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Introduction

Notation:
- Given a real function g(x) and a function f (x), we have f (x) = O(g(x)) means that
there exists a constant C independent of x such that |f (x)| ≤ Cg(x) for all x .

- We’ll also use � and �, where f (x)� g(x) is equivalent to f (x) = O(g(x)).

- f (x) ∼ g(x) means f (x)/g(x)→ 1 as x →∞.

- f (x) = o(g(x)) means f (x)/g(x)→ 0 as x →∞



History

- In 1621, C. G. Bachet claimed without proof that every natural number is a sum of
four squares. It wasn’t until 1770 until Lagrange provided a proof of this theorem.

- In 1770, Edward Waring wrote that every natural number is a sum of 9 nonnegative
cubes, and 19 fourth powers, and so on. This is the genesis of Waring’s Problem,
which concerns writing natural numbers as sums of kth powers.

- The original problem focused on being able to write all natural numbers as a sum of
kth powers. We denote g(k) as the smallest number such that every natural number is
the sum of g(k) nonnegative kth powers.



History: Examples

- (Squares) Since 7 can’t be written as a sum of three squares, Lagrange’s Theorem
implies g(2) = 4.

- (Cubes): 23 requires 9 cubes, so g(3) ≥ 9.

- (Fourth powers): 79 requires 19 fourth powers, so g(4) ≥ 19.



g(k)

- In 1909, Hilbert proved the existence of g(k) for all k using combinatorial identities.

- The g(k) are now almost entirely determined, with g(k) = 2k + b(3/2)kc − 2 for all
but finitely many k.

- The number 2k
(
b(3/2)kc

)
− 1 can only be written with 1k and 2k , and g(k) is

determined by how many kth powers are needed to represent this number. So
g(2) = 4, g(3) = 9, g(4) = 19, etc.



The Modern Problem

- The focus has now turned to finding how many kth powers are needed to represent
every sufficiently large number. Denote G (k) as the smallest number such that every
sufficiently large natural number is the sum of G (k) nonnegative kth powers.

- Examples (Squares): Since 8n + 7 requires four squares, G (2) = 4.

- (Cubes): In 1909, Dickson proved that 23 and 239 are the only two numbers that
require 9 cubes. In 1943, Linnik provide that only finitely many numbers require 8
cubes, so G (3) ≤ 7. Since 9n + 4 requires at least four cubes, G (3) ≥ 4.

- (Fourth powers): In 1939, Davenport proved that G (4) = 16. There are only seven
numbers that require 19 fourth powers. In total, there are 96 natural numbers that
cannot be written as a sum of sixteen 4th powers. 13792 is the largest such number.



Bounds for G(k)

1 = G (1) = 1 g(1) = 1

4 = G (2) = 4 g(2) = 4

4 ≤ G (3) ≤ 7 g(3) = 9

16 = G (4) = 16 g(4) = 19

6 ≤ G (5) ≤ 17 g(5) = 37

9 ≤ G (6) ≤ 24 g(6) = 73

8 ≤ G (7) ≤ 31 g(7) = 143

32 ≤ G (8) ≤ 39 g(8) = 279

13 ≤ G (9) ≤ 47 g(9) = 548

12 ≤ G (10) ≤ 55 g(10) = 1079

12 ≤ G (11) ≤ 63 g(11) = 2132

16 ≤ G (12) ≤ 72 g(12) = 4223

14 ≤ G (13) ≤ 81 g(13) = 8384

15 ≤ G (14) ≤ 90 g(14) = 16673

16 ≤ G (15) ≤ 99 g(15) = 33203

64 ≤ G (16) ≤ 108 g(16) = 66190

18 ≤ G (17) ≤ 117 g(17) = 132055

27 ≤ G (18) ≤ 125 g(18) = 263619

20 ≤ G (19) ≤ 134 g(19) = 526502

25 ≤ G (20) ≤ 142 g(20) = 1051899
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Circle Method Setup

Let e(α) denote e2πiα.
Let

fk (α,P) =
∑

1≤x≤P
e(αxk)

Then

fk (α,P)s =
∑

1≤x1,x2,...xs≤P
e(α(xk1 + · · ·+ xks ))

=
sPk∑
n=1

Rs,k(n)e(αn)

where Rs,k(n) is the number of ways we can represent n as a sum of s kth powers.
Thus,

Rs,k(n) =

∫ 1

0
fk (α,P)s e(−nα)dα



Major and Minor Arcs

-To evaluate the integral, split [0, 1] into “major” and “minor” arcs:

M(q, a) =

{
α ∈ [0, 1] |

∣∣∣∣α− a

q

∣∣∣∣ < 1

qPk−1

}
M =

⋃
1≤a≤q≤P
(a,q)=1

M(q, a)

m = [0, 1] \M

-For s ≥ max{5, k + 1}, Hardy and Littlewood proved:

Theorem ∫
M
fk (α,P)s e(−nα)dα = C (s, k)S(n)ns/k−1 + o(ns/k−1)



Major and Minor Arcs

∫
M
fk (α,P)s e(−nα)dα = C (s, k)S(n)ns/k−1 + o(ns/k−1)

-Most of the research on Waring’s Problem focuses on minimizing the contribution
from the minor arcs, and showing that for some s0,∫

m
fk (α,P)s0 e(−nα)dα = o(ns0/k−1)

If the singular series S(n) doesn’t vanish, these will together imply that
Rs0,k(n)� ns0/k−1, so in particular, G (k) ≤ s0.
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Lower Bounds for G (k)

Rs,k(n) = C (s, k)S(n)ns/k−1 + o(ns/k−1)

- G (k) ≥ k + 1.

- For any s, the singular series S(n) converges absolutely and is nonnegative. Hardy
and Littlewood proved that it is positive for all n if and only if we can solve the
corresponding Waring’s problem locally:

Theorem
For every n ∈ N, the singular series S(n) is positive if for every m ∈ N, the equation

xk1 + · · ·+ xks = n mod (m)

has a solution with (x1,m) = 1.



The subproblem of Γ(k)

- Denote Γ(k) the smallest value such that for every m, every residue class mod m
has a nontrivial solution.

- It’s widely believed that G (k) = max{k + 1, Γ(k)}.

- Hardy and Littlewood computed Γ(k) for certain classes of k:

Γ(2r ) = 2r+2

Γ(3 · 2r ) = 2r+2

Γ(pr (p − 1)) = pr+1

Γ(pr (p − 1)/2) = (pr+1 − 1)/2

Γ(p − 1) = p

Γ((p − 1)/2) = (p − 1)/2



Bounds for G(k)

1 = G (1) = 1 g(1) = 1

4 = G (2) = 4 g(2) = 4

4 ≤ G (3) ≤ 7 g(3) = 9

16 = G (4) = 16 g(4) = 19

6 ≤ G (5) ≤ 17 g(5) = 37

9 ≤ G (6) ≤ 24 g(6) = 73

8 ≤ G (7) ≤ 31 g(7) = 143

32 ≤ G (8) ≤ 39 g(8) = 279

13 ≤ G (9) ≤ 47 g(9) = 548

12 ≤ G (10) ≤ 55 g(10) = 1079

12 ≤ G (11) ≤ 63 g(11) = 2132

16 ≤ G (12) ≤ 72 g(12) = 4223

14 ≤ G (13) ≤ 81 g(13) = 8384

15 ≤ G (14) ≤ 90 g(14) = 16673

16 ≤ G (15) ≤ 99 g(15) = 33203

64 ≤ G (16) ≤ 108 g(16) = 66190

18 ≤ G (17) ≤ 117 g(17) = 132055

27 ≤ G (18) ≤ 125 g(18) = 263619

20 ≤ G (19) ≤ 134 g(19) = 526502

25 ≤ G (20) ≤ 142 g(20) = 1051899



Finding Γ(k)

- Hardy and Littlewood proved an algorithm for computing Γ(k), and computed its
values for small k .

- They speculated that for prime k not falling into any of the aforementioned classes,
Γ(k) is determined by the corresponding Waring’s problem mod p, where p is the
smallest prime in the arithmetic progression dk + 1.

- However, k = 31 turns out to be a counterexample to this, and k = 59 also.
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Upper Bounds for G (k)

(k − 2)2k−1 + 5 Hardy & Littlewood (1922)

(k − 2)2k−2 + k + 5 + O(k/ log(k)) Hardy & Littlewood (1925)

32(k log(k))2 Vinogradov (1934)

k2 log(4) + (2− 16) log(k) Vinogradov (1935)

6k log(k) + 3k log(6) + 4k Vinogradov (1935)

k(3 log(k) + 11) Vinogradov (1947)

k(3 log(k) + 9) Tong (1957)

k(3 log(k) + 5.2) Jing-Run Chen (1958)

2k(log(k) + 2 log(log(k)) + O(log3(k))) Vinogradov (1959)

2k(log(k) + log(log(k)) + O(1)) Vaughan (1989)

k(log(k) + log(log(k)) + O(1)) Wooley (1992)



Bounding Minor Arc Contributions

- When α ∈ m, the summands in fk(α,P) are more equidistributed, so they exhibit
more cancellation than the trivial bound |fk(α,P)| ≤ P. Weyl proved the following
theorem that relates fk to the size of denominator in α’s rational approximation:

Theorem

fk(α,P)� P1+ε(q−1 + P−1 + qP−k)1/(2
k−1)

- This is combined with mean value estimates to get the desired bounds for the minor
arc contributions:∣∣∣∣∫

m
fk (α,P)s e(−nα)dα

∣∣∣∣ ≤ max
α∈m
|fk(α,P)|s−2r

∫ 1

0
|fk(α,P)|2r dα



Mean Value Estimates

∫ 1

0
|fk(α,P)|2r dα

=

∫ 1

0
fk(α,P)r fk(α,P)rdα

=

∫ 1

0

∑
1≤xj ,yj≤P

e(α(xk1 + xk2 + · · ·+ xkr − yk1 − · · · − ykr ))dα

= The number of integral solutions to xk1 + · · ·+ xkr = yk1 + · · ·+ ykr

with 1 ≤ xj , yj ≤ P



Mean Value Estimates

∫ 1

0
|fk(α,P)|2r dα

=

∫ 1

0
fk(α,P)r fk(α,P)rdα

=

∫ 1

0

∑
1≤xj ,yj≤P

e(α(xk1 + xk2 + · · ·+ xkr − yk1 − · · · − ykr ))dα

= The number of integral solutions to xk1 + · · ·+ xkr = yk1 + · · ·+ ykr

with 1 ≤ xj , yj ≤ P



Mean Value Estimates

∫ 1

0
|fk(α,P)|2r dα

=

∫ 1

0
fk(α,P)r fk(α,P)rdα

=

∫ 1

0

∑
1≤xj ,yj≤P

e(α(xk1 + xk2 + · · ·+ xkr − yk1 − · · · − ykr ))dα

= The number of integral solutions to xk1 + · · ·+ xkr = yk1 + · · ·+ ykr

with 1 ≤ xj , yj ≤ P



Mean Value Estimates

∫ 1

0
|fk(α,P)|2r dα

=

∫ 1

0
fk(α,P)r fk(α,P)rdα

=

∫ 1

0

∑
1≤xj ,yj≤P

e(α(xk1 + xk2 + · · ·+ xkr − yk1 − · · · − ykr ))dα

= The number of integral solutions to xk1 + · · ·+ xkr = yk1 + · · ·+ ykr

with 1 ≤ xj , yj ≤ P



Mean Value Estimates

- There are several techniques for bounding these mean values:

- Diminishing Ranges

- p-adic Ranges

- Efficient Differencing with Smooth Numbers



Diminishing Ranges

- Instead of looking at xj , yj ∈ [1,P], we can restrict the ranges that they lie in.

Pj

2
≤ xj , yj ≤ Pj where Pj =

P(1−1/k)j−1

2(j−1)(k−1)

- Then the only solutions are the diagonal ones, so the number of solutions to the
diophantine equation is �

∏
j Pj

- This gives G (k) ≤ s0 for s0 ∼ Ck log(k) for a positive constant C .



p-adic Ranges

- Similarly, we can look at the p-adic analogue, considering solutions in the form

xk1 + pk(xk2 + xk3 + · · · ) = yk1 + pk(yk2 + yk3 + · · · )
with p ∼ M, xj , yj ∼ P/M

- Then a proportion of the solutions satisfy xk1 ≡ yk1 mod (pk)



Efficient Differencing with Smooth Numbers

- Recall that a R-smooth number is a number whose largest prime factor is ≤ R.
Denote A(P,R) to be the set of R-smooth numbers in [1,P].

xk1 + · · ·+ xkr = yk1 + · · ·+ ykr

with xj , yj ∈ A(P,R)

- If R ≥ Pη for some fixed η, then A(P,R) has asymptotic density. After iterating,
the related auxiliary equation can be approached with a variety of methods.



New Approaches

- Modify p-adic and efficient differencing approaches by selecting primes in certain
arithmetic progressions as the basis for each.

- Apply these new methods in conjunction with methods used in the proof of
Vinogradov’s Mean Value Theorem to a variant of Hypothesis K.
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