Introductory Lecture

April 3, 2018

1 Introduction

In 1859 Riemann studied the zeros of the Riemann zeta function $\zeta(s)$ and linked them to the distribution of prime numbers. In 1927 Pólya introduced a family of functions $H_t(z)$, parametrized by $t \in \mathbb{R}$, with H_0 giving the Riemann zeta function. The function H_t can be viewed as the evolution of the function H_0 under the backwards heat flow. The zeros of H_0 are linked to the zeros of ζ which are intimately related to prime numbers. This quarter we study the zeros of the entire functions $H_t(z)$; do they carry arithmetical information? If so, how?

2 The functions $H_t(z)$

In his 1859 paper B. Riemann [6] introduced his Riemann xi function ξ , defined as

$$\xi(s) := \frac{1}{2}s(s-1)\pi^{-s/2}\Gamma\left(\frac{s}{2}\right)\zeta(s),$$

where ζ is the Riemann zeta function

$$\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}, \quad \operatorname{Re}(s) > 1.$$

The motivation for his xi function is that the critical zeros $\operatorname{Re}(s) = 1/2$ of ζ corresponds to the real zeros of ξ , up to a change of variables ¹, and vice versa. Let $H_0 : \mathbb{C} \to \mathbb{C}$ denote the function

$$H_0(z) := \frac{1}{8}\xi\left(\frac{1}{2} + \frac{iz}{2}\right)$$

The Riemann Hypothesis is equivalent to $H_0(z)$ having only real zeros. The function $H_0(z)$ is even, entire, and has the Fourier representation

$$H_0(z) = \int_0^\infty \Phi(u) \cos(zu) du,$$

¹Thank you to G. Sarajian for the correction.

where

$$\Phi(u) := \sum_{n=1}^{\infty} (2\pi^2 n^4 e^{9u} - 3\pi n^2 e^{5u}) \exp(-\pi n^2 e^{4u})$$

is a real function with very fast decay at infinity. In 1927 G. Pólya [5] introduced a family of functions $H_t : \mathbb{C} \to \mathbb{C}, t \in \mathbb{R}$, by the formula

$$H_t(z) := \int_0^\infty \exp(tu^2) \Phi(u) \cos(zu) du.$$

This function H_t can be viewed as the evolution of the function H_0 under the backwards heat equation $\partial_t H_t(z) = -\partial_{zz} H_t(z)$. In 1950 N.C. de Bruijn [2] showed that if $t \ge 1/2$, then $H_t(z)$ has only real zeros. In 1976 C.M. Newman [4] showed that there exists a constant $\Lambda \in (-\infty, 1/2]$, now known as the de Bruijn-Newman constant, such that

 $H_t(z)$ has only real zeros if and only if $t \ge \Lambda$.

The Riemann Hypothesis is then equivalent to $\Lambda \leq 0$. Newman [4] remarked that

The problem of determining whether a Fourier transform has only real zeros arises in two rather disparate areas of mathematics: number theory and mathematical physics. In number theory, the problem is intimately associated with the Riemann hypothesis, while in mathematical physics it is closely connected with the Lee-Yang theorem of statistical mechanics and quantum field theory.

Newman [4] then conjectured the complementary bound $\Lambda \geq 0$, now known as Newman conjecture, and remarked

This new conjecture is a quantitative version of the dictum that the Riemann hypothesis, if true, is only barely so.

In 2014 J. Stopple [8] generalized Newman's conjecture to other Dirichlet L-functions and gave a lower bound on the analog of Λ .² In January 2018 B. Rodgers and T. Tao [7] posted an article to the arXiv proving Newman's conjecture. The generalized version is still open.

3 Li's sequence λ_n

Let

$$\lambda_n := \frac{1}{(n-1)!} \frac{d^n}{ds^n} \left[s^{n-1} \log \xi(s) \right]_{s=1}.$$

In 1997 X.-J. Li [3] proved that the Riemann Hypothesis is equivalent to $\lambda_n \geq 0$ for all n > 0. This is known as Li's criterion for the Riemann Hypothesis. Two years latter E. Bombieri and J.C. Lagarias [1] generalized Li's argument showing that it is not specific to the Riemann zeta function. Bombieri and Lagarias [1] also gave arithmetical interpretation for Li's sequence λ_n , via Weil's explicit formula, relating λ_n to prime numbers. It is this arithmetical interpretation that we are going to explore.

²Thank you to J. Stopple for the clarification.

4 Some Questions

- 1. For each $t \in \mathbb{R}$, can we construct a sequence $\lambda_n(t)$ with $\lambda_n(0) = \lambda_n$ such that H_t has only real zeros if and only if $\lambda_n(t) \ge 0$ for all n?
- 2. Can we find an explicit formula relating a sum over zeros of $H_t(z)$, $0 < t \le 1/2$, to a sum over primes?
- 3. Can we adapt the techniques in [7] to settle the generalized Newman conjecture posed in [8]?

4.1 Question 1

The number λ_n can be expressed in terms of over the non-trivial zeros ρ of ζ as

$$\lambda_n = \sum_{\rho} \left[1 - \left(1 - \frac{1}{\rho} \right)^n \right],\tag{1}$$

where the sum over ρ is understood as

$$\sum_{\rho} = \lim_{T \to \infty} \sum_{|\mathrm{Im}(\rho)| \le T}.$$
 (2)

Theorem 1. ([1, Lemma 2]) For n = 1, 2, 3, ..., the inverse Mellin transform of the function $1 - (1 - 1/s)^n$ is

$$g_n(x) = \begin{cases} P_n(\log x), & \text{if } 0 < x < 1, \\ n/2, & \text{if } x = 1, \\ 0, & \text{if } x > 1, \end{cases}$$
(3)

where $P_n(x)$ is the polynomial

$$P_n(x) = \sum_{j=1}^n \binom{n}{j} \frac{x^{j-1}}{(j-1)!}.$$
(4)

4.2 Question 2

Let f(x) be a continuously differentiable function on $(0, \infty)$. If

$$F(s) = \int_0^\infty f(x) x^{s-1} dx,$$
(5)

then

$$f(s) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(s) x^{-s} ds.$$
 (6)

The function F(s) is called the Mellin transform of f(x). Let ρ be a non-real zero of $\zeta(s)$. Then ρ is also a zero of $\xi(s)$. Assume

$$f(x) = \begin{cases} O(x^{\delta}) \text{ as } x \to 0^+, \\ O(x^{1-\delta}) \text{ as } x \to \infty, \end{cases}$$
(7)

for some $\delta > 0$. Let $\tilde{f}(x) = \frac{1}{x} f\left(\frac{1}{x}\right)$ and $F(s) = \int_0^\infty f(x) x^{s-1} dx$.

Theorem 2. (Weil explicit formula)

$$\sum_{\rho} F(\rho) = \int_{0}^{\infty} (f(x) + \tilde{f}(x)) dx - (\log \pi + \gamma) f(1)$$
(8)

$$-\int_{1}^{\infty} (f(x) + \tilde{f}(x) - \frac{2}{x^2}f(1))\frac{xdx}{x^2 - 1}$$
(9)

$$-\sum_{n=1}^{\infty} \Lambda(n)(f(n) + \tilde{f}(n)).$$
(10)

'Explicit' here means that the formula is exact; there is no error term. The main feature of this formula is that the left side is a sum over (non-trivial) zeros of $\zeta(s)$ and the right side involves a sum over primes, hence, connecting zeros of $\zeta(s)$ to primes numbers.

4.3 Question 3

Let -D < 0 be a fundamental discriminant and χ the Kronecker symbol. Consider the L-functions

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}.$$
(11)

Let

$$\Xi_t(x,\chi) = \int_0^\infty e^{tu^2} \Phi(u,\chi) \cos(ux) du,$$
(12)

where

$$\Phi(u,\chi) = 4\sum_{n=1}^{\infty} \chi(n)n \exp(3u/2 - n^2\pi \exp(2u)/D).$$
(13)

The function $\Xi_t(x,\chi)$ satisfies the backward heat equation

$$\frac{\partial \Xi}{\partial t} = -\frac{\partial^2 \Xi}{\partial x^2}.$$
(14)

In [8] J. Stopple showed that for $t \ge 1/2$, the function $\Xi_t(x,\chi)$ has only real zeros, and if $\Xi_t(x,\chi)$ has only real zeros for some time t, then $\Xi_{t'}(x,\chi)$ also has only real zeros for any t' > t. There is a constant $\Lambda_{-D} \in (-\infty, 1/2]$ such that $\Xi_t(x,\chi)$ has only real zeros if and only if $t \ge \Lambda_{-D}$, and it has some complex zeros if $t < \Lambda_{-D}$. Stopple defined

$$\Lambda_{\rm Kr} = \sup\{\Lambda_{-D}| - D \text{ fundamental}\}$$
(15)

generalizing the de Bruijn-Newman constant Λ , then made the conjecture

$$\Lambda_{\rm Kr} \ge 0, \tag{16}$$

generalizing Newman's conjecture, and gave a lower bound

$$\Lambda_{\rm Kr} > -1.3 \times 10^{-7} \tag{17}$$

for the analog of the de Bruijn-Newman constant.

References

- [1] E. Bombieri and J. C. Lagarias, Complements to Li's criterion for the Riemann hypothesis, J. Number Theory. 77 (1999), 274-287. [pdf] [Review]
- [2] N. C. de Bruijn, The roots of trigonometric integrals, Duke J. Math. 17 (1950), 197-226.
 [pdf] [Review]
- [3] X.-J. Li, The positivity of a sequence of numbers and the Riemann hypothesis, J. Number Theory. 65 (1997), 325-333. [pdf] [Review]
- [4] C. M. Newman, Fourier transforms with only real zeroes, Proc. Amer. Math. Soc. 61 (1976), 246-251. [pdf]
- [5] G. Pólya, *Uber trigonometrische Integrale mit nur reelen Nullstellen*, J. für die reine und angewandte Mathematik **158** (1927), 6-18. [pdf]
- [6] B. Riemann, Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse (On the Number of Prime Numbers less than a Given Quantity), Monatsberichte der Berliner Akademie (1959). [pdf]
- [7] B. Rodgers and T. Tao, *The De Bruijn-Newman constant is non-negative*, arXiv preprint. arXiv:1801.05914 [math.NT]
- [8] J. Stopple, Notes on low discriminants and the generalized Newman conjecture, Funct. Approx. Comment. Math. **51** (2014), no. 1, 23-41. [pdf] [Review]