics.During the preparation of this thesis, Professor Michael Anderson madeconstructive suggestions, for this and his encouragement I am very grateful.I also wish to thank Professors Je� Cheeger, H. Blaine Lawson, Jr. and RalfSpatzier for their generous help.My sincere thanks also go to the faculty, sta� and all the other membersin the Mathematics Department of State University of New York at StonyBrook , without whose help and moral support this dissertation would nothave been possible.For additional personal assistance, I am very thankful to my husband,and many friends who helped along the way. In particular, I would like tothank Shunhui Zhu and Zhongmin Shen.Finally, thank Alfred P. Sloan Foundation for o�ering me the 1988 Doc-toral Dissertation Fellowship for completing this dissertation.

vii



Introduction
One of the main themes in the development of global riemannian geometry isto understand the interplay between geometric quantities such as curvatureand the topology of a riemannian manifold. We now have a rather satis-factory theory of the structure of riemannian manifolds with nonnegativesectional curvature. Among the most basic results are the Soul Theorem,the Splitting Theorem, and the uniform bounds on the Betti numbers (seenext chapter for details). There have been major developments recently con-cerning the question whether or not various results for sectional curvaturehave analogues for Ricci curvature. Although it has been known for sometime that the Splitting Theorem remains true, it turned out that withoutadditional hypotheses, the other results above do not carry over to the caseof nonnegative Ricci curvature [8, 20, 21] (compare also [1, 22]).In this thesis we construct complete riemannian manifolds with Ric > 0such that the isometry groups contain nilpotent Lie groups. A consequenceof this construction is that every �nitely generated, torsion-free, discrete1



nilpotent group can be realized as the fundamental group of a complete rie-mannian manifold with Ric > 0. Together with work of J. Milnor and M.Gromov, this leads to a fairly good understanding of the structure of thefundamental group of a nonnegativly Ricci curved manifold. Note that inthe nonnegative sectional curvature case, every subgroup must be abelian upto �nite index, as follows from the Soul Theorem and the Splitting Theorem.There are several ways to construct manifolds with Ric > 0. Our con-struction is inspired by examples given by P. Nabonnand [16] and L. B�erard-Bergery [4]. The basic problem here is to put a positive Ricci curvaturemetric on L � R p, where L is a simply connected nilpotent Lie group. Lcan be endowed with a family of almost 
at metrics. To achieve positivity,we use a warped product metric on L � R p and compensate for the slight\negativeness" of L by the R p factor. Variants of this construction will alsobe discussed, yielding some examples of near elliptic manifolds.Motivated by Gromov's conjecture on the fundamental group of a nearelliptic manifold, we give an upper bound on the growth of the fundamentalgroup for a class of such manifolds with a uniform lower volume bound. Therestriction on the volume may be a strong condition. So far, we do not seehow to get around it.
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Background
We refer to [5] for the basic facts in riemannian geometry that will be usedhere. We will now brie
y discuss the three fundamental results concerningthe topology of manifolds with nonnegative sectional curvature, which werementioned in the Introduction.1) The Soul Theorem (J. Cheeger & D. Gromoll [1972], [6]) Let M bea complete riemannian manifold with sectional curvature K � 0. Then Mcontains a compact totally geodesic submanifold S without boundary whichis also convex, 0 � dimS < dimM , and M is di�eomorphic to the normalbundle �(S) of S in M .This puts severe restrictions on the topology of a manifold if it is to ad-mit a complete metric with nonnegative sectional curvature. For example,such a space must be of �nite topological type and be actually homotopic toa closed manifold. Therefore, its cohomology must satisfy Poincar�e-duality.From this fact, D. Gromoll and W. Meyer [8] �rst constructed complete openmanifolds which admit metrics with nonnegative Ricci curvature but do not3



carry any metric with nonnegative sectional curvature.2) The Splitting Theorem (J. Cheeger & D. Gromoll [1972], [7] To-ponogov [1964]) If KM � 0 then M splits as an isometric product �M � Rk,where �M contains no lines and Rk has its standard 
at metric.A particular consequence of this theorem combined with the Soul Theo-rem is that the fundamental group of a manifold with K � 0 must be abelianup to �nite index (having an abelian subgroup with �nite index). However,as we will see, the situation is quite di�erent in the Ricci curvature case, thusproducing many other interesting examples of complete manifolds which ad-mit metrics with nonnegative Ricci curvature but do not carry any metricwith nonnegative sectional curvature.3) Theorem (M. Gromov [1981], [11]) There exists a constant C = C(n)such that every complete n-dimensional riemannian manifold M of nonneg-ative sectional curvature satis�es nXi=0 bi � C;where bi is the i-th Betti number.The question of whether such a uniform bound on the Betti numberscould also exist in the nonnegative Ricci curvature case has been studiedby J. P. Sha and D. G. Yang recently. In fact, they constructed positiveRicci curvature metrics on the connected sums of arbitrarily many copies ofSn � Sm (n;m � 2), showing that there is no uniform bound on the Betti4



numbers. They also showed that complete manifolds with positive Riccicurvature could be of in�nite topological type.
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Chapter 1
Examples of manifolds withpositive Ricci curvature
Suppose M is a compact connected smooth manifold. For a positive number�, a riemannian metric on M is called �-
at, as introduced by M. Gromov[10], if its sectional curvature K and its diameter d obey the relationjKjd2 � �:M is called almost 
at if it admits such metrics for all �.The celebrated \almost 
at manifold theorem" states:Theorem 1 (M. Gromov [10]) There exists an �(n) � 0 so that an �(n)-
at n-dimensional manifold is covered by a nilmanifold. More precisely,1) The fundamental group �1(M) contains a torsion-free nilpotent normalsubgroup � of rank n. 6



2) The quotient G = �1(M)=� has order � C(n) and is isomorphic to asubgroup of O(n).3) The �nite covering of M with the fundamental group � and deckgroup Gis di�eomorphic to a nilmanifold L=�.4) The simply connected nilpotent Lie group L is uniquely determined by�1(M).Later E. Ruh [19] proved a re�nement of the almost 
at manifold theorem.He showed that M itself, not just a �nite covering, is di�eomorphic to L=�,where � is a uniform discrete group in the isometry group of L with respectto some left invariant metric. Such a manifold is called infra-nil.In general nilmanifolds L=� can not be endowed with any left invariantmetric with nonnegative Ricci curvature. However, we will show that onecan put such a metric on L=� � R p, or more generally on M � R p for Malmost 
at, provided p is su�ciently large. Thus almost 
at manifolds arestabily di�eomorphic to complete manifolds with positive Ricci curvature.In this chapter we shall prove the following main result:Theorem 2 Let L be an n-dimensional simply connected nilpotent Lie group.Then for all su�ciently large p, the product manifold Mp+n = L�R p admitscomplete riemannian metrics with strictly positive Ricci curvature such thatthe isometry group of M contains L.We �rst construct a family of almost 
at left invariant metrics on L, then7



we show that some warped product metrics on L� R p have strictly positiveRicci curvature.We will also give some examples of near elliptic manifolds.1.1 Almost 
at left invariant metrics on LLet L be an n-dimensional simply connected nilpotent Lie group, and l itsLie algebra. We construct a family of almost 
at left invariant metrics gr onL, 0 � r <1.It is well-known [23, 3.6.6] that any simply connected nilpotent analyticgroup G is isomorphic to a closed unipotent subgroup of GL(V ) for some�nite-dimensional vector space V . Without loss of generality, we can assumeL = U(m), the closed unipotent subgroup of upper triangular matrices inGL(m). Consider Xi = Xsl; s < l, where Xsl is the m � m-matrix suchthat every entry is 0, except the s-th row and l-th column spot which is1. Then fX1; : : : ; Xng forms a triangular basis for the Lie algebra l, i.e.[X;Xi] 2 li�1, whenever X 2 l, and li�1 is spanned by X1; : : : ; Xi�1. ForX = Pni=1 aiXi, set kXk2 = nXi=1 h2i (r)a2i ; (1.1)where hi(r) = (1 + r2)��i; (1.2)2�i � 4�i+1 = �; �n = �, �i = 2n�i(� + �2 ) � �2 for 1 � i � n � 1, and8



�; � are positive constants. � will be speci�ed later (see below for the wayof choosing the hi(r)). The above norm gives rise to a corresponding almost
at left invariant metric gr on L.Proposition 1 For the metric gr, the curvature satis�es the following rela-tions jKL(Yi; Yj)j � c(1 + r2)��; (1.3)< R(Yi; Yj)Yj; Yk >= 0; i 6= k; (1.4)where Yi = h�1i (r)Xi, c is a constant depending on n and the structure con-stants.To proof (1.3), we need the following lemmaLemma 1 If k[X; Y ]k � ckXkkY k, for any X; Y 2 l; c � 0, then thesectional curvature satis�es jKLj � 6c2.This is elementry and is a consequence of the following basic curvatureformulas for the left invariant metric of a Lie group [5].< R(X; Y )Z;W >=< 5XZ;5YW > � < 5YZ;5XW > � < 5[X;Y ]Z;W >;(1.5)5XY = 12f[X; Y ]� (adX)�(Y )� (adY )�(X)g: (1.6)Q.E.D.Now the commutator of a nilpotent group satis�es[Xi; Xj] = Xk<min(i;j) rijkXk: (1.7)9



>From Lemma 1 and ( 1.7) it is clear that if we scale the norm of Xi muchfaster than the norm of Xj when i < j, then the curvature KL will be verysmall. This is exactly the way we choose the scale functions hi(r).Let c1 = max jrijkj, thenk[Xi; Xj]k2 � c21 Xk<min(i;j) h2k � c21 n� 1(1 + r2)� h2ih2j ;k[X aiXi;X bjXj]k � kXi;j aihibjhj [Xi; Xj]hihj k� c1(n� 1) 12 Xi;j jaihijjbjhjj=(1 + r2)�2� c1n(n� 1) 12kaihikkbjhjk=(1 + r2)�2 :The norm of the Lie algebra is � c1n(n � 1) 12=(1 + r2)�2 , therefore we haveproved (1.3).To verify (1.4), �rst we calculate the Levi-Civita connection of gr. By(1.6) and (1.7), we �nd 5YjYj = 0; (1.8)5YiYj = 12h�1i (r)h�1j (r)f[Xi; Xj]� (adXj)�(Xi)g; i < j; (1.9)5YiYj = 12h�1i (r)h�1j (r)f[Xi; Xj]� (adXi)�(Xj)g; i > j: (1.10)>From (1.5) and (1.8)< R(Yi; Yj)Yj; Yk >=< 5YiYj;5YjYk > � < 5[Yi;Yj ]Yj; Yk > :Without loss of generality, we assume i < j < k. Using (1.9) and (1.7), wehave 10



< 5YiYj;5YjYk >= 14h�1i (r)h�2j (r)h�1k (r)f< [Xi; Xj]; [Xj; Xk] > � < [Xk; [Xi; Xj]]; Xj >� < [Xj; [Xj; Xk]]; Xi >g= 14h�1i (r)h�2j (r)h�1k (r) < [Xi; Xj]; [Xj; Xk] >;< 5[Yi;Yj ]Yj; Yk > = 12h�1i (r)h�2j (r)h�1k (r)f< [[Xi; Xj]; Xj]; Xk >� < [Xi; Xj]; [Xj; Xk] >g= �12h�1i (r)h�2j (r)h�1k (r) < [Xi; Xj]; [Xj; Xk] > :Therefore,< R(Yi; Yj)Yj; Yk >= 34h�1i (r)h�2j (r)h�1k (r) < [Xi; Xj]; [Xj; Xk] >; i < j < k:(1.11)Similarly we can �nd< R(Yi; Yj)Yj; Yk >= 12h�1i (r)h�2j (r)h�1k (r) < [Xi; Xj]; [Xj; Xk] >; (1.12)for j < i < k, or i < k < j.Hence it su�ces to show< [Xi; Xj]; [Xj; Xk] >= 0; i 6= k: (1.13)Now< [Xij; Xkl]; [Xkl; Xpq] > = < �jkXil � �liXkj; �lpXkq � �qkXpl >= 0;11



unless i = j, or i = p and j = q.This yields (1.13) and proves (1.4). Q.E.D.Remark 1 For a given uniform discrete subgroup � � L, the diameterd(L=�) �! 0 when r �!1.Remark 2 In fact we will only use the partial result thatRicL(Yi) � � c1 + r2 (1.14)for the construction of metrics with Ric > 0 on L� R p in the next section.Remark 3 To simplify expressions, we had scaled each Xi di�erently.Actually one can just scale each level (diagonal) di�erently. The metric grconstructed in this way will be invariant under �, an extension of a lattice� � L by a �nite group H, if � � Iso(L; g) for some left invariant metric g.This is because H preserves the levels. Note that gr is not invariant underthe whole isometry group of L with some left invariant metric.
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1.2 Construction of metrics with Ric > 0We de�ne a warped product metric g on M = L� R p byg = gr + dr2 + f 2(r)ds2; (1.15)where gr is the metric de�ned as before on L with � = 1, ds2 is the canonicaleuclidean metric on the sphere Sp�1 � R p; andf(r) = r(1 + r2)�1=4: (1.16)g is a complete metric on M , since f(0) = 0; f 0(0) = 1; f 00(0) = 0; f(r) > 0for r > 0; hi(r) > 0 for r � 0; h0i(0) = 0 for 1 � i � n:It is clear that the isometry group of g contains L.Now we will calculate the Ricci curvature of this metric and show RicM >0. Let H = @=@r, Uj = f(r)�1Vj, where 1 � j � p� 1 and V1; : : : ; Vp�1 isan orthonormal basis of Sp�1 with cononical metric. Let!0; !01; : : : ; !0n; !0n+1; : : : ; !0n+p�1be dual to the basis H; X1; : : : ; Xn; V1; : : : ; Vp�1 of M. Denote by!i = hi(r)!0i (1 � i � n);!n+j = fi(r)!0n+j (1 � j � p� 1):Then, (1.15) becomes the following,g = n+p�1Xi=0 !2i :13



By the Cartan structure equations, we haved!i = h0i(r)!0 ^ !0i + hi(r)d!0i= nXk=1!ik ^ !k + !i0 ^ !0 (1 � i � n); (1.17)d!n+j = f 0(r)!0 ^ !0n+j + f(r)d!0n+j= p�1Xk=1!n+jk+n ^ !k+n + !n+j0 ^ !0 (1 � j � p� 1); (1.18)d!0 = 0 = n+p�1Xk=1 !0k ^ !k: (1.19)From (1.17), (1.18) and (1.19) we �nd!i0 = �h0i(r)hi(r)!i (1 � i � n); (1.20)!n+j0 = �f 0(r)f(r) !n+j (1 � j � p� 1); (1.21)!n+jn+k = !0n+jn+k (1 � j; k � p� 1): (1.22)Therefore, < R(Yi; Yj)Yj; Yk > = 0 (i 6= k); (1.23)< R(Yi; H)H; Yj > = 0 (i 6= j); (1.24)< R(Yi; Uj)Uj; Yk > = 0 (i 6= k); (1.25)K(Yi; Yj) = KL(Yi; Yj)� h0i(r)h0j(r)hi(r)hj(r) (i 6= j; 1 � i; j � n); (1.26)K(Yi; H) = �h00i (r)hi(r) (1 � i � n); (1.27)K(Uj; H) = �f 00(r)f(r) (1 � j � p� 1); (1.28)14



K(Uj; Uj) = 1f(r)2 � (f 0(r)f(r) )2 (1 � j � p� 1); (1.29)K(Yi; Uj) = �h0i(r)f 0(r)hi(r)f(r) (1 � i � n; 1 � j � p� 1): (1.30)The Ricci curvature is the following:Ric(H;Uj) = 0 (1 � j � p� 1);Ric(Yi; H) = Ric(Yi; Uj) = 0 (1 � i � n; 1 � j � p� 1);Ric(Yi; Yj) = 0 (i 6= j; 1 � i; j � n);Ric(Yi; Yi) = �h00i (r)hi(r) � (p� 1)h0i(r)f 0(r)hi(r)f(r) +RicL(Yi)�Xi 6=j h0i(r)h0j(r)hi(r)hj(r)(1 � i � n); (1.31)Ric(H;H) = � nXi=1 h00i (r)hi(r) � (p� 1)f 00(r)f(r) ; (1.32)Ric(Uj; Uj) = �f 00(r)f(r) + p� 2f(r)2 � (p� 2)(f 0(r)f(r) )2 � nXi=1 h0i(r)f 0(r)hi(r)f(r)(1 � j � p� 1): (1.33)Since 1� (f 0(r))2 � 0, f 00(r) � 0, f 0(r) > 0, h0(r) � 0, we have Ric(Uj; Uj) >0 in (1.34). For the positivity of the Ricci curvature in the equations (1.32)and (1.33), we insert the functions f(r) of (1.16), hi of (1.2), and use theestimate in (1.14). We obtainRic(Yi; Yi) � f�2�i[(2�i + 1)r2 � 1] + (p� 1)�i(2 + r2)�c(1 + r2)�Xi 6=j 4�i�jr2g=(1 + r2)2; (1.34)Ric(H;H) = f� nXi=1 2�i[(2�i + 1)r2 � 1]+(p� 1)r2 + 64 g=(1 + r2)2: (1.35)15



Positivity of the Ricci curvature in the equations (1.35) and (1.36) is equiv-alent to the following two inequalities,(p� 1)�i > 4Xi 6=j �i�j + 2�i + c; (1.36)p� 1 > 4 nXi=1(4�2i + 2�i): (1.37)Recall that �i = (2� + 1)2n�i�1 � 12 , for � > 0. Clearly (1.37) and (1.38)hold for p su�ciently large. This completes the proof of Theorem 2. Q.E.D.Note there is no metric on L� R p invariant under L with K � 0 for anyp, simply because the fundamental group of a complete manifold with K � 0is abelian up to �nite index (see the previous chapter).Remark 4 The smallest p that yields positive Ricci curvature onMp+n =L� R p by means of our construction is quite large in general. For example,in the case of the three-dimensional Heisenberg group L = H3, we have tochoose p > 673. (With a slightly re�ned choice of functions, p > 26 willalready work, see the example below.) We do not known whether or not pcan be chosen much smaller. However, by [2], no �nitely generated subgroupof�1(M) is of polynomial growth of order � n�2 ifMn is a complete rieman-nian manifold of bounded geometry with RicM > 0. Therefore necessarilyp � 4 when L = H3.
16



Example. If L = H3 = 0BBBBB@ 1 x z0 1 y0 0 1
1CCCCCAis the three-dimensional Heisenberg group. De�ne a warped product metricg on H3 � R p byg = h2(r)(dx2 + dy2) + g2(r)(dz � xdy)2 + dr2 + f 2(r)ds2;where ds2 is the cononical metric on Sp�1 � R p, and g; h > 0; g0(0) =h0(0) = 0; f(0) = 0; f 0(0) = 1; f 00(0) = 0 and f(r) > 0 for r > 0. g is acomplete metric on H3 � Rp.Denote by X1 = h�1(r)@=@x;X2 = h�1(r)(@=@y + x@=@z);X3 = g�1(r)@=@z;X4 = @=@r;X5 = f�1(r)V;where V is an orthonormal basis of Sp�1 with cononical metric. NowX1; : : : ; X5is an orthonormal basis of H3 � R p with respect to g.Calculations as before yieldRic(Xi; Xj) = 0 (i 6= j);Ric(Xi; Xi) = �h00h � (p� 1)f 0h0fh � g22h4 � (h0h )2 � h0g0hg (i = 1; 2);17



Ric(X3; X3) = �g00g � (p� 1)f 0g0fg + g22h4 � 2h0g0hg ;Ric(X4; X4) = �2h00h � g00g � (p� 1)f 00f ;Ric(X5; X5) = �f 00f + p� 2f 2 � (p� 2)(f 0f )2 � 2f 0h0fh � f 0g0fg :Now let f(r) = r(1 + r2)1=4 ;g(r) = 1(1 + r2)� ;h(r) = (f 0(r))�;where �; � are positive constants satisfying 2��� = 1. And functions f; g; hsatisfy the initial conditions.When choosing � = 1=2; � = 3=4, it can be easily checked that Ric > 0if p > 26.LetM denote a complete n-diemensional riemannian manifold. By virtueof Ruh's re�nement of Gromov's almost 
at manifold theorem (see the begin-ning of this chapter), the following result is therefore a corollary of Theorem 2and Remark 3.Theorem 3 If M is �̂(n)-
at, then M � R p carries a complete metric withRic > 0 for p su�ciently large.Theorem 2 also shows that the double of X, where X is a compact manifoldwith boundary which carries a metric such that both the Ricci curvature of18



X and the mean curvature of its boundary are positive, need not carry ametric with nonnegative Ricci curvature, as it would have in case of positivescalar curvature [13]. We just take X = L=� � Dn, where �; L as de�nedbefore, and Dn is the unit disk. It has positive Ricci curvature by Theorem 2,and it can also be easily checked that the mean curvature of its boundary ispositive. But the double of X is L=�� Sn which does not carry any metricwith Ric � 0, since it is compact and the fundamental group of a compactmanifold with Ric � 0 is abelian up to �nite index by the Splitting Theoremof J. Cheeger and D. Gromoll [7].
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1.3 Examples of near elliptic manifoldsUsing a construction of J. Nash [17] concerning the existence of metric withRic > 0 on principal bundles and results of Section 1.1, we can construct alarge class of near elliptic manifods. We call a compact manifold near elliptic(weak near elliptic) if it admits a metric with K d2 > �� (Ric d2 > ��) forany � > 0.Proposition 2 Let � : P ! Mn be a principal Lm-bundle over a compactmanifold M . If M admits a metric <;>M with KM � 0 (RicM � 0), thenP=� is a near elliptic (weak near elliptic) manifold for any uniform discretesubgroup � � L.Proof. For a �xed connection ! on P , de�ne a family of metrics <;>ron P , r > 0, by< X; Y >r=< �(X); �(Y ) >M +(1 + r2)�2gr; (1.38)for X; Y 2 TpP . Here gr is the metric de�ned as before on L with � = 3.The map � : P ! Mn becomes a riemannian submersion for <;>r. Thesemetrics are invariant under L, and the �bers in P are totally geodesic withrespect to <;>r.We will show that Kr (Ricr) is almost nonnegative when r ! +1, andthe diameter of P=� is bounded independent of r. Actually P=� collapsesto the base manifold M (in the sense of Cheeger-Gromov).Let H1; : : : ; Hnbe an orthonormal basis of the horizontal subspace. We will denote various20



quantities associated to <;>r with a subscript or superscript. For r = 1, ther will usually be deleted. Recall that Y1; : : : ; Ym is an orthonormal basis ofl with respect to gr.For X 2 TpP , kXkr = 1, without loss of generality, we can assumeX = aY1(1 + r2) + bH1 for some a; b satisfying a2 + b2 = 1. ThenX; bY1(1 + r2)� aH1; Y2(1 + r2); : : : ; Ym(1 + r2); H2; : : : ; Hnis an orthonormal basis of TpP . HenceRicr(X) = Kr(X; bY1(1+ r2)� aH1)+ mXi=2Kr(X; Yi(1+ r2))+ nXj=2Kr(X;Hj):(1.39)We �nd (see [17] for detail)Kr(X; bY1(1 + r2)� aH1) = (1 + r2)�2kAH1Y1k2 � 0; (1.40)Kr(X; Yi(1 + r2)) � a2(1 + r2)2KL(Y1; Yi); (1.41)Kr(X;Hj) � b2[KM(�(H1); �(Hj))]� 3b2(1 + r2)�2kAH1Hjk2gr+2ab(1 + r2)�1 < R(H1; Hj)Hj; Y1 >gr : (1.42)Here the (1,2)-tensor A is de�ned byAXY = (5XhYv)h + (5XhYh)vfor any C1 vector �eld X; Y on P , where X = Xh+Xv is the docompositioninto horizontal and vertical components. The terms < R(H1; Hj)Hj; Y1 >grand kAH1Hjk2gr have bounds independent of Yi and Hj. ThusRicr(X) = b2RicM(�(H1)) + a2(1 + r2)2RicL(Y1) +O( 11 + r2 ):21



With Proposition 1, we have Kr � � c01 + r2if KM � 0, orRicr(X) � a2(1 + r2)2 � (� c(1 + r2)3 ) +O( 11 + r2 )� � c001 + r2if RicM � 0; for some constants c0; c00. The diameter of P=� is clearlybounded independently of r. Therefore P=� is a near elliptic (weak nearelliptic) manifold. Q.E.D.A corollary of Theorem 2 and Proposition 2 isTheorem 4 Let P ! M be a principal L-bundle over a compact manifoldM . If M admits a metric with RicM � 0, then P � R p admits a completemetric which is invariant under L and with Ric > 0 for p su�ciently large.On the basis of these results, we believe that M � R p would still adimtsa complete metric with Ric > 0 for p su�ciently large, if M is a weak nearelliptic manifold. This would give an a�rmative answer to a generalizedconjecture of M. Gromov [10] (see the end of Section 2.2). But it looksdi�cult to construct the metric without knowing more about the structureof such manifolds. It seems possible that all weak near elliptic manifolds22



are somewhat like principal L-bundles over base manifolds admitting metricswithRic � 0. Recently T. Yamaguchi developed some structure theory aboutweak near elliptic manifolds with an additonal condition that the sectionalcurvature is bounded from below [24].
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Chapter 2
Ricci curvature and thefundamental group
2.1 The case Ric > 0The �rst result about the fundamental group of a complete manifoldM withRic > 0 is due to S.B. Myers [15]. It says that ifM is compact and RicM > 0then �1(M) is �nite. This can not be extended to complete non-compactmanifolds as in the case of positive sectional curvature. P. Nabonnand [16]constructed a metric on S1� R 3 with positive Ricci curvature, showing thatthe fundamental group could be in�nite. In fact we haveCorollary 1 Every �nitely generated torsion-free nilpotent group can be real-ized as the fundamental group of a complete riemannian manifold with strictlypositive Ricci curvature. 24



This follows immediately from Theorem 2 and the following classical re-sult [18, p 40].Theorem 5 (A. I. Malcev) A group � is isomorphic to a lattice in a sim-ply connected nilpotent Lie group if and only if1) � is �nitely generated,2) � is nilpotent, and3) � has no torsion.On the other hand, J. Milnor [14] studied the growth of �nitely generatedsubgroups of the fundamental group of a manifold admitting a completemetric of nonnegative Ricci curvature. Let us recall the de�nition of thegrowth of a �nitely generated group �. Choose a �nite set of generators, sayg1; : : : ; gl. Then every element of � can be expressed as a word in g1; : : : ; gl.Now de�ne the growth function as#�(N) = the number of distinct words in � of length � N:� is said to be of polynomial growth if there exists an integer k and a constantC such that #�(N) � CNk:By employing volume comparison, J. Milnor proved the following basic result.Theorem 6 (J. Milnor [14]) If M is complete and RicM � 0, then every�nitely generated subgroup of �1(M) is of polynomial growth.25



This combined with the following remarkable result shows that every suchsubgroup of �1(M) is nilpotent up to �nite index.Theorem 7 (M. Gromov [9]) A �nitely generated group is of polynomialgrowth i� there is a nilpotent subgroup of �nite index.Therefore, the structure of the torsion-free part of the fundamental groupof a manifold with Ric � 0 is now more or less clear. However, the questionwhether or not it is �nitely generated still remains open.
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2.2 The case of almost nonnegative Ricci cur-vatureIn this section we shall proveTheorem 8 For any constant v > 0, there exists � = �(n; v) > 0 suchthat if a complete manifold Mn admits a metric satisfying the conditionsRicM � ��; diam(M) = 1; and V ol(M) � v, then the fundamental group ofM is of polynomial growth with degree � n.Essential to our proof is a recent �niteness result of M. Anderson [3] forthe fundamental groups of the class of compact n-dimensional riemannianmanifolds M such thatRicM � (n� 1)H; vol(M) � v; d(M) � D: (2.1)Actually we need the following more precise description of the fundamen-tal group.Theorem 9 (M. Anderson [3]) GivenM satisfying the bounds (2.1), then�1(M) has a presentation which obeys the following:1) The number of generators g1; : : : ; gN is uniformly bounded withN � N(v=Dn; HD2);2) d(gi(~x0); ~x0) � 2D + �, for any � > 0,3) every relation is of the form gigj = gk.27



The proof of Theorem 9 is closely related and useful to our proof ofTheorem 8, so we will give the arguments. However, before going into theproof, let us mention a general lemma of M. Gromov which was pointed outin [12, 5.28].Lemma 2 (M. Gromov) Let M be a riemannian manifold with diameterD. There is a system of generators fgig of �1(M) = �1(M;x0), and rep-resentatives 
i of gi such that l(
i) � 2D + � and all relations among thegenerators are of the form gigj = gk.Proof of Lemma 2. First note that �1(M;x0) is generated by geodesicloops of length � 2D + �, since any curve 
 closed at x0 can be subdividedinto arcs of lengths � �. Thus 
 is represented as a product of closed curves oflengths � 2D+ �, which then are deformed via length decreasing homotopiesto geodesic loops.To show that all the relations can be reduced to the form gigj = gk,notice that if 
(s) (0 � s � 1) is nullhomotopic in M , and l(
) � �. Join
( i3) by a minimizing geodesic gi to x0, 0 � i � 2. Then each closed curveg�1i [
j[ i3 ; i+13 ][gi+1 is of length � 2D+� and homotopic to a geodesic loop �
iwhere i take values in Z3. We have �
0�
1 = �
�12 representing the contractibleloop 
(s).Now let 
(t; s); 0 � t � 1, be a piecewise di�erential homotopy from
 = 
(0; s) to fx0g = 
(1; s). By uniform continuity we can choose N and
28



subdivide [0; 1]� [0; 1] into small squares such that the curves
1ij : t ! 
( iN + t; jN ); 0 � t � 1N ;
2ij : s ! 
( iN ; jN + s); 0 � s � 1N ;
3ij : t ! 
( iN + t; jN + t); 0 � t � 1N ;have lengths � 13�. Again join the points 
( iN ; jN ) by minimizing geodesicsgij to x0. Then each curveg�1ij [ 
1ij [ 
2i+1j [ (
3ij)�1 [ gij;g�1ij [ 
3ij [ (
1i+1j+1)�1 [ (
2ij+1)�1 [ gijis of the form discussed before and represents a relation as in form 3) ofTheorem 9. The product of these relations represents the contractible loop
(s). Q.E.D.Therefore we are only left to prove 1) of Theorem 9. Let� = fhomotopically distinct loops of length � 2D + �g;N = #�. Choose a base point ~x0 in the universal covering ~M p�! M , andlet x0 = p(~x0), and F a fundamental domain for the action of �1(M) on~M which contains ~x0. For example, one may choose F to be the Dirichletfundamental domain, i.e.F = \
2�1(M)f~x 2 ~M ; dist(~x; ~x0) � dist(~x; 
~x0)g: (2.2)29



Let B(~x0; r) (respectively B(x0; r)) be the ball of radius r in ~M (respectivelyM). Then it is easily veri�ed that B(~x0; r)\F is mapped isometrically ontoB(x0; r) under the covering map , modulo a set of measure zero correspondingto @F . In particular, vol(B(~x0; r) \ F ) = vol(B(x0; r)). Taking r = d to bethe diameter of M one has vol(F ) = vol(M), since it is clear from ( 2.2) thatF � B(~x0; d).Now observe that [
2�
(F ) � B3D+�(~x0);or Nvol(M) � vol(B3D+�(~x0)):By volume comparison and (2.1), N � N(v=Dn; HD2). This proves Theo-rem 9.Proof of Theorem 8. Choose a base point ~x0 in the universal covering~M p�! M , and let x0 = p(~x0), and g1; : : : ; gr a set of generators of thefundamental group �1(M) viewed as deck transformations in the isometrygroup of ~M . Denote by �(s) = f distinct words in �1(M) of length � s g,
(s) = #�(s), and l = max1�i�rfd(~x0; gi(~x0))g.Choose a fundamental domain F of �1(M) which contains ~x0, then[g2�(s)g(F ) � Bsl+d(~x0);where d = d(M) = 1. Therefore,
(s) � vol(M) � vol(Bsl+1(~x0)): (2.3)30



Now suppose on the contrary, for any � > 0, there is a manifold Mnwith a metric satisfying RicM � ��; d(M) = 1; vol(M) � v, and �1(M) isnot of polynomial growth with degree � n. In particular, when taking thegenerators of Theorem 9, we can �nd real numbers si for all i such that
(si) > isni ; (2.4)where si is independent of �, since by Theorem 9 there are only �nite manytypes of presentations forf�1(M); M satisfying the bounds(2:1)g;if we choose the generators of Theorem 9. This is a crucial point here.On the other hand, by ( 2.3) and volume comparison theorem we have
(s) � 1v Z 3s+10 (sinhp�tp� )n�1dt:For any �xed su�ciently large s0, there is �0 = �(s0) such that for all s �s0; � � �0, 
(s) � 6nnvsn: (2.5)Now take i0 > 6n=nv. Then for � < �(si0), using ( 2.4) and ( 2.5), we get acontradiction. Q.E.D.A conjecture of M. Gromov states that the fundamental group of a com-pact manifold with almost nonnegative sectional curvature (i.e. there exists31



a metric such that K d2 � �� for any � > 0) is of polynomial growth [10].One would have proved Gromov's conjecture if the hypothesis of a lower vol-ume bound in Theorem 8 could be removed. However this is not trivial atall. In fact the degree of the growth of the fundamental group of a com-pact manifold with almost nonnegative sectional curvature is not necassarybounded by the dimension (eg. nilmanifolds). Still, the following conjecturelooks reasonable.Conjecture 1 The fundamental group of a weak near elliptic manifold is ofpolynomial growth.
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