
ON ANTICYCLOTOMIC VARIANTS OF THE p-ADIC BIRCH AND

SWINNERTON-DYER CONJECTURE

ADEBISI AGBOOLA AND FRANCESC CASTELLA

Abstract. We formulate analogues of the Birch and Swinnerton-Dyer conjecture for the
p-adic L-functions of Bertolini–Darmon–Prasanna attached to elliptic curves E/Q at primes
p of good ordinary reduction. Using Iwasawa theory, we then prove under mild hypotheses
one of the inequalities predicted by the rank part of our conjectures, as well as the predicted
leading coefficient formula up to a p-adic unit.

Our conjectures are very closely related to conjectures of Birch and Swinnerton-Dyer type
formulated by Bertolini–Darmon in 1996 for certain Heegner distributions, and as application
of our results we also obtain the proof of an inequality in the rank part of their conjectures.

Contents

1. Introduction 1
2. The conjectures 4
3. Main results 13
References 22

1. Introduction

Let E/Q be an elliptic curve of conductorN , let p > 2 be a prime of good ordinary reduction
for E, and let K be an imaginary quadratic field of discriminant prime to Np. Let K∞/K be
the anticyclotomic Zp-extension of K, and set Γ∞ = Gal(K∞/K) and Λ = Zp[[Γ∞]].

Assume that K satisfies the Heegner hypothesis relative to N , i.e., that

(Heeg) every prime factor of N splits in K.

This condition implies that the root number of E/K is −1. Assume in addition that

(spl) p = pp splits in K,

and let Ô be the completion of the ring of integers of the maximal unramified extension of
Qp. Let f ∈ S2(Γ0(N)) be the newform associated with E. In [BDP13] (as later strengthened
in [Bra11, CH18]), Bertolini–Darmon–Prasanna introduced a p-adic L-function

Lp(f) ∈ ΛÔ := Λ⊗̂ZpÔ

with Lp(f) := Lp(f)2 interpolating the central critical values for the twists of f/K by certain
infinite order characters of Γ∞. In this paper we formulate and study analogues of the Birch
and Swinnerton-Dyer conjecture for these p-adic L-functions.
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2 B. AGBOOLA AND F. CASTELLA

Any continuous character χ : Γ∞ → Ô× extends to a map χ : ΛÔ → Ô, and we write
Lp(f)(χ) for χ(Lp(f)). The trivial character 1 of Γ∞ lies outside the range of p-adic interpo-
lation for Lp(f), and one of the main results of [BDP13] is a formula of p-adic Gross–Zagier
type for this value:

(1.1) Lp(f)(1) = u−2
K c−2

E ·
(

1− ap(E) + p

p

)2

· logωE
(zK)2

(see [BDP13, Thm. 5.13], as specialized in [BDP12, Thm. 3.12] to the case where f has weight
k = 2). Here ap(E) := p+ 1−#E(Fp) and uK := 1

2#O×K as usual, zK ∈ E(K) is a Heegner
point arising from a modular parametrization ϕ : X0(N)→ E,

logωE
: E(Kp)⊗ Zp → Zp

is the formal group logarithm associated with a Néron differential ωE ∈ Ω1(E/Z(p)), and
cE ∈ Z is such that ϕ∗(ωE) = cE · 2πif(τ)dτ .

Formula (1.1) has been a key ingredient in recent progress on the Birch and Swinnerton-Dyer
conjecture. Most notably, for elliptic curves E/Q with rankZE(Q) = 1 and #Ø(E/Q)p∞ <
∞, it was used by Skinner [Ski14] (for a suitable choice of K) to prove a converse to
the celebrated theorem of Gross–Zagier and Kolyvagin, and for elliptic curves E/Q with
ords=1L(E, s) = 1, it was used by Jetchev–Skinner–Wan [JSW17] (again, for suitably chosen
K) to prove under mild hypotheses the p-part of the Birch and Swinnerton-Dyer formula.

For elliptic curves E/Q satisfying rankZE(K) > 2 and #Ø(E/K)p∞ < ∞, the Heegner
point zK is torsion and formula (1.1) shows that Lp(f)(1) = 0, or equivalently, that Lp(f) ∈ J ,
where

J := ker(ε : ΛÔ → Ô)

is the augmentation ideal of ΛÔ. The conjectures formulated in this paper predict the largest
power Jν of J in which Lp(f) lives (i.e., the “order of vanishing” of Lp(f) at 1) in terms of the
ranks of E(Q) and E(K), and a formula for the image of Lp(f) in Jν/Jν+1 (i.e., the “leading
coefficient” of Lp(f) at 1) in terms of arithmetic invariants of E. For the sake of illustration,
in the remainder of this Introduction we concentrate on a weaker form of these conjectures,
referring the reader to Section 3 for their actual form.

Let T = TpE be the p-adic Tate module of E, and let Sp(E/K) ⊂ H1(K,T ) be the classical
pro-p Selmer group of E fitting in the exact sequence

0→ E(K)⊗ Zp → Sp(E/K)→ TpØ(E/K)→ 0.

We shall assume that #Ø(E/K) <∞, so in particular Sp(E/K) ' E(K)⊗Zp. The work of
Mazur–Tate [MT83] (see also [Sch82]) produces a canonical symmetric p-adic height pairing

hMTp : Sp(E/K)× Sp(E/K)→ (J/J2)⊗Q.

By the p-parity conjecture [Nek01], our assumptions also imply that the strict Selmer group

Selstr(K,T ) := ker
{
Sp(E/K)→ E(Kp)⊗ Zp

}
has Zp-rank r− 1, where r = rankZE(K). Assume that Sp(E/K) is torsion-free (this holds if
e.g. Ep is irreducible as GK-module), let P1, . . . , Pr be an integral basis for E(K)⊗Q and let
A be an endomorphism of E(K)⊗Zp sending P1, . . . , Pr basis to a Zp-basis x1, . . . , xr−1, yp for
Sp(E/K) with x1, . . . , xr−1 generating Selstr(K,T ). Set t = det(A) · [E(K) : ZP1 + · · ·+ ZPr].
The following is a special case of our Conjecture 2.20.

Conjecture 1.1. Assume that Ø(E/K) is finite and that Ep is irreducible as GK-module,
and let r = rankZE(K). Then:

(i) Lp(f) ∈ Jr−1.
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(ii) Letting L̄p(f) be the natural image of Lp(f) in Jr−1/Jr, we have

L̄p(f) =

(
1− ap(E) + p

p

)2

· logωE
(yp)

2 · Regp · t−2 ·#Ø(E/K) ·
∏
`|N

c2
` ,

where Regp = det(hMTp (xi, xj))16i,j6r−1 is the regulator of hMTp restricted to Selstr(K,T ),
and c` is the Tamagawa number of E/Q`.

Remark 1.2. Suppose rankZE(K) = 1. Under the assumptions of Conjecture 1.1 we then
have Selstr(K,T ) = {0}, Regp = 1 and t = [E(K) : Z.yp], where yp is a generator of E(K)⊗Q
with logωE

(yp) 6= 0. Thus in this case Conjecture 1.1 predicts that Lp(f)(1) 6= 0, and by
formula (1.1) the predicted expression for Lp(f)(1) is equivalent to the equality

[E(K) : Z.yK ]2 = u2
Kc

2
E ·#Ø(E/K) ·

∏
`|N

c2
` ,

which is also predicted by the classical Birch and Swinnerton-Dyer conjecture for E/K when
combined with the Gross–Zagier formula (see [Gro91, Conj. 1.2]).

The Iwasawa–Greenberg main conjecture [Gre94] predicts that Lp(f) is a generator of the
characteristic ideal of a certain Λ-torsion Selmer group Xp. Letting Fp(f) ∈ Λ be a generator
of this characteristic ideal, in this paper we prove the following result towards Conjecture 1.1,
which can be viewed simultaneously as a non-CM analogue of (resuls towards) Rubin’s variant
of the p-adic Birch and Swinnerton-Dyer conjecture (see [Rub92, §11], [Rub94, Thm. 5] and
[Agb07, Thm. B]) in the anticyclotomic setting, and an extension of the anticyclotomic control
theorem of [JSW17, §3.3] to arbitrary ranks.

Theorem 1.3 (cf. Theorem 3.2). Assume that Ø(E/K)p∞ is finite and that:

(i) ρE,p : GQ → AutFp(Ep) is surjective.
(ii) Ep is ramified at every prime `|N .
(iii) p - #E(Fp).

Then Fp(f) ∈ Jr−1, where r = rankZE(K), and letting F̄p(f) be the natural image of Fp(f)
in Jr−1/Jr, we have

F̄p(f) = p−2 · logωE
(yp)

2 · Regp · t−2 ·#Ø(E/K)p∞

up to a p-adic unit.

Remark 1.4. Note that conditions (ii) and (iii) in Theorem 1.3 imply that the terms 1 −
ap(E) + p and c` for `|N are all p-adic units.

Combined with the Iwasawa–Greenberg main conjecture for Lp(f) (which is known under
relatively mild hypotheses [BCK19]), Theorem 1.3 can be parlayed in terms of this p-adic
L-function, yielding our main result towards Conjecture 1.1 (or rather its refinement in Con-
jecture 2.20); see Corollary 3.4.

We end this Introduction with some comments about the need for the refinement of Con-
jecture 1.1 given by Conjecture 2.20. We continue to assume that #Ø(E/K)p∞ < ∞, and
let

r± := rankZE(K)±

be the rank of the ±-eigenspaces E(K)± ⊂ E(K) under the action of complex conjugation,
so

r = rankZE(K) = r+ + r−.

From the Galois-equivariance properties of hMTp , one easily sees that Regp = 0 when |r+−r−| >
1. These systematic degeneracies of the p-adic height pairing in the anticyclotomic setting
(which are in sharp contrast with the expected non-degeneracy of the p-adic height pairing
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in the cyclotomic setting) were understood by Bertolini–Darmon [BD94, BD95] as giving rise
to canonical derived p-adic height pairings, in terms of which we will define a generalized
p-adic regulator Regder,p. This generalized regulator recovers Regp when |r+ − r−| = 1, but

provides extra information when |r+ − r−| > 1. More precisely, the expected “maximal
non-degeneracy” of the anticyclotomic p-adic height pairing (as conjectured by Mazur and
Bertolini–Darmon) leads to the prediction that Regder,p is a nonzero element in J2ρ/J2ρ+1,
where

ρ = max{r+, r−} − 1.

Conjecture 2.20 then predicts that Lp(f) lands in J2ρ (note that 2ρ > r−1 when |r+−r−| >
1), and posits a formula for its natural image in J2ρ/J2ρ+1 in terms of Regder,p. Our main
result is the analogue of Theorem 1.3 for this refined conjecture.

Remark 1.5. As it will be clear to the reader, our conjectures are very closely related to the
conjectures of Birch and Swinnerton-Dyer type formulated by Bertolini–Darmon [BD96] for
certain “Heegner distributions”. In fact, as application of our results on Conjecture 2.20,
we will deduce under mild hypotheses the proof of an inequality in the “rank part” of their
conjectures (see Corollary 3.5).

The remainder of this paper is organized as follows. In Section 2, after defining the relevant
Selmer groups and recalling the conjectures of Bertolini–Darmon, we formulate our conjectures
of Birch and Swinnerton-Dyer type for the p-adic L-functions Lp(f) and Lp(f). In Section 3,
we state and prove our main results in the direction of these conjectures.

2. The conjectures

2.1. Selmer groups. We keep the notation from the Introduction. In particular, K∞ denotes
the anticyclotomic Zp-extension of K. For every n we write Kn for the subextension of K∞
with

Γn := Gal(Kn/K) ' Z/pnZ.

Let S be a finite set of places of Q containing ∞ and the primes dividing Np, and for
every finite extension F/Q let GF,S be the Galois group over F of the maximal extension of
F unramified outside the places above S. For each prime q ∈ {p, p} set

Selq(Kn, T ) := ker

{
H1(GKn,S , T )→

∏
w|p,w-q

H1(Kn,w, T )

}
.

Let Selq(Kn, Ep∞) ⊂ H1(GKn,S , Ep∞) be the Selmer group cut out by the local conditions
given by the orthogonal complement under local Tate duality of the subspaces cutting out
Selq(Kn, T ), and set

Selq(K∞, Ep∞) := lim−→
n

Selq(Kn, Ep∞).

As is well-known (see e.g. [Gre06, Prop. 3.2]), Selq(K∞, Ep∞) is a cofinitely generated Λ-
module, i.e., its Pontryagin dual Selq(K∞, Ep∞)∨ is finitely generated over Λ.

Conjecture 2.1 (Iwasawa–Greenberg main conjecture). The module Selp(K∞, Ep∞) is Λ-
cotorsion and

charΛ(Selp(K∞, Ep∞)∨)ΛÔ = (Lp(f))

as ideals in ΛÔ.

The following lemma will be useful in the following. Let

Selstr(K,T ) := ker

{
H1(GK,S , T )→

∏
w

H1(Kw, T )

}
be the strict Selmer group, which is clearly contained in Sp(E/K).
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Lemma 2.2. Assume that Ø(E/K)p∞ is finite. Then

Selp(K,T ) = Selstr(K,T ) = Selp(K,T ).

In particular, Selp(K,T ) and Selp(K,T ) are both contained in Sp(E/K) and have Zp-rank
r − 1, where r = rankZE(K).

Proof. By our assumption onØ(E/K), hypothesis (Heeg) and the p-parity conjecture [Nek01]
imply that r := rankZE(K) is odd, so in particular r > 0. Thus the image of restriction map

(2.1) Sp(E/K)→
∏
w|p

E(Kw)⊗ Zp

has Zp-rank one, and the result follows from [Ski14, Lem. 2.3.2]. �

2.2. Conjectures of Bertolini–Darmon. In this section, we recall some of the conjectures
of Birch–Swinnerton-Dyer type formulated by Bertolini–Darmon in [BD96]. These conjectures
will guide our formulation in §2.3 of analogous statements for the p-adic L-functions Lp(f)
and Lp(f) of Bertolini–Darmon–Prasanna.

As in the Introduction, we assume that the elliptic curve E/Q has good ordinary reduction
at p > 2 and that K is an imaginary quadratic field of discriminant DK prime to Np in which
p = pp splits. However, rather than hypothesis (Heeg) from the Introduction, we assume that
writing N as the product

N = N+N−,

with N+ (resp. N−) divisible only by primes which are split (resp. inert) in K, we have

(gen-H) N− is the squarefree product of an even number of primes.

This condition still guarantees that the root number of E/K is −1, as well as the presence
of Heegner points on E defined over the different layers of the anticyclotomic Zp-extension
K∞/K.

More precisely, let XN+,N− be the Shimura curve (with the cusps added when N− = 1, so

XN,1 = X0(N)) attached to the quaternion algebra B/Q of discriminant N− and an Eichler
order R ⊂ B of level N+. The curve XN+,N− has a canonical model over Q, and we let
J(XN+,N−)/Q denote its Jacobian. By [BCDT01], there is a modular parametrization

ϕ : X0(N)→ E.

This induces a map J(X0(N))→ E by Albanese functoriality, which by the Jacquet–Langlands
correspondence together with Faltings’ isogeny theorem gives rise to a map

(2.2) ϕ∗ : J(XN+,N−)→ E.

Similarly as in [BD96, p. 425], after possibly changing E within its isogeny class, we assume
that E is an optimal quotient of J(XN+,N−), meaning that the kernel of (2.2) is connected.

When N− 6= 1, lacking the existence of a natural rational base point on XN+,N− , we choose
an auxiliary prime `0 and consider (following [JSW17, §4.2]) the embedding

(2.3) ιN+,N− : XN+,N− → J(XN−,N−), x 7→ (T`0 − `0 − 1)[x].

Let K[c] be the ring class field of K of conductor c. Then for every c prime to NDK , there
are CM points hc ∈ XN+,N−(K[c]) (as described in e.g. [How04, Prop. 1.2.1]) satisfying the
relations

(2.4) NormK[c`]/K[c](hc) =

 T` · hc if ` - c is inert in K,
T` · hc − σ`hc − σ∗`hc if ` - c splits in K,
T` · hc − hc/` if ` | c,
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where σ` and σ∗` denote the Frobenius elements of the primes in K above `. Assume from
now on that Ep is irreducible as a GQ-module, and choose the prime `0 in (2.3) so that
a`0(E)− `0 − 1 6∈ pZ. Define yn ∈ E(K[pn])⊗ Zp by

yn :=
1

a`0(E)− `0 − 1
· ϕ∗(ιN+,N−(hpn)),

and letting αp be the p-adic unit root of the polynomial X2−ap(E)X+p, define the regularized
Heegner point of conductor pn by

zn :=
1

αn
· yn −

1

αn+1
· yn−1, if n > 1,

z0 := u−1
K · (1− (σp + σ∗p)α

−1 + α−2) · y0.

Then one immediately checks from (2.4) that the points zn are norm-compatible. For each
n > 0, we then set

(2.5) zn := NormK[pm]/Kn
(zm),

where m� 0 is such that Kn ⊂ K[pm], and letting Zp := E(K∞)⊗Zp we define θn ∈ Zp[Γn]
by

θn :=
∑
σ∈Γn

zσn ⊗ σ−1.

These elements are compatible under the natural projections Zp[Γn+1] → Zp[Γn], and in the
limit they define the “Heegner distribution”

(2.6) θ = θ∞ := lim←−
n

θn ∈ Zp[[Γ∞]].

Let J be the augmentation ideal of Λ = Zp[[Γ∞]], and define the order of vanishing of θ by

ordJθ := max
{
ρ ∈ Z>0 : θ ∈ Zp ⊗Zp J

ρ
}
.

The work of Cornut–Vatsal [CV07] implies that θ is a nonzero element in Zp[[Γ∞]], and so its
order of vanishing is well-defined.

The following conjecture is the “indefinite case” of [BD96, Conj. 4.1], where we let E(K)±

be the ±-eigenspaces of E(K) under the action of complex conjugation.

Conjecture 2.3 (Bertolini–Darmon). We have

ordJθ = max{r+, r−} − 1,

where r± := rankZE(K)±.

Let θ∗ denote the image of θ under the involution of Zp[[Γ∞]] given by γ 7→ γ−1 for γ ∈ Γ∞,
and set

L := θ ⊗ θ∗ ∈ Z⊗2
p [[Γ∞]].

Lemma 2.4. Let ρ = ordJθ. Then the natural image L̄ of L in Z⊗2
p ⊗Zp (J2ρ/J2ρ+1) is

contained in the image of the map

E(K)⊗2 ⊗ (J2ρ/J2ρ+1)→ Z⊗2
p ⊗Zp (J2ρ/J2ρ+1).

Proof. This follows from the fact that the natural image of θ in Zp ⊗Zp (Jρ/Jρ+1) is fixed by
Γ∞ (see [BD96, Lem. 2.14]). �

Let r = rankZE(K). Since clearly

2(max{r+, r−} − 1) > r − 1,

by Lemma 2.4 we see that Conjecture 2.3 predicts in particular the inclusion L̄ ∈ E(K)⊗2⊗
(Jr−1/Jr). The conjectures of Bertolini–Darmon also predict an expression for L̄ in terms of
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the following “enhanced” regulator associated to the Mazur–Tate anticyclotomic p-adic height
pairing

hMTp : E(K)× E(K)→ (J/J2)⊗Q.

Definition 2.5. Let P1, . . . , Pr be a basis for E(K)/E(K)tors and set t′ = [E(K) : ZP1 + · · ·+
ZPr]. The enhanced regulator R̃eg is the element of E(K)⊗2 ⊗ (Jr−1/Jr)⊗Q defined by

R̃eg :=
1

t′2

r∑
i,j=1

(−1)i+jPi ⊗ Pj ⊗Ri,j ,

where Ri,j is the (i, j)-minor of the matrix (hMTp (Pi, Pj))16i,j6r.

The next remark will be important in the following.

Remark 2.6. The non-trivial automorphism τ ∈ Gal(K/Q) acts as multiplication by −1 on
Γ∞. Viewing hMTp as valued in Γ∞ ⊗ Q via the natural identification J/J2 ' Γ∞, the Galois-

equivariance of hMTp implies that

hMTp (τx, τy) = hMTp (x, y)τ = −hMTp (x, y).

It follows that the τ -eigenspaces E(K)± are isotropic for hMTp , and so the null-space of hMTp has

rank at least |r+−r−| (which should always be positive, since by (gen-H) the rank r = r+ +r−

should be odd).

The following is the “non-exceptional case1” of [BD96, Conj. 4.5].

Conjecture 2.7 (Bertolini–Darmon). Let L̄ be the natural image of L in E(K)⊗2⊗(Jr−1/Jr).
Then

L̄ =

(
1− ap(E) + p

p

)2

· R̃eg ·#Ø(E/K) ·
∏
`|N+

c2
` ,

where c` is the Tamagawa number of E/Q`.

As noted in [BD96, p. 447], when |r+ − r−| > 1 Conjecture 2.7 reduces to the prediction
“0 = 0”. Indeed, 2(max{r+, r−}−1) is then strictly larger than r−1, and so by Conjecture 2.3
the image of L in E(K)⊗2⊗(Jr−1/Jr) should vanish, while on the other hand by the isotropy

of E(K)± under hMTp all the minors Ri,j in the definition of R̃eg, and hence R̃eg itself, also
vanish (see [BD96, Lem. 3.2]). As explained below, a refinement of Conjecture 2.7, predicting
a formula for the natural image of L in E(K)⊗2 ⊗ (J2ρ/J2ρ+1), which should be thought of
as the “leading coefficient” of L , can be given in terms of the derived p-adic height pairings
introduced by Bertolini–Darmon [BD94, BD95].

Remark 2.8. Such refinement of Conjecture 2.7 seems to not have been explicitly stated in the
literature. Even though the formulation of such refinement appears to be quite clear in light
of the conjectures explicitly stated in [BD96] and [BD95], any inaccuracies in the conjectures
below should be blamed only on the authors of this paper.

Assume from now on thatØ(E/K)p∞ is finite and that:

(i) ρ̄E,p : GQ → AutFp(Ep) is surjective.
(ii) p - #E(Fp).
(iii) Ep is ramified at every prime `|N .

1meaning that E/K has good ordinary or non-split multiplicative reduction at every prime above p
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Note that (ii) amounts to the condition ap(E) 6≡ 1 (mod p), and condition (i) implies that
E has no CM. In particular, these assumptions imply that Sp(E/K) ' E(K) ⊗ Zp is a free
Zp-module of rank r, and the pair (E,K) is “generic” in the terminology of [Maz84].

By [BD95, §2.4], there is a filtration

(2.7) Sp(E/K) = S(1)
p ⊃ S(2)

p ⊃ · · · ⊃ S(p)
p ,

and a sequence of “derived p-adic height pairings”

h(k)
p : S(k)

p × S(k)
p → (Jk/Jk+1)⊗ Q, for 1 6 k 6 p− 1,

such that S
(k+1)
p is the null-space of h

(k)
p , with h

(1)
p = hMTp . By Remark 2.6, S

(2)
p has Zp-rank

at least |r+ − r−|, and by construction the subspace of universal norms

USp(E/K) :=
⋂
n>1

corKn/K(Sp(E/Kn))

is contained in the null-space of all h
(k)
p . The work of Cornut–Vatsal implies that USp(E/K) '

Zp.
The expected “maximal non-degeneracy” of hMTp predicts the following (see [BD95, Conj. 3.3,

Conj. 3.8]).

Conjecture 2.9 (Mazur, Bertolini–Darmon). Under the above hypotheses we have

rankZpS
(k)
p =

{ |r+ − r−| if k = 2,

1 if k > 3,

and in fact S
(3)
p = USp(E/K).

By construction, the successive quotients S
(k)
p /S

(k+1)
p are free Zp-modules, say

(2.8) S(k)
p /S(k+1)

p ' Zekp ,

and Conjecture 2.9 predicts in particular that

e1 = 2 min{r+, r−}, e2 = |r+ − r−| − 1,

and ek = 0 for all k > 3.
Using derived p-adic height pairings, one can define an enhanced p-adic regulator extending

Definition 2.5. Assume that S
(p)
p = USp(E/K) (as Conjecture 2.9 predicts in particular). Let

P1, . . . , Pr be an integral basis for E(K) ⊗ Q, and let A ∈ Mn(Zp) be an endomorphism
of Sp(E/K) sending P1, . . . , Pr to a Zp-basis x1, . . . , xr for Sp(E/K) compatible with the

filtration (2.7), so for 1 6 k 6 p− 1 the projection of say xhk+1, . . . , xhk+ek to S
(k)
p /S

(k+1)
p is

a Zp-basis for S
(k)
p /S

(k+1)
p and y := xr generates USp(E/K). Set t = det(A) · [E(K) : ZP1 +

· · ·+ ZPr].

Definition 2.10. Let % :=
∑p−1

k=1 kek. The derived enhanced regulator R̃egder is the element
of E(K)⊗2 ⊗ (J%/J%+1)⊗Q defined by

R̃egder := t−2 · (y ⊗ y)⊗
p−1∏
k=1

R(k),

where R(k) = det(h
(k)
p (xi, xj))hk+16i,j6hk+ek .

The relation between R̃egder and R̃eg is readily described.

Lemma 2.11. Assume Conjecture 2.9. If |r+ − r−| = 1, then R̃egder = R̃eg.
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Proof. By our running assumption that #Ø(E/K)p∞ < ∞, we may view hMTp as defined on

Sp(E/K). Denote by R′i,j the (i, j)-minor of the matrix (hMTp (xi, xj))16i,j6r. Since universal

norms are in the null-space of hMTp , we find that

R̃eg = t−2
∑

16i,j6r

(−1)i+jxi ⊗ xj ⊗R′i,j

= t−2 · (y ⊗ y)⊗R′r,r,

noting that for (i, j) 6= (r, r) the minor R′i,j is the determinant of a matrix having either a row

or a column consisting entirely of zeroes. Since our assumptions together with (2.8) imply
that

S(2)
p = S(3)

p = · · · = USp(E/K),

we conclude that
∏p−1
k=1R

(k) = R(1) = R′r,r, hence the result. �

In general, Conjecture 2.9 predicts that R̃egder is a nonzero element in E(K)⊗2⊗(J%/J%+1)⊗
Q, where

% = e1 + 2e2 = 2 min{r+, r−}+ 2(|r+ − r−| − 1) = 2(max{r+, r−} − 1),

which as already noted is strictly larger than r− 1 when |r+− r−| > 1. Thus, by Lemma 2.11
the following refines Conjecture 2.7.

Conjecture 2.12 (Bertolini–Darmon). Under the above hypotheses we have

ordJL = 2(max{r+, r−} − 1),

and letting L̄ be the natural image of L in E(K)⊗2⊗(J2ρ/J2ρ+1), where ρ = max{r+, r−}−1,
we have

L̄ =

(
1− ap(E) + p

p

)2

· R̃egder ·#Ø(E/K) ·
∏
`|N+

c2
` .

It is also possible to formulate a leading term formula for the Heegner distribution θ, refining
the “non-exceptional case” of [BD96, Conj. 4.6].

The subspace of universal norms USp(E/K) is stable under the action of Gal(K/Q), and
therefore is contained in one of the τ -eigenspaces Sp(E/K)±.

Lemma 2.13. Assume Conjecture 2.9. Letting sign USp(E/K) be the sign of the τ -eigenspace
where USp(E/K) is contained, we have

sign USp(E/K) =

{
1 if r+ > r−,

−1 if r− > r+.

In other words, USp(E/K) is contained in the larger of the τ -eigenspaces Sp(E/K)±.

Proof. Viewing hMTp as defined on Sp(E/K), Conjecture 2.9 predicts that the restriction

hMTp : Sp(E/K)+ × Sp(E/K)− → (J/J2)⊗Q

is either left non-degenerate or right non-degenerate, depending on which of the τ -eigenspaces
Sp(E/K)± ⊂ Sp(E/K) is larger. Since the universal norms are contained in the null-space of
hMTp , it follows that USp(E/K) is contained in the τ -eigenspace of larger rank. �

Remark 2.14. The conclusion of Lemma 2.13 is predicted by the “sign conjecture” of Mazur–
Rubin [MR03, Conj. 4.8], and the fact that it follows from Conjecture 2.9 was already observed
by them.
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Let s := min{r+, r−} and recall that Conjecture 2.9 predicts e1 := rankZpS
(1)
p /S

(2)
p = 2s.

Order the first 2s elements of the basis x1, . . . , xr for Sp(E/K) so that x1 =: y+
1 , . . . , xs =: y+

s

belong to Sp(E/K)+ and xs+1 =: y−1 , · · · , x2s =: y−s belong to Sp(E/K)−.

Lemma 2.15. We have
R(1) = −(det(hMTp (y+

i , y
−
j )16i,j6s)

2.

Proof. This is immediate from the isotropic property of Sp(E/K)± under the pairing hMTp (see
Remark 2.6). �

Thus R(1) is essentially a square. On the other hand, since for even values of k the pairing

h
(k)
p is alternating (see part (1) of [BD95, Thm. 2.18]), we have

R(2) = pf(h(2)
p (xi, xj)e1+16i,j6e1+e2)2,

where pf(M) denotes the Pfaffian of the matrix M . This motivates the following definition

of a square-root of the regulator R̃egder in Definition 2.10.

Definition 2.16. Assume Conjecture 2.9. The square-root derived enhanced regulator is the
element of E(K)⊗ (Jρ/Jρ+1)⊗Q, where ρ = max{r+, r−} − 1, defined by

R̃eg
1/2

der := t−1 · y ⊗ (det(hMTp (y+
i , y

−
j )16i,j6s) · pf(h(2)

p (xi, xj)e1+16i,j6e1+e2).

Note that this is only well-defined up to sign.

The following refines [BD96, Conj. 4.6] in the cases where |r+ − r−| > 1, and complements
Conjecture 2.3 with a leading coefficient formula.

Conjecture 2.17 (Bertolini–Darmon). We have

ordJθ = max{r+, r−} − 1,

and letting θ̄ be the natural image of θ in (E(K∞)⊗Jρ/Jρ+1)Γ∞, where ρ = max{r+, r−}−1,
the following equality holds

θ̄ = ±
(

1− ap(E) + p

p

)
· R̃eg

1/2

der ·
√

#Ø(E/K) ·
∏
`|N+

c`.

2.3. Conjectures for Lp(f) and Lp(f). We keep the hypotheses on the triple (E, p,K) from
§2.2 (in particular, we assume #Ø(E/K)p∞ < ∞), and assume in addition that hypothesis
(Heeg) from the Introduction (rather than the more general (gen-H)) holds.

Remark 2.18. The assumption that p = pp splits in K will be essential in what follows, so
that the p-adic L-function Lp(f) can be constructed as an element in ΛÔ (cf. [Kri18, AI19] in
the case when p is non-split in K). On the other hand, it should not be difficult to extend the
construction of Lp(f) in [CH18] under the generalized Heegner hypothesis (gen-H) considered
in §2.2.

By Lemma 2.2, the Selmer groups Selp(K,T ) and Selp̄(K,T ) are both contained in Sp(E/K)
and they agree with the kernel Selstr(K,T ) of the restriction map (2.1). Thus we can consider
the pairing

hp : Selp(K,T )×Selp(K,T )→ (J/J2)⊗Q

obtained by restricting hMTp . The filtration in (2.7) induces a filtration

(2.9) Selp(K,T ) = S
(1)
p ⊃ S

(2)
p ⊃ · · · ⊃ S

(p)
p

defined by S
(k)
p := S

(k)
p ∩ Selp(K,T ), with the filtered pieces equipped with corresponding

derived p-adic height pairing

h
(k)
p : S

(k)
p ×S

(k)
p → (Jk/Jk+1)⊗Q
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obtained from h
(k)
p by restriction.

Assume that S
(p)
p = USp(E/K) and that Selp(K∞, Ep∞) is Λ-cotorsion. Then lim←−nSelp(Kn, T )

vanishes (see e.g. [Cas17, Lem. A.3]), and therefore the subspace of universal norms USelp(K,T ) ⊂
Selp(K,T ) is trivial. It follows that

USp(E/K) ∩ Selstr(K,T ) = {0},

and so logωE
(y) 6= 0 for any generator y ∈ USp(E/K). Thus the first r − 1 elements in the

basis x1, . . . , xr for Sp(E/K) chosen for the definition of R̃egder yield a basis for Selp(K,T )
adapted to the filtration (2.9), with the image of xhk+1, . . . , xhk+ek in

(2.10) S(k)
p /S(k+1)

p ' S
(k)
p /S

(k+1)
p ' Zekp

giving a basis for S
(k)
p /S

(k+1)
p . Then the partial regulators of Definition 2.5 can be rewritten

as

(2.11) R(k) = det(h
(k)
p (xi, xj))hk+16i,j6hk+ek = disc(h

(k)
p |S(k)

p /S
(k+1)
p

),

which we shall denote by R(k)
p in the following.

We can now define the p-adic regulator appearing in the leading term formula of our p-adic
Birch and Swinnerton-Dyer conjecture for Lp(f). The map logωE

gives rise to a map

Logp : (E(K)⊗ Zp)
⊗2 → (E(Kp)⊗ Zp)

⊗2
log⊗2

ωE−−−→ Zp ⊗ Zp → Zp,

where the last arrow is given by multiplication. Choose a basis x1, . . . , xr−1, xr as before, with
xr = yp given by a generator for USp(E/K) with p−1 logωE

(yp) 6≡ 0 (mod p).

Definition 2.19. The derived regulator Regp,der is defined by

Regp,der := Logp(R̃egder) = t−2 · logωE
(yp)

2 ·
p−1∏
k=1

R(k)
p .

Note that Regp,der is an element in (J%/J%+1)⊗Q, where % =
∑p−1

k=1 kek, and Conjecture 2.9

predicts the equality % = 2(max{r+, r−} − 1).

Conjecture 2.20. We have

ordJLp(f) = 2(max{r+, r−} − 1),

and letting L̄p(f) be the natural image of Lp(f) in J2ρ/J2ρ+1, where ρ = max{r+, r−} − 1,
the following equality holds

L̄p(f) =

(
1− ap(E) + p

p

)2

· Regp,der ·#Ø(E/K) ·
∏
`|N

c2
` .

Similarly as in §2.2, we can also formulate a version of Conjecture 2.20 for the “square-root”
p-adic L-function Lp(f). Assume Conjecture 2.9, so following Definition 2.16 we can define

the derived square-root regulator Reg
1/2
p,der by

Reg
1/2
p,der := t−1 · logωE

(yp) · (det(hp(y
+
i , y

−
j )16i,j6s) · pf(h(2)

p (xi, xj)e1+16i,j6e1+e2).

As before, note that Reg
1/2
p,der is only well-defined up to sign, and is contained in (Jρ/Jρ+1)⊗Q,

where ρ = max{r+, r−} − 1.
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Conjecture 2.21. We have

ordJLp(f) = max{r+, r−} − 1,

and letting L̄p(f) be the natural image of Lp(f) in Jρ/Jρ+1, where ρ = max{r+, r−}− 1, the
following equality holds

L̄p(f) = ±
(

1− ap(E) + p

p

)
· Reg

1/2
p,der ·

√
#Ø(E/K) ·

∏
`|N

c`.

2.4. A relation between the conjectures. In this section we explain a relation between
Bertolini–Darmon’s Conjecture 2.3 (i.e., the “rank part” of Bertolini–Darmon’s Conjecture 2.17)
and the “rank part” of our Conjecture 2.21.

Recall that Zp := E(K∞)⊗ Zp, and for each n define the map Ψn : E(Kn)⊗ Zp → Zp[Γn]
by

Ψn(Pn) =
∑
σ∈Γn

P σn ⊗ σ−1.

Letting πn+1,n : Zp[Γn+1]→ Zp[Γn] be the map induced by the projection Γn+1 → Γn, we see
that for all Pn+1 ∈ E(Kn+1)⊗ Zp we have

πn+1,n(Ψn+1(Pn+1)) =
∑
τ∈Γn

( ∑
σ∈Γn+1

σ|Kn=τ

P σn+1

)
⊗ τ−1 = Ψn(NormKn+1/Kn

(Pn+1)).

It is also readily checked that Ψn is Γn-equivariant. Thus setting

U(K∞/K) := lim←−E(Kn)⊗ Zp,

where the limit is with respect to the norm maps NormKn+1/Kn
: E(Kn+1)⊗Zp → E(Kn)⊗Zp,

we obtain a Λ-linear map

Ψ∞ : U(E/K∞)→ Zp[[Γ∞]].

The regularized Heegner points zn in (2.5) define an element z∞ ∈ U(E/K∞), and by defini-
tion the Heegner distribution θ = θ∞ in (2.6) is given by

(2.12) θ∞ = Ψ∞(z∞).

By a slight abuse of notation, in the next proposition we let J denote both the augmentation
ideal of Λ and of ΛÔ.

Proposition 2.22. Assume that

(1) p = pp splits in K.
(2) Ep is irreducible as a GK-module.
(3) Ø(E/Kn)p∞ is finite for all n.
(4) Ep is ramified for every prime `|N .
(5) p - Nϕ(NDK).

Then we have the implication

Lp(f) ∈ Jρ =⇒ θ∞ ∈ Zp ⊗Zp J
ρ.

Proof. In light of (2.12) and the Λ-linearity of Ψ∞, it suffices to show the implication

(2.13) Lp(f) ∈ Jρ =⇒ z∞ ∈ JρU(E/K∞).

Suppose Lp(f) ∈ Jρ. By our assumption that #Ø(E/Kn)p∞ <∞ for all n, we may identify
U(E/K∞) with

Sel(K∞, T ) := lim←−Sp(E/Kn),
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where the limit is with respect to the corestriction maps. Let γ ∈ Γ∞ be a topological
generator. Using that p - z∞ by [Cor02, Thm. B] (taking q = p in loc.cit.) and the Weierstrass
preparation theorem, we see that it suffices to solve the equation

z∞ = (γ − 1)ρ · z(ρ)
∞

in Qp ⊗Zp Sel(K∞, T )Ô, where Sel(K∞, T )Ô denotes the extension of scalars to ΛÔ of the Λ-
module Sel(K∞, T ). By [CH18, Thm. 5.7] (see also [Cas17, Thm. A.1]) and [Cas19, Lem. 6.4],
there is an injective ΛÔ-linear map Lp : Sel(K∞, T )Ô → ΛÔ with finite cokernel such that

(2.14) Lp(z∞) = −Lp(f) · σ−1,p,

where σ−1,p ∈ Γ∞ has order two. Thus Lp becomes an isomorphism upon tensoring with Qp,
and using the above observations the implication (2.13) follows immediately from (2.14). �

3. Main results

3.1. Statements. We make the following hypotheses on the triple (E, p,K), where we let
ρE,p : GQ → AutFp(Ep) be the Galois representation of the p-torsion of E.

Hypotheses 3.1.

(1) p - 2N is a prime of good ordinary reduction for E.
(2) ρE,p is ramified at every prime `|N .
(3) Every prime `|N splits in K.
(4) ρE,p is surjective.
(5) p = pp splits in K.
(6) ap(E) 6≡ 1 (mod p).

Note that, for a given E/Q, conditions (1), (2), (4), and (6) exclude only finitely many
primes p by [Ser72], while conditions (3) and (5) are needed for the construction of Lp(f) ∈ ΛÔ
in [CH18]. Under these hypotheses, the module Selp(K∞, Ep∞) is known to be Λ-cotorsion,
and we let Fp(f) ∈ Λ be a characteristic power series for its Pontryagin dual Xp.

Theorem 3.2. Assume Hypotheses 3.1 and that Ø(E/K)p∞ is finite. Then

ordJFp(f) > 2(max{r+, r−} − 1),

where r± = rankZE(K)±, and letting F̄p(f) be the natural image of Fp(f) in J2ρ/J2ρ+1, where
ρ = max{r+, r−} − 1, we have

F̄p(f) = p−2 · Regp,der ·#Ø(E/K)p∞

up to a p-adic unit.

For comparison with the prediction of Conjecture 2.20 (together with Conjecture 2.1), recall
that, as noted in Remark 1.4, our hypotheses imply that the terms 1 − ap(E) + p and c` for
`|N are all p-adic units.

Remark 3.3. If rankZE(K) = 1 and Ø(E/K)p∞ is finite, then the module Selp(K,Ep∞) is
finite (see Lemma 2.2), and therefore the image of Fp(f) under the augmentation map

ε : ΛÔ → Ô
is nonzero. It follows that in this case the inequality in Theorem 3.2 is an equality, and
letting Fp(f)(0) ∈ Ô denote the image of Fp(f) under ε, the leading coefficient formula of
Theorem 3.2 reduces to the equality (up to a p-adic unit)

Fp(f)(0) = p−2 ·#Ø(E/K)p∞ ·
(

logωE
(y)

[E(K) : Z.y]

)2

,

where y ∈ E(K) is a point of infinite order with p−1 logωE
(y) 6≡ 0 (mod p). Thus Theorem 3.2

extends the anticyclotomic control theorem in [JSW17, Thm. 3.3.1] to arbitrary ranks.
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Under Hypotheses 3.1 (in fact, slightly weaker hypotheses suffice), and assuming that

(?) either N is squarefree, or there are at least two primes `‖N,
the Iwasawa–Greenberg main conjecture for Lp(f) is proved (see [BCK19, Cor. 7.7]) by build-
ing on work of Howard [How06] and W. Zhang [Zha14] . Thus Theorem 3.2 yields the following
result towards Conjecture 2.20.

Corollary 3.4. Assume Hypotheses 3.1, that Ø(E/K)p∞ is finite, and that (?) holds. Then

ordJLp(f) > 2(max{r+, r−} − 1),

and letting L̄p(f) be the natural image of Lp(f) in J2ρ/J2ρ+1, where ρ = max{r+, r−} − 1,
we have

L̄p(f) = p−2 · Regp,der ·#Ø(E/K)p∞

up to a p-adic unit.

In particular, Corollary 3.4 shows the inclusion Lp(f) ∈ Jρ, where ρ = max{r+, r−}−1. In
light of Proposition 2.22, this implies the following result, which yields one of the inequalities
in the “rank part” of Bertolini–Darmon’s Conjectures 2.12 and 2.17.

Corollary 3.5. Assume Hypotheses 3.1, thatØ(E/Kn)p∞ is finite for all n, that p - Nϕ(NDK),
and that (?) holds. Then we have the inclusion

θ ∈ Zp ⊗ Jρ,
where ρ = max{r+, r−} − 1.

3.2. Proof of Theorem 3.2. Note by (5) and (6) in Hypotheses 3.1 we have p - #E(Fv) for
every prime v of K above p, where Fv = Fp is the residue field of K at v, and by [Maz72, §4]
and condition (1) this implies that the local norm maps

(3.1) Normv : E(Kn,v)→ E(Kv)

are surjective for all primes v of K and all finite extensions Kn/K contained in K∞. (Here
E(Kn,v) denotes

⊕
w|v E(Kn,w), where the sum is over all places w of Kn lying above v, and

similar conventions for cohomology will be applied below.)
Define

H1
fin(Kn,v, Epm) := E(Kn,v)/p

mE(Kn,v),

H1
sing(Kn,v, Epm) :=

H1(Kn,v, Epm)

H1
fin(Kn,v, Epm)

' H1(Kn,v, E)pm ,

where the last identification follows from Tate’s local duality.

Definition 3.6. As in [BD05], we say that a rational prime q - pN is m-admissible for E if

(1) q is inert in K,
(2) q 6≡ ±1 (mod p),
(3) pm divides q + 1− aq(E) or q + 1 + aq(E).

We say that a finite set of rational primes Σ is an m-admissible set for E if every q ∈ Σ is an
m-admissible prime for E and the restriction map

Selp(K,Epm)→
⊕
q∈Σ

H1
fin(Kq, Epm)

is injective.

Remark 3.7. As shown in [BD94, Lem. 2.23] by an application of C̆ebotarev’s density theorem,
m-admissible sets for E always exist, and it follows from the argument in the proof given there
that one can in fact always find m-admissible sets for E with #Σ = dimFp(Selp(K,Epm)⊗Fp).
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Following the notations introduced in §2.1 assume that the finite set S contains Σ, and let

SelΣp (Kn, Epm) := ker

{
H1(GKn,S , Epm)→

⊕
q∈SrΣ

H1
fin(Kn,q, Epm)

}
be the Selmer group Selp(Kn, Epm) relaxed at the places in Σ. The next lemma underlies the
usefulness of m-admissible sets.

Lemma 3.8. Let Σ be an m-admissible set for E. Then for every n the modules⊕
q∈Σ

H1
fin(Kn,q, Epm),

⊕
q∈Σ

H1
sing(Kn,q, Epm), SelΣp (Kn, Epm)

are free (Z/pmZ)[Γn]-modules of rank #Σ, and there is an exact sequence
(3.2)

0→ Selp(Kn, Epm)→ SelΣp (Kn, Epm)→
⊕
q∈Σ

H1
sing(Kn,q, Epm)

δ−→ Selp(Kn, Epm)∨ → 0,

where δ is the dual to the natural restriction map.

Proof. This is well-known, but we recall the arguments for the convenience of the reader. Let
q be an m-admissible prime for E, and denote by Q the prime of K lying above q. Then
Epm is unramified as GKQ

-module, and the action of the Frobenius element at Q yields a
decomposition

Epm ' (Z/pmZ)⊕ (Z/pmZ)(1)

as Gal(Kunr
Q /KQ)-modules. From this an easy calculation shows that H1

fin(Kq, Epm) and

H1
sing(Kq, Epm) are both free of rank one over Z/pmZ (see e.g. [BD05, Lem. 2.6]). Since

Q splits completely in Kn/K, the freeness claims for the first two modules follow.
By Poitou–Tate duality, to establish the exactness of (3.2) it suffices to establish injectivity

of the restriction map

(3.3) Selp(Kn, Epm)→
⊕
q∈Σ

H1
fin(Kn,q, Epm)

(indeed, this implies surjectivity of δ). Arguing by contradiction, suppose that the kernel K
of this map is nonzero. Then we can find a nonzero element s ∈ K which is fixed by Γn, since
Γn is a p-group. However, the surjectivity of the local norm maps in (3.1) implies that the
restriction map

(3.4) Selp(K,Epm)→ Selp(Kn, Epm)Γn

is an isomorphism (see [BD95, Prop. 1.6]), and so s gives rise a nonzero element in the kernel
of Selp(K,Epm) →

⊕
q∈Σ H1

fin(K,Epm), contradicting the m-admissibility of Σ. Thus the

exactness of (3.2) follows, and with this the freeness claims for the module SelΣp (Kn, Epm) are
shown by a counting argument in [BD94, Thm. 3.2]. �

Recall that Fp(f) ∈ Λ is a characteristic power series for the Pontryagin dual

Xp := Selp(K∞, Ep∞)∨.

Denote by Selp(K,Ep∞)/div the quotient of Selp(K,Ep∞) by its maximal divisible subgroup.
The next result reduces the proof of Theorem 3.2 to the calculation of #(Selp(K,Ep∞)/div,
which is carried out in §3.3.

Proposition 3.9. Assume Hypotheses 3.1 and that Ø(E/K)p∞ is finite. Then

(3.5) ordJFp(f) > 2(max{r+, r−} − 1),
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and letting F̄p(f) be the natural image of Fp(f) in J2ρ/J2ρ+1, where ρ = max{r+, r−}− 1, we
have

F̄p(f) = #(Selp(K,Ep∞)/div) · det(A)−2 ·
p−1∏
k=1

R(k)
p

up to a p-adic unit.

The rest of the section is devoted to the proof of Proposition 3.9, for which we shall suitably
adapt the arguments in [BD95, §2.5].

Define

(3.6) 〈 , 〉Kn/K,m :
⊕
q∈Σ

H1(Kn,q, Epm)×
⊕
q∈Σ

H1(Kn,q, Epm)→ (Z/pmZ)[Γn]

by the rule

〈x, y〉n :=
∑
σ∈Γn

〈x, yσ〉Kn,m · σ−1,

where 〈 , 〉Kn,m :
⊕

q∈Σ H1(Kn,q, Epm)×
⊕

q∈Σ H1(Kn,q, Epm)→ Z/pmZ is the natural exten-
sion of the local Tate pairing.

Lemma 3.10. The pairing 〈 , 〉Kn/K,m is symmetric, non-degenerate, and Galois-equivariant,

and the images of
⊕

q∈Σ H1
fin(Kn,q, Epm) and SelΣp (Kn, Epm) are isotropic for this pairing.

Proof. All the claims except the last one follow from the corresponding properties of the local
Tate pairing, while the isotropy of SelΣp (Kn, Epm) follows from the global reciprocity law of
class field theory. �

In what follows, we take m = n, and set

Rn := (Z/pnZ)[Γn], 〈 , 〉n := 〈 , 〉Kn/K,n

for ease of notation.
As shown in the proof of Lemma 3.8, the natural map Selp(Kn, Epn)→

⊕
q∈Σ H1(Kn,q, Epn)

is injective, and we can write

(3.7) Selp(Kn, Epn) =

(⊕
q∈Σ

H1
fin(Kn,q, Epn)

)
∩SelΣp (Kn, Epn),

with the modules in the intersection being each free Rn-modules of rank #Σ. By Lemma 3.10,
〈 , 〉n restricts to a non-degenerate pairing

[ , ]n :
⊕
q∈Σ

H1
fin(Kn,q, Epn)×

⊕
q∈Σ

H1
sing(Kn,q, Epn)→ Rn,

and with a slight abuse of notation we define

〈 , 〉n :
⊕
q∈Σ

H1
fin(Kn,q, Epn)×SelΣp (Kn, Epn)→ Rn

by 〈x, y〉n := [x, λ(y)]n, where λ is the natural map SelΣp (Kn, Epn)→
⊕

q∈Σ H1
sing(Kn,q, Epn).

Lemma 3.11. Let µn : Λ→ Rn be the map induced by the projection Γ∞ → Γn. Then

µn(Fp) = FittRn(Selp(Kn, Epn)∨) = det(〈xi, yj〉n)16i,j6#Σ,

where x1, . . . , x#Σ and y1, . . . , y#Σ are any Rn-bases for
⊕

q∈Σ H1
fin(Kn,q, Epn) and SelΣp (Kn, Epn),

respectively.
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Proof. Letting γn ∈ Γn be a generator, the first equality follows from the natural isomorphism

Xp/(γn − 1, pn)Xp ' Selp(Kn, Epn)∨

together with standard properties of Fitting ideals, and the second equality follows from the
fact that by Lemma 3.8 we have a presentation

R#Σ
n

M−→ R#Σ
n → Selp(Kn, Epn)∨ → 0

with M given by a matrix with entries mi,j = [xi, λ(yj)]n = 〈xi, yj〉n (see [BD95, Lem. 2.25
and Lem. 2.26] for details). �

Recall the filtration Selp(K,T ) = S
(1)
p ⊃ S

(2)
p ⊃ · · · ⊃ S

(p)
p in (2.9). Letting S̄

(k)
p,n be the

natural image of S
(k)
p in Selp(K,Epn) we obtain a filtration

(3.8) Selp(K,Epn) ⊃ S̄
(1)
p,n ⊃ S̄

(2)
p,n ⊃ · · · ⊃ S̄

(p)
p,n

with S̄
(k)
p,n/S̄

(k+1)
p,n ' (Z/pnZ)ek , for 1 6 k 6 p−1, and S̄

(p)
p,n ' (Z/pnZ)dp for dp = rankZpS

(p)
p .

From (3.7) (using that (3.4) is an isomorphism), we see that

(3.9) Selp(K,Epn) =

(⊕
q∈Σ

H1
fin(Kq, Epn)

)
∩SelΣp (K,Epn)

with the modules in the intersection being free over Z/pnZ of rank #Σ.
Let x̄1, . . . , x̄#Σ and ȳ1, . . . , ȳ#Σ be Z/pnZ-bases for

⊕
q∈Σ H1

fin(Kq, Epn) and SelΣp (K,Epn),

respectively, which are adapted to the filtration (3.8), meaning that the first r vectors x̄1, . . . , x̄r

are a basis for S̄
(1)
p,n ⊂ Selp(K,Epn) with the images of x̄hk , . . . x̄hk+ek in S̄

(k)
p,n/S̄

(k+1)
p,n giving

a basis for S̄
(k)
p,n/S̄

(k+1)
p,n (1 6 k 6 p − 1) and x̄hp , . . . , x̄hp+dp a basis for S̄

(p)
p,n, and similarly

for ȳ1, . . . , ȳ#Σ. On the other hand, let x′1, . . . , x
′
#Σ and y′1, . . . , y

′
#Σ be any Rn-bases for⊕

q∈Σ H1
fin(Kn,q, Epn) and SelΣp (Kn, Epn), respectively, and set

x̄′i := corKn/K(x′i), ȳ′i := corKn/K(y′i).

Then there exist matrices M̄ and N̄ in GL#Σ(Z/pnZ) taking (x̄′1, . . . , x̄
′
#Σ) 7→ (x̄1, . . . , x̄#Σ)

and (ȳ′1, . . . , ȳ
′
#Σ) 7→ (ȳ1, . . . , ȳ#Σ), respectively, and letting M,N ∈ GL#Σ(Rn) be any lifts

of M̄, N̄ under the map GL#Σ(Rn)→ GL#Σ(Z/pnZ) induced by the augmentation

ε : Rn → Z/pnZ,

the images of (x′1, . . . , x
′
#Σ), (y′1, . . . , y

′
#Σ) underM , N areRn-bases (x1, . . . , x#Σ), (y1, . . . , y#Σ)

satisfying

corKn/K(xi) = x̄i, corKn/K(yi) = ȳi.

Lemma 3.12. With the above choice of Rn-bases x1, . . . , x#Σ and y1, . . . , y#Σ, we have

ε(det(〈xi, yj〉n)r+16i,j6#Σ) = u ·#(Selp(K,Ep∞)/div)

for some u ∈ (Z/pnZ)×.

Proof. Write

Selp(K,Ep∞)/div ' Z/ps1Z⊕ · · · ⊕ Z/pskZ

Taking n from the outset to be sufficiently large, we may assume that si < n for all i. Denote
by XΣ

p (K,E)pn the image of SelΣp (K,Epn) under the natural map

H1(K,Epn)→ H1(K,E)pn .
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Since the elements in ȳ1, . . . , ȳr are in Selp(K,Epn) and ȳ1, . . . , ȳ#Σ is a basis for SelΣp (K,Epn),

we see that the natural surjection SelΣp (K,Epn) � XΣ
p (K,E)pn identifies XΣ

p (K,E)pn with
the span of ȳr+1, . . . ȳ#Σ and we have an exact sequence

0→ Selp(K,Epn)→ XΣ
p (K,E)pn → λ(SelΣp (K,Epn))→ 0.

Thus we find that

λ(SelΣp (K,Epn)) ' ps1(Z/pnZ)⊕ · · · ⊕ psk(Z/pnZ)⊕ (Z/pnZ)#Σ−r−k,

and choosing the basis elements x̄r+1, . . . , x̄#Σ and ȳr+1, . . . , ȳ#Σ so that 〈x̄i, ȳj〉K,n = psiδij ,
the result follows using the relation

ε(〈xi, yj〉n) = −〈x̄i, ȳj〉K,n,

which is immediate from the compatibility of the local Tate pairing with respect to corestric-
tion (see [BD94, Prop. 2.10]). �

Fix a generator γn ∈ Γn, and set

S
(k)
p,n := Selp(K,Epn) ∩ (γn − 1)k−1Selp(Kn, Epn).

Then by definition2

S
(k)
p := lim←−

n

S
(k)
p,n,

where the limit is with respect to the natural maps induced by the multiplication Epn+1 → Epn ,

and we have S̄
(k)
p,n ⊂ S

(k)
k,n. Let x̃hk+1, . . . , x̃hk+ek ; ỹhk+1, . . . , ỹhk+ek ∈ Selp(Kn, Epn) be such

that

(3.10) (γn − 1)k−1x̃hk+i = x̄hk+i, (γn − 1)k−1ỹhk+i = ȳhk+i.

For 0 6 k 6 p, let D
(k)
n ∈ Rn be the derivative operator

D(k)
n := (−1)kγ−kn

pn−1∑
i=0

(
i

k

)
γin

(so D
(0)
n =

∑
γ∈Γn

γ is the norm map) introduced in [Dar92, §3.1].

Claim 3.13. For every 1 6 k 6 p, there exist elements x′hk+1, . . . , x
′
hk+ek

∈
⊕

q∈Σ H1
fin(Kn,q, Epn)

and y′hk+1, . . . , y
′
hk+ek

∈ SelΣp (Kn, Epn) satisfying

(3.11) D(k−1)
n (x′hk+i) = x̃hk+i, D(k−1)

n (y′hk+i) = ỹhk+i.

To see this, note that by (3.9) and the definition of n-admissible set we may view the x̄ek+i

as elements in
⊕

q∈Σ H1
fin(Kq, Epn) = (

⊕
q∈Σ H1

fin(Kn,q, Epn))Γn and by injectivity of the re-

striction map (3.3), the equality in (3.10) may be seen as taking place in
⊕

q∈Σ H1
fin(Kn,q, Epn).

Hence by [BD95, Cor. 2.4] applied to
⊕

q∈Σ H1
fin(Kn,q, Epn) (which is free overRn by Lemma 3.8),

the existence of elements x′hk+i satisfying (3.11) follows. The existence of elements y′hk+i sat-

isfying (3.11) is seen similarly, viewing (3.10) as taking place in SelΣp (Kn, Epn).
By (3.10), the resulting elements x′1, . . . , x

′
r and y′1, . . . , y

′
r are Rn-linearly independent, and

setting x′i := xi and y′i := yi for r + 1 6 i 6 #Σ an argument similar to that preceding
Lemma 3.12 shows that, after possibly transforming the bases x′1, . . . , x

′
#Σ and y′1, . . . , y

′
#Σ by

2Since our hypotheses imply that Selp(K,T ) is free; in general S
(k)
p is defined in [BD95] as the p-adic

saturation of lim←−n
S

(k)
p,n in Selp(K,T ).
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matrices in the kernel of the map GL#Σ(Rn) −→ GL#Σ(Z/pnZ) induced by the augmentation,
we may assume

(3.12) corKn/K(x′i) = x̄i, corKn/K(y′i) = ȳi

for all i.
We can now conclude the proof of Proposition 3.9.

Proof of Proposition 3.9. Let σp := e1 + 2e2 + · · ·+ (p− 1)ep−1 +dp. (Recall that ek are given

by (2.10), and dp := rankZpS
(p)
p , which is expected to be zero.) To prove the inequality (3.5),

it is enough to show the inclusion

(3.13) FittRn(Selp(Kn, Epn)∨) ∈ Jσpn

for all n > 1, where Jn is the augmentation ideal of Rn. Indeed, this implies that ordJFp(f) >
σp, and by Remark 2.6 we have

σp =

p∑
k=1

rankZpS
(k)
p > (r − 1) + (|r+ − r−| − 1) = 2(max{r+, r−} − 1).

As noted earlier, we may choose n-admissible sets Σ = Σn with #Σ independent of n, and
we assume now that the preceding constructions of bases have been carried out with such Σ.

The Galois-equivariance property of 〈 , 〉n together with (3.11) imply that for all 1 6 i 6 ek
and y ∈ SelΣp (Kn, Epn) we have

D(k−1)
n (〈x′hk+i, y〉n) = 〈D(k−1)

n (x′hk+i), y〉n = 0,

using Lemma 3.10 for the second equality. By [BD95, Cor. 2.5], it follows that 〈x′hk+i, y〉n ∈ Jkn .

Since (3.12) readily implies the equality

(3.14) det(〈x′i, y′j〉n)16i,j6#Σ = det(〈xi, yj〉n)16i,j6#Σ,

and by Lemma 3.12 we have

(3.15) det(〈xi, yj〉n)16i,j6#Σ = FittRn(Selp(Kn, Epn)∨),

the inclusion (3.13) follows.
Finally, to prove the expression in Proposition 3.9 for the image of Fp(f) in Jρ/Jρ+1, where

ρ = max{r+, r−} − 1, we may assume that ρ = σp (otherwise the result is trivial, both terms
in the formula being equal to zero). Then by Lemma 3.10, (3.14), and Lemma 3.12 we get

(3.16) det(〈x′i, y′j〉n)16i,j6#Σ = det(〈x′i, y′j〉n)16i,j6r · un ·#(Selp(K,Ep∞)/div) ∈ Jρn,

for some unit un ∈ (Z/pnZ)×. Since by (3.10), (3.11), and the definition of the derived pairing

h
(k)
p,n (see [BD95, p. 1526]) we have

(3.17) h
(k)
p,n(x̄i, ȳj) = 〈x′i, y′j〉n ∈ Jkn/Jk+1

n

for all hk + 1 6 i, j 6 hk + ek, combining Lemma 3.11 with (3.14), (3.15), (3.16), and (3.17)
we arrive at the equality

µn(Fp) = un ·
p−1∏
k=1

det(h
(k)
p,n(x̄i, ȳj))hk+16i,j6hk+ek

in Jρn/J
ρ+1
n , and letting n→∞ the result follows. �
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3.3. Calculation of #(Selp(K,Ep∞)/div). Define the p̄-relaxed Tate–Shafarevich group by

Ø
{p}(E/K) := ker

{
H1(K,E)→

∏
w 6=p̄

H1(Kw, E)

}
,

and letØ{p}(E/K)p∞ denote its p-primary component. Recall that by hypothesis (Heeg) the
root number of E/K is −1, so by the p-parity conjecture if Ø(E/K)p∞ is finite then E(K)
has positive rank.

Lemma 3.14. Assume thatØ(E/K)p∞ is finite. ThenØ{p}(E/K)p∞ is also finite, and we
have

#Ø{p}(E/K)p∞ = #Ø(E/K)p∞ ·#coker(locp),

where locp : Sp(E/K)→ E(Kp)⊗ Zp is the restriction map.

Proof. Define B∞ by the exactness of the sequence

0→Ø(E/K)p∞ → H1(K,E)p∞ →
∏
w

H1(Kw, E)p∞ → B∞ → 0.

Then we have an induced exact sequence

(3.18) 0→Ø(E/K)p∞ →Ø{p}(E/K)p∞ → H1(Kp, E)p∞
h∞−−→ B∞.

By surjectivity of the top right arrow in the commutative

0 // E(K)⊗Qp/Zp //

��

H1(K,Ep∞) //

��

∂

))

H1(K,E)p∞

��

// 0

0 //
∏
w E(Kw)⊗Qp/Zp //

∏
w H1(Kw, Ep∞) //

∏
w H1(Kw, E)p∞ // 0,

we see that ker(h∞) is the same as the kernel of the map δ in the Cassels dual exact sequence

0→ Selp∞(E/K)→ Sel
{p}
p∞ (E/K)→ H1(Kp, E)p∞

δ−→ Sp(E/K)∨,

where Sel
{p}
p∞ (E/K) is the kernel of the map H1(K,Ep∞)→

∏
w-p H1(Kw, E)p∞ .

Using that E∗p∞ := Homcts(Ep∞ , µp∞) ' T τ (which exchanges the restriction maps at p
and p) it follows that the kernel of h∞ is dual to the cokernel of the map locp : Sp(E/K) →
E(Kp)⊗ Zp, which is finite under our hypotheses. The result follows. �

The following result is an analogue of [JSW17, Prop. 3.2.1] in arbitrary (co)rank.

Proposition 3.15. Assume that Ø(E/K)p∞ is finite and ap(E) 6≡ 1 (mod p). Then

#(Selp(K,Ep∞)/div) = #Ø(E/K)p∞ · (#coker(locp))
2,

where locp : Sp(E/K)→ E(Kp)⊗ Zp is the restriction map.

Proof. Let y1, . . . , yr−1 be a Zp-basis for the kernel

E1,p(K) := ker

{
E(K)⊗ Zp

locp−−→ E(Kp)⊗ Zp

}
,

and extend it to a Zp-basis y1, . . . , yr−1, yp for E(K)⊗ Zp, so

(3.19) E(K)⊗ Zp = E1,p(K)⊕ Zp.yp.

Then the finite module U defined by the exactness of the sequence

(3.20) 0→ Zp.yp → E(Kp)⊗ Zp → U → 0

satisfies

(3.21) #U = [E(Kp)⊗ Zp : locp(E(K)⊗ Zp)] = #coker(locp),
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using the finiteness assumption on Ø(E/K) for the second equality. The hypothesis that
ap(E) 6≡ 1 (mod p) implies that E(Kp) has no p-torsion, and so E(Kp) ⊗ Zp is a free Zp-
module of rank one. Tensoring (3.21) with Qp/Zp therefore yields

0→ V → (Qp/Zp).yp → E(Kp)⊗Qp/Zp → 0

with #V = #U , and from (3.19) we deduce that

(3.22) ker

{
E(K)⊗Qp/Zp

λp−→ E(Kp)⊗Qp/Zp

}
= (E1,p(K)⊗Qp/Zp)⊕ V.

Now consider the p-relaxed Tate–Shafarevich groupØ{p}(E/K) defined by

Ø
{p}(E/K) := ker

{
H1(K,E)→

∏
w-p

H1(Kw, E)

}
.

It is immediately seen that its p-primary part fits into the exact sequence

0→ E(K)⊗Qp/Zp → Sel
{p}
p∞ (E/K)→Ø{p}(E/K)p∞ → 0,

where Sel
{p}
p∞ (E/K) is the kernel of the map H1(K,Ep∞)→

∏
w-p H1(Kw, E)p∞ . Consider also

the commutative diagram

0 // E(K)⊗Qp/Zp //

λp

��

Sel
{p}
p∞ (E/K) //

��

Ø
{p}(E/K)p∞

��

// 0

0 // E(Kp)⊗Qp/Zp // H1(Kp, Ep∞) // H1(Kp, E)p∞ // 0

in which the unlabeled vertical maps are given by restriction. Since the map λp is surjective
by our assumptions, the snake lemma applied to this diagram yields the exact sequence

(3.23) 0→ ker(λp)→ Selp(K,Ep∞)→Ø{p}(E/K)p∞ → 0,

and hence from (3.23), (3.22) and (3.21) we conclude that

#(Selp(K,Ep∞)/div) = #Ø{p}(E/K)p∞ ·#V = #Ø{p}(E/K)p∞ ·#coker(locp)

= #Ø(E/K)p∞ ·#(coker(locp))
2,

using Lemma 3.14 for the last equality. �

As in the proof of Proposition 3.15, let y1, . . . , yr−1 be a Zp-basis for the kernel Selstr(K,T )
of

locp : E(K)⊗ Zp → E(Kp)⊗ Zp,

and extend it to a Zp-basis y1, . . . , yr−1, yp for E(K)⊗Zp. We denote by logωE
: E(K)⊗Zp →

Zp the composition of locp with the formal group logarithm associated with a Néron differential
ωE ∈ Ω1(E/Z(p)).

Proposition 3.16. Assume that Ø(E/K)p∞ is finite and ap(E) 6≡ 1 (mod p). Then

#coker(locp) = p−1#(Zp/ logωE
(yp)).

Proof. Let E1(Kp) be the kernel of reduction modulo p, so there is an exact sequence

0→ E1(Kp)→ E(Kp)→ E(Fp)→ 0.
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Set Y := Zp.yp, Yp,1 := locp(Y )∩(E1(Kp)⊗Zp) and Z := Y/Yp,1 (a finite group), and consider
the commutative diagram

0 // Yp,1 //

λp,1
��

Y //

locp|Y
��

Z //

��

0

0 // E1(Kp)⊗ Zp // E(Kp)⊗ Zp // E(Fp)⊗ Zp // 0.

Since the middle vertical is injective by our choice of yp and E(Fp)⊗Zp ' Zp/(1−ap(E) +p)
is trivial by our assumption on ap(E), applying the snake lemma we deduce

(3.24) #coker(locp|Y ) ·#Z = #coker(λp,1).

On the other hand, noting that #Z ·yp is a generator of Yp,1 and the formal group logarithm
induces an isomorphism logωE

: E1(Kp)⊗ Zp ' pZp we find

(3.25) #coker(λp,1) =
#Zp/logωE

(#Z · yp)
#Zp/logωE

(E1(Kp)⊗ Zp)
= #Z · p−1#(Zp/locωE (yp)).

Since clearly #coker(locp|Y ) = [E(Kp)⊗Zp : locp(Sp(E/K))] by the definition of yp, combining
(3.24) and (3.25) the result follows. �

We can now conclude the proof of Theorem 3.2.

Proof of Theorem 3.2. By Proposition 3.9 we have ordJFp(f) > 2ρ with ρ = max{r+, r−}−1,
and the equality

(3.26) F̄p(f) = #(Selp(K,Ep∞)/div) · det(A)−2 ·
p−1∏
k=1

R(k)
p

in (J2ρ/J2ρ+1)⊗Q up to a p-adic unit. On the other hand, combining Propositions 3.15 and
3.16 we obtain

(3.27)
#(Selp(K,Ep∞)/div) = #Ø(E/K)p∞ · (#coker(locp))

2

= #Ø(E/K)p∞ · p−2 · logωE
(yp)

2,

with the last equality holding up to a p-adic unit. Recalling the Definition 2.19 of Regp,der,
the proof of Theorem 3.2 now follows from (3.26) and (3.27). �

Acknowledgements. It is a pleasure to thank Henri Darmon and Chris Skinner for their
comments on an earlier draft of this paper.

References

[Agb07] A. Agboola, On Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture, Compos.
Math. 143 (2007), no. 6, 1374–1398.

[AI19] Fabrizio Andreatta and Adrian Iovita, Katz type p-adic L-functions for primes p non-split in the
CM field, Preprint, arXiv:1905.00792.

[BCDT01] Christophe Breuil, Brian Conrad, Fred Diamond, and Richard Taylor, On the modularity of elliptic
curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic).

[BCK19] Ashay Burungale, Francesc Castella, and Chan-Ho Kim, A proof of Perrin-Riou’s Heegner point
main conjecture, Preprint, arXiv:1908.09512.

[BD94] Massimo Bertolini and Henri Darmon, Derived heights and generalized Mazur-Tate regulators, Duke
Math. J. 76 (1994), no. 1, 75–111.

[BD95] , Derived p-adic heights, Amer. J. Math. 117 (1995), no. 6, 1517–1554.
[BD96] M. Bertolini and H. Darmon, Heegner points on Mumford-Tate curves, Invent. Math. 126 (1996),

no. 3, 413–456.
[BD05] , Iwasawa’s main conjecture for elliptic curves over anticyclotomic Zp-extensions, Ann. of

Math. (2) 162 (2005), no. 1, 1–64.

https://arxiv.org/abs/1905.00792
https://arxiv.org/abs/1908.09512


ON ANTICYCLOTOMIC VARIANTS OF THE p-ADIC BIRCH AND SWINNERTON-DYER CONJECTURE23

[BDP12] M. Bertolini, H. Darmon, and K. Prasanna, p-adic Rankin L-series and rational points on CM
elliptic curves, Pacific J. of Math. (2012), 261–303.

[BDP13] Massimo Bertolini, Henri Darmon, and Kartik Prasanna, Generalized Heegner cycles and p-adic
Rankin L-series, Duke Math. J. 162 (2013), no. 6, 1033–1148.
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