
HOMEWORK 2

SOLUTIONS

(1) Let G be a simple graph where the vertices correspond to each of the squares of an
8× 8 chess board and where two squares are adjacent if, and only if, a knight can
go from one square to the other in one move. What is/are the possible degree(s)
of a vertex in G? How many vertices have each degree? How many edges does G
have?

Solution: A knight moves two squares horizontally and one square vertically, or
two squares vertically and one square horizontally, on a chessboard. By examining
all possibilities, we see that; the four “corner” vertices of the graph have degree
2; the eight “edge” vertices that are next to the corners have degree 3; twenty
vertices, the remaining 16 edge vertices plus four more that are next to the corners
but not on the edge, have degree 4; sixteen vertices have degree 6; the remaining
16 “interior” vertices have degree 8.

The preceding paragraph answers the first two questions. For the last question
we appeal to the Hand-Shaking Theorem.

|E(G)| = 1

2

∑
v∈V (G)

dG(v) =
1

2
(4× 2 + 8× 3 + 20× 4 + 16× 6 + 16× 8) = 168

(2) Let G be a graph with n vertices and exactly n− 1 edges. Prove that G has either
a vertex of degree 1 or an isolated vertex.

Solution: Another way to state this problem would be: Prove that G has at
least one vertex of degree less than 2. We will prove this by contradiction, that is
we will start out by assuming that the degree of each of the vertices of G is greater
than or equal to 2.

Under this assumption, the Hand-Shaking Theorem gives us

2n− 2 = 2(n− 1) = 2|E(G)| =
∑

v∈V (G)

dG(v) ≥ 2 + 2 + · · ·+ 2︸ ︷︷ ︸
n times

= 2n

But this is clearly impossible. Therefore our assumption must be false and there
must be at least one vertex that has degree less than 2.

(3) Prove that if a graph G has exactly two vertices u and v of odd degree, then G has
a u, v-path.

Solution: We will prove the statement by contradiction. That is, we first assume
that G is a graph with exactly two vertices of odd degree, u and v, and that there
is no u, v-path in G.
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By definition, G is a disconnected graph and the vertices u and v must lie in
separate connected components of G. Thus the vertex u lies in H, a connected
subgraph of G, and all other vertices in H (which, of course, are also vertices in G)
have even degree. Therefore, the sum of the degrees of the vertices in H is an odd
number.

But by the Hand-Shaking Theorem, the sum of the degrees of the vertices in H
(as in any graph) must be an even number. So we have a contradiction and our
assumption, that there is no u, v-path in G, must be false.

(4) Let G be a simple graph. Show that either G or its complement G is connected.
Solution: Let G be a simple graph that is not connected and let G be the

complement of G. If u and v are vertices in G then they are also vertices in G.
If u and v lie in separate connected components of G they are not adjacent in

G. Therefore, they must be adjacent in G. Hence there exists a u, v-path in G.
If u and v belong to the same connected component of G and w is a vertex in a

different connected component of G, then both u and v are adjacent w in G. If e1
is the edge of G with endvertices u and w and e2 is the edge of G with endvertices
w and v, then

(u, e1, w, e2, v)

is a u, v-path in G.
Since there exists a path between any two vertices of G it is a connected graph.

(5) Are any of the graphs Nn, Pn, Cn,Kn and Kn,n complements of each other?
Solution: Clearly, Nn, the simple graph with n vertices and no edges, and Kn

the simple graph with n vertices and the maximal possible edges, are complements
of each other when n > 1.

By convention P1 = N1, so P1 = N1 = N1 = P 1. Also, P2 = K2, thus P2 and
N2 are complements of each other. The complement of P3 is not connected and
is clearly not the same as any of the graphs on the original list. The graph P4 is
isomorphic to its complement (see Problem 6).

In general, the graph Pn has n − 2 vertices of degree 2 and 2 vertices of degree
1. Therefore Pn has n − 2 vertices of degree n − 3 and 2 vertices of degree n − 2.
This rules out any matches for Pn when n ≥ 5.

For n = 1 or 2, Cn is not simple. So we don’t talk about complements in those
cases. Since C3 = K3, C3 = N3. As C4 is not connected it can not be identified
with any of the original graphs. The graph C5 is its own complement (again see
Problem 6).

We now examine Cn when n ≥ 6. The graph Cn is 2-regular. Therefore Cn is
(n− 3)-regular. Now, the graph Nn is 0-regular and the graphs Pn and Cn are not
regular at all. So no matches so far.

The only complete graph with the same number of vertices as Cn is n−1-regular.
For n even, the graph Kn

2
,n
2

does have the same number of vertices as Cn, but it

is n-regular. Hence, we have no matches for the complement of Cn if n ≥ 6.
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We don’t have to examine Kn,n (except perhaps to identify K1,1 with P2) since
if it was a complement pair with any of the previous graphs on the list we would
have already seen that.

(6) Show that if a simple graph G is isomorphic to its complement G, then G has either
4k or 4k + 1 vertices for some natural number k. Find all simple graphs on four
and five vertices that are isomorphic to their complements.

Solution: If G and G are isomorphic, they must have the same number of edges.
However, the total number of edges in G plus the total number of edges in G equals

the number of edges in the complete graph on n vertices, which is
n(n− 1)

2
. Hence,

|E(G)| = n(n− 1)

4
.

This is only possible if n or n− 1 is divisible by 4. They can’t both be divisible
by 4 since one will be odd. So, either n = 4k or n−1 = 4k for some natural number
k. In the second case, n = 4k + 1.

From the equation above, we see that if a simple graph on four vertices is iso-
morphic to its complement it must have exactly three edges. This, along with trial
and error, shows that the only graph with this property is the path graph P4.

For the five vertex case, we make heavy use of the graph-theoretic knowledge
developed in class so far and quite a bit of logical reasoning.

For a simple graph G on five vertices:
(a) The degree of any vertex is either 0, 1, 2, 3 or 4.
(b) Since the number of edges must be 5×4

4 = 5, the sum of all vertex degrees must
be 10.

(c) If G ∼= G, the vertex degrees (except for 2) appear in pairs. That is, for every
vertex of degree 4 there must be a vertex of degree 0 and for every vertex of
degree 3 there must be a vertex of degree 1. This forces the number of vertices
of degree 2 to be odd. Also, we can rule out vertices of degree 4 or 0, since
in a simple graph on five vertices if you have a vertex of degree 4 you cannot
have a vertex of degree 0.

By combining the above observations, we see that set of vertex degrees for a
simple graph on five vertices that is isomorphic to its complement is either

{2, 2, 2, 2, 2}, {2, 2, 2, 3, 1} or {2, 3, 1, 3, 1}.
With the first set in mind, we see that C5, the cycle graph on five vertices, is

isomorphic to its complement.
A little more analysis allows us to rule out the second set. If a graph G has

exactly one vertex of degree 3 and exactly one vertex of degree 1, then the same
will be true for its complement. In fact, it will be the same vertices, with their
degrees switched. But in one graph the degree 3 and degree 1 vertices will be
adjacent and in the complement they will not. Therefore the graphs cannot be
isomorphic.
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This leaves us with the {2, 3, 1, 3, 1} case. With some experimentation, one gets
the following example

•
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Extra credit if you find a case I’ve missed!

(7) The complete bipartite graphs K1,n, known as the star graphs, are trees. Prove
that the star graphs are the only complete bipartite graphs which are trees.

Solution: Let Km,n be a complete bipartite graph such that m,n > 1. For
u1, u2, v1, v2 ∈ V (Km,n), let u1 and u2 be elements of the bipartition set of order
m and v1 and v2 be elements of the bipartition set of order n. By definition of the
complete bipartite graph, there exists an edge e1 with endvertices u1 and v1, an
edge e2 with endvertices u1 and v2, an edge e3 with endvertices u2 and v1 and an
edge e4 with endvertices u2 and v2.

Therefore
c = {u1, e1, v1, e3, u2, e4, v2, e2, u1}

is a walk in Km,n with distinct vertices except for the initial and final vertex, which
are the same. That is, c is a cycle in Km,n. Hence, Km,n is not a tree.

(8) A graph G is bipartite if there exists nonempty sets X and Y such that V (G) =
X ∪ Y , X ∩ Y = ∅ and each edge in G has one endvertex in X and one endvertex
in Y . Prove that any tree with at least two vertices is a bipartite graph.

Solution: Proof by induction. The only tree on 2 vertices is P2 , which is clearly
bipartite. Now assume that every tree on n vertices is a bipartite graph, that is,
its vertex set can be decomposed into two sets as described above.

Let T be a tree on n + 1 vertices. From class, we know that the vertex set of T
contains a leaf, v. Furthermore, T ′ = T −v is a tree on n vertices. By the induction
hypothesis, the vertex set of T ′ can be decomposed into disjoint sets X and Y .

Let w be the neighbor of v in T . Then w is also a vertex in the graph T ′. WLOG,
assume that w ∈ X ⊂ V (T ′). Then X ′ = X and Y ′ = Y ∪ {v} is a bipartition of
V (T ) that makes T a bipartite graph.


