ON ANTICYCLOTOMIC VARIANTS OF THE p-ADIC BIRCH AND
SWINNERTON-DYER CONJECTURE

ADEBISI AGBOOLA AND FRANCESC CASTELLA

ABSTRACT. We formulate analogues of the Birch and Swinnerton-Dyer conjecture for the
p-adic L-functions of Bertolini-Darmon—Prasanna attached to elliptic curves F/Q at primes
p of good ordinary reduction. Using Iwasawa theory, we then prove under mild hypotheses
one of the inequalities predicted by the rank part of our conjectures, as well as the predicted
leading coefficient formula up to a p-adic unit.

Our conjectures are very closely related to conjectures of Birch and Swinnerton-Dyer type
formulated by Bertolini-Darmon in 1996 for certain Heegner distributions, and as application
of our results we also obtain the proof of an inequality in the rank part of their conjectures.
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1. INTRODUCTION

Let E/Q be an elliptic curve of conductor N, let p > 2 be a prime of good ordinary reduction
for F, and let K be an imaginary quadratic field of discriminant prime to Np. Let K /K be
the anticyclotomic Z,-extension of K, and set I'ns = Gal(K+/K) and A = Z,[[['s]].

Assume that K satisfies the Heegner hypothesis relative to N, i.e., that

(Heeg) every prime factor of N splits in K.
This condition implies that the root number of E/K is —1. Assume in addition that

(spl) p = pp splits in K,

and let O be the completion of the ring of integers of the maximal unramified extension of
Qp. Let f € S3(T'g(N)) be the newform associated with E. In [BDP13] (as later strengthened
in [Bralll, [(CH18]), Bertolini-Darmon—Prasanna introduced a p-adic L-function

Zo(f) € Ay = A&7,0

with Ly(f) := % (f)? interpolating the central critical values for the twists of f/K by certain
infinite order characters of I's,. In this paper we formulate and study analogues of the Birch
and Swinnerton-Dyer conjecture for these p-adic L-functions.
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Any continuous character x : ['oo — O extends to a map XAy — O, and we write
Ly (f)(x) for x(Lyp(f)). The trivial character 1 of I's, lies outside the range of p-adic interpo-
lation for Ly(f), and one of the main results of [BDP13] is a formula of p-adic Gross—Zagier
type for this value:

9 _ 1—ay,(E)+p 2
(1.1) Lo(f)(1) = uPcy” - <p](9)) -log,,, (2K )*
(see [BDP13, Thm. 5.13], as specialized in [BDP12, Thm. 3.12] to the case where f has weight
k = 2). Here a,(E) :==p+ 1 — #E(Fp) and ug = 1#05 as usual, zx € E(K) is a Heegner
point arising from a modular parametrization ¢ : Xo(N) — E,

log,, . : E(Ky) @ Zy — Zy

is the formal group logarithm associated with a Néron differential wp € QY(E/ Zy), and
cg € Z is such that p*(wg) = cg - 2mwif(7)dT.

Formula has been a key ingredient in recent progress on the Birch and Swinnerton-Dyer
conjecture. Most notably, for elliptic curves £/Q with rankz £(Q) = 1 and #II(E/Q)p~ <
00, it was used by Skinner [Skild] (for a suitable choice of K) to prove a converse to
the celebrated theorem of Gross—Zagier and Kolyvagin, and for elliptic curves E/Q with
ords—1 L(E, s) = 1, it was used by Jetchev—Skinner—-Wan [JSW17] (again, for suitably chosen
K) to prove under mild hypotheses the p-part of the Birch and Swinnerton-Dyer formula.

For elliptic curves E/Q satisfying rankzF(K) > 2 and #II(E/K),~ < oo, the Heegner
point zk is torsion and formula shows that L (f)(1) = 0, or equivalently, that L,(f) € J,
where

J:=ker(e: Ap — 0)

is the augmentation ideal of A 5. The conjectures formulated in this paper predict the largest
power J¥ of J in which Ly(f) lives (i.e., the “order of vanishing” of L,(f) at 1) in terms of the
ranks of £(Q) and E(K), and a formula for the image of Ly(f) in J”/J**! (i.e., the “leading
coefficient” of Ly(f) at 1) in terms of arithmetic invariants of E. For the sake of illustration,
in the remainder of this Introduction we concentrate on a weaker form of these conjectures,
referring the reader to Section 3 for their actual form.

Let T = T,E be the p-adic Tate module of E, and let S,(E/K) C H'(K,T) be the classical
pro-p Selmer group of E fitting in the exact sequence

0—-EBEK)®Z,— S(E/K) — T,1II(E/K) — 0.

We shall assume that #II1(E/K) < oo, so in particular S,(E/K) ~ E(K) ® Z,. The work of
Mazur—Tate [MT83] (see also [Sch82]) produces a canonical symmetric p-adic height pairing
W Sy(E/K) x Sy(E/K) — (J/J?) ® Q.

By the p-parity conjecture [Nek01], our assumptions also imply that the strict Selmer group
Selstr (K, T) :=ker{S,(E/K) — E(K,) ® Zy}

has Z,-rank r — 1, where r = rankz F'(K). Assume that S,(E/K) is torsion-free (this holds if
e.g. E, is irreducible as Gg-module), let Py, ..., P, be an integral basis for E(K)® Q and let
A be an endomorphism of E(K)®Z, sending P, ..., P, basis to a Zy,-basis 1, ..., z,_1,y, for
Sp(E/K) with x1,...,2,_1 generating Selg,(K,T). Set t = det(A) - [E(K): ZP +---+ZP,].
The following is a special case of our Conjecture [2.20

Conjecture 1.1. Assume that II(E/K) is finite and that E, is irreducible as G g-module,
and let r = rankz E(K). Then:

(i) Ly(f) e J—L.
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(ii) Letting Ly(f) be the natural image of Ly(f) in J"~1/J", we have

- :<1—ap(E)+p

2
Lo(/) - ) logy, (up)? - Reg, -+ - #TT(E/K) - [ &,

oN

where Reg, = det(hgT(:ci, xj))1<i,j<r—1 s the regulator of hgT restricted to Selg, (K, T),
and cg is the Tamagawa number of E/Qy.

Remark 1.2. Suppose rankzF(K) = 1. Under the assumptions of Conjecture we then
have Sels, (K, T) = {0}, Reg, = 1 and t = [E(K) : Z.yy], where y, is a generator of E(K)®Q
with log,, (yp) # 0. Thus in this case Conjecture predicts that Ly(f)(1) # 0, and by
formula the predicted expression for Ly(f)(1) is equivalent to the equality

B(K) : Zayx]? = ey - #T(E/K) - [[ &,
(N

which is also predicted by the classical Birch and Swinnerton-Dyer conjecture for E/K when
combined with the Gross—Zagier formula (see [Gro91, Conj. 1.2]).

The Iwasawa-Greenberg main conjecture [Gre94] predicts that Ly(f) is a generator of the
characteristic ideal of a certain A-torsion Selmer group X,. Letting F,(f) € A be a generator
of this characteristic ideal, in this paper we prove the following result towards Conjecture [1.1
which can be viewed simultaneously as a non-CM analogue of (resuls towards) Rubin’s variant
of the p-adic Birch and Swinnerton-Dyer conjecture (see [Rub92, §11], [Rub94, Thm. 5] and
[Agb07, Thm. B]) in the anticyclotomic setting, and an extension of the anticyclotomic control
theorem of [JSW17, §3.3] to arbitrary ranks.

Theorem 1.3 (c¢f. Theorem [3.2). Assume that I(E/K)pe~ is finite and that:
(i) pep: Gq — Auty,(E)) is surjective.
(ii) Ep is ramified at every prime ¢|N.
(iii) pt #E(Fp).
Then Fy(f) € J=1, where r = rankz E(K), and letting Fy(f) be the natural image of Fy(f)
in J"=1/J", we have

Fo(f) =p7% 108, (4p)? - Regy, - 72 - #LLU(E/ K)o
up to a p-adic unit.

Remark 1.4. Note that conditions (ii) and (iii) in Theorem imply that the terms 1 —
ap(E) + p and ¢ for £|N are all p-adic units.

Combined with the Iwasawa-Greenberg main conjecture for Ly(f) (which is known under
relatively mild hypotheses [BCK19]), Theorem can be parlayed in terms of this p-adic
L-function, yielding our main result towards Conjecture (or rather its refinement in Con-
jecture [2.20)); see Corollary

We end this Introduction with some comments about the need for the refinement of Con-
jecture given by Conjecture We continue to assume that #II(E/K),~ < oo, and
let

r¥ = rankz E(K)*
be the rank of the +-eigenspaces E(K)* ¢ E(K) under the action of complex conjugation,
SO
r=rankzE(K)=r" +7r".
From the Galois-equivariance properties of hgT, one easily sees that Reg, = 0 when |rt—r~| >
1. These systematic degeneracies of the p-adic height pairing in the anticyclotomic setting
(which are in sharp contrast with the expected non-degeneracy of the p-adic height pairing
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in the cyclotomic setting) were understood by Bertolini-Darmon [BD94, [BD95] as giving rise
to canonical derived p-adic height pairings, in terms of which we will define a generalized
p-adic regulator Regge, . This generalized regulator recovers Reg, when lrT —r~| =1, but
provides extra information when |r™ —r~| > 1. More precisely, the expected “maximal
non-degeneracy” of the anticyclotomic p-adic height pairing (as conjectured by Mazur and
Bertolini-Darmon) leads to the prediction that Regge,, is a nonzero element in .J 20/ g2t
where
p=max{rt,r }—1.

Conjecturethen predicts that Ly(f) lands in J?¢ (note that 2p > r—1 when |r* —r~| >
1), and posits a formula for its natural image in J*/J**! in terms of Regge, ,. Our main
result is the analogue of Theorem for this refined conjecture.

Remark 1.5. As it will be clear to the reader, our conjectures are very closely related to the
conjectures of Birch and Swinnerton-Dyer type formulated by Bertolini-Darmon [BD96] for
certain “Heegner distributions”. In fact, as application of our results on Conjecture [2.20
we will deduce under mild hypotheses the proof of an inequality in the “rank part” of their
conjectures (see Corollary .

The remainder of this paper is organized as follows. In Section 2, after defining the relevant
Selmer groups and recalling the conjectures of Bertolini-Darmon, we formulate our conjectures
of Birch and Swinnerton-Dyer type for the p-adic L-functions Ly (f) and %, (f). In Section 3,
we state and prove our main results in the direction of these conjectures.

2. THE CONJECTURES

2.1. Selmer groups. We keep the notation from the Introduction. In particular, K., denotes
the anticyclotomic Z,-extension of K. For every n we write K,, for the subextension of K,
with
Iy = Gal(K,,/K) ~Z/p"Z.
Let S be a finite set of places of Q containing oo and the primes dividing Np, and for
every finite extension F//Q let &g be the Galois group over F' of the maximal extension of
F unramified outside the places above S. For each prime q € {p,p} set

Gely(Kp, T) := ker{Hl(qumS,T) — H Hl(me,T)}.
wlpwig
Let Gelg(Kp, Epe) C HY(S, 5, Ep) be the Selmer group cut out by the local conditions
given by the orthogonal complement under local Tate duality of the subspaces cutting out
Selq(Ky,T), and set
Gelg(Koo, Epee) = hg@e[q(Kn,Epoo).
n

As is well-known (see e.g. [Gre06, Prop. 3.2]), Selq(K, Ep=) is a cofinitely generated A-
module, i.e., its Pontryagin dual Sely(Koo, Epeo ) is finitely generated over A.

Conjecture 2.1 (Iwasawa-Greenberg main conjecture). The module Sely(Koo, Epec) is A-
cotorsion and
charp (Sely (Koo, Ep=)")Ap = (Lp(f))

as ideals in A@.

The following lemma will be useful in the following. Let
Selse (K, T) := ker{Hl((’ng, T) — [[H (Ku, T)}

be the strict Selmer group, which is clearly contained in S,(E/K).
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Lemma 2.2. Assume that HI(E/K)p~ is finite. Then
Gely (K, T) = Selys (K, T) = Gelg(K, T).

In particular, Sely(K,T) and Sely(K,T) are both contained in Sy(E/K) and have Zy-rank
r — 1, where r = rankz F(K).

Proof. By our assumption on III(E/K), hypothesis (Heeg)) and the p-parity conjecture [Nek01]
imply that r := rankz E(K) is odd, so in particular r > 0. Thus the image of restriction map

(2.1) Sp(E/K) = [ E(Kw) ® Zy
w|p
has Z,-rank one, and the result follows from [Skil4, Lem. 2.3.2]. O

2.2. Conjectures of Bertolini—-Darmon. In this section, we recall some of the conjectures
of Birch-Swinnerton-Dyer type formulated by Bertolini-Darmon in [BD96]. These conjectures
will guide our formulation in §2.3| of analogous statements for the p-adic L-functions Ly(f)
and .Z,(f) of Bertolini-Darmon—Prasanna.

As in the Introduction, we assume that the elliptic curve E/Q has good ordinary reduction
at p > 2 and that K is an imaginary quadratic field of discriminant Dg prime to Np in which
p = pp splits. However, rather than hypothesis from the Introduction, we assume that
writing N as the product

N=N'tN",
with Nt (resp. N7) divisible only by primes which are split (resp. inert) in K, we have
(gen-H) N~ is the squarefree product of an even number of primes.

This condition still guarantees that the root number of E/K is —1, as well as the presence
of Heegner points on E defined over the different layers of the anticyclotomic Z,-extension
Ky/K.

More precisely, let X+ y- be the Shimura curve (with the cusps added when N~ =1, so
Xn1 = Xo(N)) attached to the quaternion algebra B/Q of discriminant N~ and an Eichler
order R C B of level N*. The curve X N+ n- has a canonical model over Q, and we let
J(Xn+ n-)/q denote its Jacobian. By [BCDTOI], there is a modular parametrization

v:Xo(N)— E.

This induces a map J(Xo(N)) — E by Albanese functoriality, which by the Jacquet—-Langlands
correspondence together with Faltings’ isogeny theorem gives rise to a map

(22) Ox J(XNJﬁ’Nf) — E
Similarly as in [BD96, p. 425], after possibly changing E within its isogeny class, we assume
that E is an optimal quotient of J(Xy+ y-), meaning that the kernel of (2.2) is connected.

When N~ # 1, lacking the existence of a natural rational base point on X+ n-, we choose
an auxiliary prime ¢y and consider (following [JSW17, §4.2]) the embedding

(2.3) LN+ N— © XN-Q—,N— — J(XN—,N—)> €T +— (Tgo — EO — 1)[33‘]

Let K|c] be the ring class field of K of conductor ¢. Then for every ¢ prime to N Dy, there
are CM points h, € Xy+ y-(K|c]) (as described in e.g. [How04, Prop. 1.2.1]) satisfying the
relations

Ty - he if £1 ¢ is inert in K,
(2.4) Norm e/ k(d(he) = § Te - he — o0h, — oph, if £1 ¢ splits in K,
Tg-hc—hc/g ifﬁ\c,
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where 0y and o} denote the Frobenius elements of the primes in K above £. Assume from
now on that E, is irreducible as a Gq-module, and choose the prime ¢y in (2.3) so that
ag,(E) — by — 1 € pZ. Define y,, € E(K[p"]) ® Z, by
1
= * Px —(hyn N

yn (I[O(E)—go—l 80 (LN+,N ( P ))
and letting ay, be the p-adic unit root of the polynomial X2 —a,(E)X +p, define the reqularized
Heegner point of conductor p™ by

1 1

Zn :Zﬁ'yn—ﬁ'yn_b ifn>1,

20 = upt - (1= (op+ U;)ofl +a™%) - yo.

Then one immediately checks from ([2.4)) that the points z, are norm-compatible. For each
n = 0, we then set

(2.5) Zp := Normgpm /K, (2m),
where m > 0 is such that K,, C K[p™], and letting Z, := E(K) ® Z, we define §,, € Z,[I',,]

by
O, = Z 2 @0 L.
O'EFn

These elements are compatible under the natural projections Zy[I';, 1] — Zp[I'y], and in the
limit they define the “Heegner distribution”

(2.6) 6= 0o = im0, € Z,[[Tac]).

Let J be the augmentation ideal of A = Z,[[I'x]], and define the order of vanishing of § by
ord 0 := max{p €Zx: 0€Z,®z, Jp}.

The work of Cornut—Vatsal [CV07] implies that 0 is a nonzero element in Z,[[I's]], and so its
order of vanishing is well-defined.

The following conjecture is the “indefinite case” of [BD96, Conj. 4.1], where we let F(K)*
be the t-eigenspaces of E(K) under the action of complex conjugation.

Conjecture 2.3 (Bertolini-Darmon). We have
ord ;0 = max{r*,r7} — 1,
where r* = rankz E(K)*.

Let 0* denote the image of 6 under the involution of Z,[[['s]] given by v +— ! for v € ',
and set

Z =00 € ZF*([T']l.

Lemma 2.4. Let p = ord; 0. Then the natural image £ of £ in Z5? ®g, (J*/J*T1) is
contained in the image of the map

E(K)®? @ (J* [ J*Th) = 257 @g, (J*/J*T).
Proof. This follows from the fact that the natural image of § in Z, ®z, (J*/Jt1) is fixed by
I's (see [BD96, Lem. 2.14]). O
Let r = rankz F'(K). Since clearly
2(max{rt,r }—1)>r—1,

by Lemma we see that Conjecture predicts in particular the inclusion . € BE(K )¥2®
(J7=1/J7). The conjectures of Bertolini-Darmon also predict an expression for . in terms of
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the following “enhanced” regulator associated to the Mazur—Tate anticyclotomic p-adic height
pairing

ht: B(K) x E(K) = (J/J*) ® Q.
Definition 2.5. Let Py, ..., P, be a basis for E(K)/E(K )tos and set t’ = [E(K): ZPy+---+
ZP,]. The enhanced regulator Reg is the element of E(K)®? ® (J"~1/J") ® Q defined by

__ 1 < o
Reg = - Y (-1)'YP® P o R,

ij=1
where R; j is the (i, j)-minor of the matrix (hy' (P, Pj))1<ij<r-
The next remark will be important in the following.

Remark 2.6. The non-trivial automorphism 7 € Gal(K/Q) acts as multiplication by —1 on
I'e. Viewing hgT as valued in I's, ® Q via the natural identification .J/J? ~ I'y,, the Galois-

equivariance of hgT implies that
hgT(Tx7Ty) = hgT(xa y>T = _h%T(:my)'

It follows that the T-eigenspaces F(K)* are isotropic for hy*, and so the null-space of hy' has
rank at least [r™ —r~| (which should always be positive, since by (gen-H]) the rank r = r* +r~
should be odd).

The following is the “non-exceptional casﬂ’ of [BD96, Conj. 4.5].

Conjecture 2.7 (Bertolini-Darmon). Let .Z be the natural image of & in E(K)®?®(J=1/J").
Then

2
$:<1_CLP(E)HD> l/%veg#H_[(E/K) ch’
p N+

where ¢y is the Tamagawa number of E/Qy.

As noted in [BD96, p. 447], when |r™ —r~| > 1 Conjecture reduces to the prediction
“0 =07. Indeed, 2(max{r™,r~}—1) is then strictly larger than r—1, and so by Conjecture
the image of . in E(K)®?®(J"~!/J") should vanish, while on the other hand by the isotropy
of E(K)* under R} all the minors R;; in the definition of Reg, and hence Reg itself, also
vanish (see [BD96l Lem. 3.2]). As explained below, a refinement of Conjecture predicting
a formula for the natural image of . in E(K)®? ® (J?0/J?’*1), which should be thought of
as the “leading coefficient” of ., can be given in terms of the derived p-adic height pairings
introduced by Bertolini-Darmon [BD94, [BD95].

Remark 2.8. Such refinement of Conjecture seems to not have been explicitly stated in the
literature. Even though the formulation of such refinement appears to be quite clear in light
of the conjectures explicitly stated in [BD96] and [BD95|, any inaccuracies in the conjectures
below should be blamed only on the authors of this paper.

Assume from now on that III(E/K),e~ is finite and that:

(i) pep: Gq — Auty, (E)) is surjective.
(i) pt #E(F)).

(iii) E, is ramified at every prime ¢|N.

1meaning that E/K has good ordinary or non-split multiplicative reduction at every prime above p
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Note that (ii) amounts to the condition ay(E) # 1 (mod p), and condition (i) implies that
E has no CM. In particular, these assumptions imply that S,(E/K) ~ E(K) ® Z, is a free
Z,-module of rank r, and the pair (F, K) is “generic” in the terminology of [Maz84].

By [BD95L §2.4], there is a filtration

2
(2.7) Sp(E/K) =801 >8P > ... 550,
and a sequence of “derived p-adic height pairings”
W) o S x S — (JF /) @ Q, for 1<k<p-—1,

such that Sz(,k—i_l) is the null-space of hz(;k), with hl(,l) = hy'. By Remark 51(72) has Z,-rank
at least |[r™ — r~|, and by construction the subspace of universal norms

USy(E/K) : ﬂcorK /K (Sp(E/Ky))

n>1

is contained in the null-space of all h;,k). The work of Cornut—Vatsal implies that US,(E/K) ~
Z,.

The expected “maximal non-degeneracy” of hgT predicts the following (see [BD95, Conj. 3.3,
Conj. 3.8]).
Conjecture 2.9 (Mazur, Bertolini-Darmon). Under the above hypotheses we have
lrt —r| if k=2,

(k) —
rankz, 5p { 1 ifk >3
and in fact Sy ® —Us »(E/K).

By construction, the successive quotients S]()k)/ S]()kﬂ)

k) q(k+1)
(2.8) S /S ~ 7k,
and Conjecture predicts in particular that

are free Z,-modules, say

er =2min{rt r7}, e =|r" —r | -1,
and e, =0 for all k > 3

Using derived p-adic height pairings, one can define an enhanced p-adic regulator extending
Definition ﬁ Assume that SZ(;p ) = USy(E/K) (as Conjecture [2.9) predicts in particular). Let
Py,..., P, be an integral basis for F(K) ® Q, and let A € M,(Z,) be an endomorphism
of S,(E/K) sending Py,...,P. to a Z,-basis x1,...,z, for S,(E/K) compatible with the
filtration , so for 1 < k < p — 1 the projection of say p, 41,...,Tn,+e, tO S;()k)/SI()kH) is
a Zy,-basis for Szgk)/Slng) and y := x, generates US,(E/K). Set t = det(A) - [E(K): ZP; +

-+ ZP,].

Definition 2.10. Let g := ,pq;i ker. The derived enhanced regulator lie/gder is the element
of E(K)®? ® (J¢/J°"!) ® Q defined by
p—1
Regge, =t 2 (y@y) @ [[ RW,
k=1

where R = det(hf” (2, 2;))h, 111 j<hy +or-
The relation between If{ggder and ﬁevg is readily described.
Lemma 2.11. Assume Conjecture . If |rt — 7= | = 1, then Regy,, = Reg.
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Proof. By our running assumption that #III(E/K )y~ < co, we may view hy' as defined on
Sp(E/K). Denote by R; ; the (i, j)-minor of the matrix (hy'(x,2;))1<ij<r- Since universal
norms are in the null-space of )", we find that

ligé =12 Z (—1)i+j$i Rx;® R;’j
1<i,j<r
-2
=t (y®y)®R,,,
noting that for (i, j) # (r,7) the minor R; ; is the determinant of a matrix having either a row

or a column consisting entirely of zeroes. Since our assumptions together with (2.8)) imply
that

S =50 = ... = US,(E/K),

p p
we conclude that Hi;} Rk — p(1) = R/

T,

hence the result. g

In general, Conjecturepredicts that Regy,, is a nonzero element in E(K)®2@(J¢/Je)®
Q, where

o0=-e1+2e =2min{r", v} +2(rt —r7| = 1) = 2(max{rt,r7} - 1),
which as already noted is strictly larger than r — 1 when |[r* —r~| > 1. Thus, by Lemma
the following refines Conjecture
Conjecture 2.12 (Bertolini-Darmon). Under the above hypotheses we have
ord; = 2(max{rt,r "} — 1),

and letting £ be the natural image of £ in E(K)®?®(J%/J**T1), where p = max{rt, r=}—1,

we have

- 1—ay,(E)+p S
7= (FEOEE) Ry, (/i) - I
p gN+
It is also possible to formulate a leading term formula for the Heegner distribution 6, refining
the “non-exceptional case” of [BD96, Conj. 4.6].

The subspace of universal norms US,(E/K) is stable under the action of Gal(K/Q), and
therefore is contained in one of the T-eigenspaces S,(E/K)*.

Lemma 2.13. Assume Conjecture . Letting sign US,(E/K) be the sign of the T-eigenspace
where US,(E/K) is contained, we have

1 dfrt >0,
ign US,(E/K) =
sign USy(E/K) {—1 if r= >0t
In other words, US,(E/K) is contained in the larger of the T-eigenspaces Sy(E/K)*.
Proof. Viewing hy" as defined on S,(E/K), Conjecture predicts that the restriction
W Sy(E/K)Y x Sp(E/K)™ = (J/J}) ® Q

is either left non-degenerate or right non-degenerate, depending on which of the 7-eigenspaces
S,(E/K)* C S,(E/K) is larger. Since the universal norms are contained in the null-space of
Ryt it follows that US,(E/K) is contained in the 7-eigenspace of larger rank. O

Remark 2.14. The conclusion of Lemma |2.13|is predicted by the “sign conjecture” of Mazur—
Rubin [MRO03| Conj. 4.8], and the fact that it follows from Conjecturewas already observed
by them.
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Let s := min{r*,r~} and recall that Conjecture [2.9| predicts e; := rankszz()l)/SZ(;Q) = 2s.
Order the first 2s elements of the basis 1, ..., z, for S,(E/K) so that x1 =: y; , ..., 25 =y
belong to S,(E/K)" and xey1 =:y; ,- - ,x2s =: y; belong to Sy(E/K)™.

Lemma 2.15. We have
R = —(det(hy" (3, y; 1<ij<s)®

Proof. This is immediate from the isotropic property of S,(E/K)* under the pairing hlfT (see
Remark . g

Thus R™ is essentially a square. On the other hand, since for even values of k the pairing
hg,k) is alternating (see part (1) of [BD95, Thm. 2.18]), we have

R® = pf(h?) (21, %) er+1<i,j<er +ea )
where pf(M) denotes the Pfaffian of the matrix M. This motivates the following definition
of a square-root of the regulator Reg,,, in Definition m

Definition 2.16. Assume Conjecture 2.9 The square-root derived enhanced requlator is the
element of E(K) ® (J*/JPH) ® Q, where p = max{r*,r~} — 1, defined by

——1/2 _ _
Regge =t -y ® (det(MT (4,57 1<ijes) - PE(ASD (i, 25)er 41<i jcer +es)-
Note that this is only well-defined up to sign.

The following refines [BD96], Conj. 4.6] in the cases where |r™ —r~| > 1, and complements
Conjecture [2.3] with a leading coefficient formula.

Conjecture 2.17 (Bertolini-Darmon). We have
ord ;0 = max{r*,r7} — 1,

and letting 0 be the natural image of 0 in (E(Koo)®JP/JPTH > where p = max{rt,r—} -1,
the following equality holds

ézi(l—ap(E)—l—p> f{é?gég/#m(E/K) H co.

2.3. Conjectures for L,(f) and Z,(f). We keep the hypotheses on the triple (£, p, K') from
§2.2| (in particular, we assume #III(E/K )y~ < 00), and assume in addition that hypothesis
(Heeg)) from the Introduction (rather than the more general (gen-HJ)) holds.

Remark 2.18. The assumption that p = pp splits in K will be essential in what follows, so
that the p-adic L-function Ly(f) can be constructed as an element in A (cf. [Kril8,[AI19] in
the case when p is non-split in K). On the other hand, it should not be difficult to extend the
construction of Ly (f) in [CHI8| under the generalized Heegner hypothesis considered
in

By Lemmal[2.2] the Selmer groups Sel, (K, T') and Sel;(K, T) are both contained in Sy, (E/K)
and they agree with the kernel Selg, (K, T) of the restriction map . Thus we can consider
the pairing

hp : Gely(K,T) x Gelg(K,T) — (J/J?) ® Q

obtained by restricting hgT. The filtration in induces a filtration

(2.9) Gely(K,T) =6 56’ 5... o el

defined by GE,k) = Sﬁ’“) N Gel, (K, T), with the filtered pieces equipped with corresponding
derived p-adic height pairing

0o o (4177 2 Q
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obtained from hy(yk) by restriction.

Assume that SZ(,p) = US,(F£/K) and that Sel, (K, Epeo ) is A-cotorsion. Then lim  Gel, (K,,T)
vanishes (see e.g. [Cas17, Lem. A.3]), and therefore the subspace of universal norms U&el, (K, T') C
Gely (K, T) is trivial. It follows that

US,(E/K) N Sely, (K, T) = {0},

and so log, (y) # 0 for any generator y € US,(£/K). Thus the first » — 1 elements in the

basis z1,...,z, for S,(E/K) chosen for the definition of Reg,., vield a basis for Gely(K,T)
adapted to the filtration (2.9), with the image of xp, 41,...,Zh, 4e, I

(2.10) S /50D ~ g je Y ~ zek

giving a basis for ng) / 6ék+1). Then the partial regulators of Definition can be rewritten
as

k . k
(2.11) R — det(h,(J )(flfi,mj))hk+1<i’j<hk+ek = dlsc(hl(J )|ng>/6gk+1)),

which we shall denote by ng) in the following.
We can now define the p-adic regulator appearing in the leading term formula of our p-adic
Birch and Swinnerton-Dyer conjecture for Ly(f). The map log,, ., gives rise to a map

®2

log;
Logp H(BE(K)® Zp)®2 - (E(Kp) ® Zp)®2 — Zy, @2y — Ly,

where the last arrow is given by multiplication. Choose a basis x1, ..., x,_1, x, as before, with
z, = yp given by a generator for US,(E/K) with p~'log,, (y,) # 0 (mod p).

Definition 2.19. The derived requlator Reg, 4, is defined by

p—1
—— _ k
Regp,der = LOgP (Regger) =1t 2. IngE (yP)Q ) H R!(J )
k=1

Note that Reg, 4, is an element in (Je/J " ®Q, where o = Ei;i ke, and Conjecture 2.9
predicts the equality o = 2(max{r™,r~} —1).

Conjecture 2.20. We have
ordyLy(f) = 2(max{rt,r~} — 1),

and letting Ly(f) be the natural image of Ly(f) in J?/J* 1 where p = max{rt,r=} — 1,
the following equality holds

2
Lo(f) = <1_“"E)“’> Regy g0 - #I(E/K) - [[ .

p oN
Similarly as in we can also formulate a version of Conjecture for the “square-root”
p-adic L-function %, (f). Assume Conjecture so following Definition we can define

1/2
p,der by

the derived square-root regulator Reg
older = 171 log, (yp) - (det(hy(y)", y; Ni<ijcs) - PE(RSY (i, 25)er 1< <er ves )

As before, note that Reg;/ir is only well-defined up to sign, and is contained in (J*/J* 1) ®Q,
where p = max{r*,r=} — 1.
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Conjecture 2.21. We have
ord; %, (f) = max{r*,r~} — 1,

and letting %, (f) be the natural image of %,(f) in J°/JPTL, where p = max{r™,r~} — 1, the
following equality holds

;Z%(f) ::i:<1__ap§f?)_%])) ;{ir / l?/]( IICe

ON

2.4. A relation between the conjectures. In this section we explain a relation between
Bertolini—-Darmon’s Conjecture (i.e., the “rank part” of Bertolini-Darmon’s Conjecture
and the “rank part” of our Conjecture [2.21

Recall that Z, := E(K«) ® Zj, and for each n define the map ¥, : E(K,) ® Z,, = Z,[I';)]

by
=Y Breo
oel’y,

Letting mp41n ¢ Zp[I'nt1] — Zp[I'y] be the map induced by the projection I'y1 — I'y,, we see
that for all P41 € E(Kpy1) ® Z, we have

Pt (Paen)) = 3 (X Py ) @ = W Noming, i, (P

7€l “o€ln+1
olk,=T

It is also readily checked that W¥,, is I',,-equivariant. Thus setting
(Koo K) 1= lim B(K,) @ Zp,

where the limit is with respect to the norm maps NormKnH/Kn E(Kp1)®Zy — E(Ky)QZy,
we obtain a A-linear map

Voo :U(E/Koo) = Zp[[I'so]]-
The regularized Heegner points z,, in (2.5 define an element z., € U(E /K ), and by defini-
tion the Heegner distribution 6 = 0 in ({2.6]) is given by
(2.12) 0o = Voo (Zo)-

By a slight abuse of notation, in the next proposition we let J denote both the augmentation
ideal of A and of A 4.

Proposition 2.22. Assume that
(1) p = pp splits in K.
(2) E, is irreducible as a G -module.
(3) LLI(E/Ky)pe is finite for all n.
(4) E, is ramified for every prime ¢|N.
() Pt No(N D).

Then we have the implication

L(f) el = 0x€Z,Rz,J°.
Proof. In light of and the A-linearity of W, it suffices to show the implication
(2.13) L(f) e’ = 1z € JUE/Ky).

Suppose Z,(f) € JP. By our assumption that #LI(E/K,)y~ < oo for all n, we may identify
U(F/K) with
Sel(Kwo, T') := I'&nsp(E/Kn),
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where the limit is with respect to the corestriction maps. Let 7 € I'sx be a topological
generator. Using that p { z«, by [Cor02, Thm. B| (taking ¢ = p in loc.cit.) and the Weierstrass
preparation theorem, we see that it suffices to solve the equation

Zoo = (Y —1)7- Zgg)
in Q) ®z, Sel(Kw, T') 5, where Sel(Ko,T) s denotes the extension of scalars to A of the A-
module Sel(K,T). By [CHI8, Thm. 5.7] (see also [Casl7, Thm. A.1]) and [Cas19, Lem. 6.4],
there is an injective A s-linear map £, : Sel(K«,T)s — A s with finite cokernel such that
(2.14) 2y(2c) = ~Z(f) 01,

where o_1, € I'c has order two. Thus £, becomes an isomorphism upon tensoring with Q,,
and using the above observations the implication (2.13|) follows immediately from (2.14]). O

3. MAIN RESULTS

3.1. Statements. We make the following hypotheses on the triple (E,p, K), where we let
pEp : Gq — Autp,(E),) be the Galois representation of the p-torsion of E.
Hypotheses 3.1.

(1) p12N is a prime of good ordinary reduction for E.

PE,p 18 surjective.

)
) Every prime ¢|N splits in K.
)
) p = pp splits in K.

Note that, for a given E/Q, conditions (1), (2), (4), and (6) exclude only finitely many
primes p by [Ser72], while conditions (3) and (5) are needed for the construction of Ly(f) € Ap
in [CHI8|. Under these hypotheses, the module Gel, (Ko, Ep~) is known to be A-cotorsion,
and we let F,(f) € A be a characteristic power series for its Pontryagin dual X,.

Theorem 3.2. Assume Hypotheses and that NI(E/K)pe is finite. Then
ordy Fy(f) = 2(max{r*,r"} — 1),
where 1 = rankz E(K)*, and letting Fy(f) be the natural image of Fy(f) in J?7/J**1, where
p=max{rt r~} —1, we have
Fo(f) =07 Regy ger - #I(B/K) oo
up to a p-adic unit.
For comparison with the prediction of Conjecture m (together with Conjecture , recall

that, as noted in Remark our hypotheses imply that the terms 1 — a,(E) + p and ¢ for
¢|N are all p-adic units.

Remark 3.3. If rankz E(K) = 1 and HI(E/K),~ is finite, then the module Sel, (K, Epeo) is

finite (see Lemma , and therefore the image of Fy,(f) under the augmentation map
€Ay — O

is nonzero. It follows that in this case the inequality in Theorem is an equality, and

letting F,(f)(0) € O denote the image of F,(f) under e, the leading coefficient formula of
Theorem reduces to the equality (up to a p-adic unit)

o 2
Fp(f)(0) = p™* - #1I(E/ K)o <m> ’

where y € E(K) is a point of infinite order with p~'log,,_(y) # 0 (mod p). Thus Theorem
extends the anticyclotomic control theorem in [JSW17, Thm. 3.3.1] to arbitrary ranks.
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Under Hypotheses (in fact, slightly weaker hypotheses suffice), and assuming that
(%) either N is squarefree, or there are at least two primes /|| N,

the Iwasawa-Greenberg main conjecture for Ly(f) is proved (see [BCKI9, Cor. 7.7]) by build-
ing on work of Howard [How(6] and W. Zhang [Zhal4] . Thus Theorem 3.2]yields the following
result towards Conjecture [2.20)

Corollary 3.4. Assume Hypotheses[3.1], that II(E/K )y~ is finite, and that (§) holds. Then
ord, Ly(f) > 2(max{rt,r} - 1),

and letting Ly(f) be the natural image of Ly(f) in J?/J?PT1 where p = max{rT,r=} — 1,
we have

Z/p(f) = p72 ' Regp,der : #Hl(E/K)poo
up to a p-adic unit.

In particular, Corollary |3.4|shows the inclusion %, (f) € J?, where p = max{r*,r }—1. In
light of Proposition this implies the following result, which yields one of the inequalities
in the “rank part” of Bertolini-Darmon’s Conjectures and

Corollary 3.5. Assume Hypotheses[3.1], that IIN(E/K,)pe is finite for alln, that pt No(N D),
and that (ED holds. Then we have the inclusion

0eZ,®J,
where p = max{rt,r~} — 1.
3.2. Proof of Theorem Note by (5) and (6) in Hypotheses [3.1] we have p t #E(F,) for

every prime v of K above p, where F,, = F), is the residue field of K at v, and by [Maz72, §4]
and condition (1) this implies that the local norm maps

(3.1) Norm, : E(Kp,) = E(K,)

are surjective for all primes v of K and all finite extensions K, /K contained in K. (Here
E(Ky,y) denotes @, E(Kn,w), where the sum is over all places w of Ky lying above v, and

similar conventions for cohomology will be applied below.)
Define

Hflin(Kn,va Epm) = E(Kn,v)/me(Kn,v)7
_ Hl(Knm,Epm)
H:flin(Knvv’ Epm)

where the last identification follows from Tate’s local duality.

H (Koo, Epm)

sing

~ HY (K, E)pm,

Definition 3.6. As in [BDO05], we say that a rational prime g { pN is m-admissible for E if
(1) q is inert in K,
(2) g # 1 (mod p),
(3) p™ divides ¢ + 1 — a4(E) or ¢+ 1+ a4(E).
We say that a finite set of rational primes Y is an m-admissible set for E if every ¢ € ¥ is an
m~admissible prime for F and the restriction map

Sely(K, Epn) — @D Hi, (Kq, Eym)
qeY
is injective.
Remark 3.7. As shown in [BD94, Lem. 2.23] by an application of Cebotarev’s density theorem,

m~admissible sets for F always exist, and it follows from the argument in the proof given there
that one can in fact always find m-admissible sets for E with #% = dimp, (Sel, (K, Epym ) QF)).
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Following the notations introduced in assume that the finite set S contains X, and let

Sely (Ky, Eym) = ker{Hl(ﬁng,Epm)% a H}an(Kn,q,Epm)}
qES\X

be the Selmer group Gel, (K, Eym) relaxed at the places in ¥. The next lemma underlies the
usefulness of m-admissible sets.

Lemma 3.8. Let ¥ be an m-admissible set for EE. Then for every n the modules
@HEH(KMQ’E @Hsmg Kn,anpm)v Ge[pE(KrhEpm)
qeX qex
are free (Z/p™Z)[I'y]-modules of rank #%, and there is an exact sequence
(3.2)
0 — Sely(Kn, Epn) = Sl (Kp, Byn) = @) Hlpo (Ko g, Eyn) 2 Sely(Kyy, Eym)Y = 0,
qeY

where § is the dual to the natural restriction map.

Proof. This is well-known, but we recall the arguments for the convenience of the reader. Let
g be an m-admissible prime for E, and denote by £ the prime of K lying above ¢q. Then
Eym is unramified as G'x,-module, and the action of the Frobenius element at Q yields a
decomposition

Epm =~ (Z/p"Z) ® (Z/p"Z)(1)
as Gal(K3"/Kg)-modules. From this an easy calculation shows that Hf (Kg, Eym) and
HL (K, Eym) are both free of rank one over Z/p™Z (see e.g. [BD05, Lem. 2.6]). Since

sing
Q splits completely in K,,/K, the freeness claims for the first two modules follow.

By Poitou—Tate duality, to establish the exactness of (3.2)) it suffices to establish injectivity
of the restriction map

(3.3) Sely (K, Eyn) — D Hi, (Ko g, Epm)
qEXS

(indeed, this implies surjectivity of §). Arguing by contradiction, suppose that the kernel K
of this map is nonzero. Then we can find a nonzero element s € IC which is fixed by I';,, since
I, is a p-group. However, the surjectivity of the local norm maps in implies that the
restriction map

(3.4) Gely(K, Eym) — Gely(K,, Eym)'™

is an isomorphism (see [BD95, Prop. 1.6]), and so s gives rise a nonzero element in the kernel
of Gely(K, Eym) — Dyex H. (K, Eym), contradicting the m-admissibility of ¥. Thus the

exactness of 1’ follows, and with this the freeness claims for the module Ge[pE(Kn, E,m) are
shown by a counting argument in [BD94, Thm. 3.2]. O

Recall that F,(f) € A is a characteristic power series for the Pontryagin dual
Xp = 6e[p(KOQ,EpOO)V

Denote by Sely (K, Epec ) /g5 the quotient of Gely, (K, Epe) by its maximal divisible subgroup.
The next result reduces the proof of Theorem to the calculation of #(&ely (K, Epee) iy,
which is carried out in §3.3

Proposition 3.9. Assume Hypotheses and that N(E/K)pe is finite. Then
(3.5) ordy Fy(f) = 2(max{r*,r"} — 1),
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and letting F,(f) be the natural image of Fy(f) in J?/J?T1, where p = max{r™,r=} —1, we
have

p—1
Fy(f) = #(Sely (K, Eye) aie) - det(4) 72 [[ R
k=1

up to a p-adic unit.

The rest of the section is devoted to the proof of Proposition 3.9 for which we shall suitably
adapt the arguments in [BD95, §2.5].

Define
(3~6) < ) >Kn/K,m : @Hl(Kn,qupm) X @Hl(Kn,qupm) - (Z/me)[I‘n]
qeX qeEX
by the rule

<LU, y>n = Z <J“)yo>Kn,m . 0-71>

O'EFn

where (, )i,m : Dyex HY (K, 4, Epm) X D es HY(K,, 4, Epm) — Z/p™Z is the natural exten-
sion of the local Tate pairing.

Lemma 3.10. The pairing { , >Kn/K,m is symmetric, non-degenerate, and Galois-equivariant,
and the images of @qez H} (K, Eym) and Gelpz(Kn, Eym) are isotropic for this pairing.

Proof. All the claims except the last one follow from the corresponding properties of the local
Tate pairing, while the isotropy of Ge[pZ(Kn, E,m) follows from the global reciprocity law of
class field theory. O

In what follows, we take m = n, and set

Ry, = (Z/p"Z)[I's], (s =, >Kn/K,n

for ease of notation.
As shown in the proof of Lemma the natural map &ely(Kp, Epn) — D ex HY (K g, Epn)
is injective, and we can write

(3.7) Gely(Kp, Epn) = (@ Hén(Kmq,Epn)) N Sely’ (Kn, Epn),
qeEX

with the modules in the intersection being each free R,-modules of rank #3.. By Lemma|3.10
(, ) restricts to a non-degenerate pairing

[ ]n: @Hén(Kn,anp") X @Hiing(KnmEp") — R,
qeX qeS
and with a slight abuse of notation we define
() In: P H(Kng, Epn) X Sel) (Kp, Eyn) — Ry,
qeX
by (x,y)n := [z, A(y)]n, where X is the natural map 6e[§(Kn, Epn) = Dyes H;ing(Kn,qup")-
Lemma 3.11. Let u, : A > R, be the map induced by the projection I'so — I'y,. Then
pin(Fy) = Fittg, (Sely (Ko, Ep”)v) = det((zi, yj)n)1<ij<#s,

where x1,...,Tux andyi, ..., yus are any Ry-bases for @, v HL (K ¢, Epn) and Ge[E(Kn, Epn),

respectively.

qeX
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Proof. Letting ~,, € T, be a generator, the first equality follows from the natural isomorphism
X/ — 15Xy = Sely (K, Epe)"

together with standard properties of Fitting ideals, and the second equality follows from the
fact that by Lemma we have a presentation

R#® M R#Y L Sely (K, Epn)Y — 0

with M given by a matrix with entries m; ; = [xi, AN(y;)]n = (4, yj)n (see [BDIS, Lem. 2.25
and Lem. 2.26] for details). O

Recall the filtration Gel,(K,T) = 6,(,1) D 6,(,2) DD G,S,p) in . Letting 6( ) be the
natural image of 6£k) in Gely (K, Epn) we obtain a filtration

(3.8) Sely(K, Ep) D6 260 5.2 &%)
with &) /&Y ~ (Z/pnZ)r, for 1 < k < p—1, and e,ﬁ ) ~ (Z/p"Z)"% for d, = rankg &,
From . (using that . is an 1som0rphlsm) we see that
(39) GQIP(Kv Ep") = (@ Hi%m(Klb Ep")) n GQ[E(IQ Ep”)
qeEY

with the modules in the intersection being free over Z/p"Z of rank #X..

Let Z1,...,Zyy and 41, ..., Yz be Z/p"Z—bases for @qez H. (K, Epn) and Ge[E(K Eyn),
respectively, which are adapted to the filtration (3 , meaning that the first r vectors z1, ..., T,
are a basis for 6_5](3171 C Gely (K, Epn) with the images of Tp,, .. Tpyte, In GB,g,kn/GS(kjL ) giving

a basis for 613 n/G (k+1) (1<k<p-1)and Zp,,...,Th,14, 2 basis for 61(”)1, and similarly
for 1,...,yus. On the other hand, let 2/, .. .,x#z and y,... ,y#E be any R,-bases for

D, ex H. (Kng, Epn) and Ge[pE(Kn, E,»), respectively, and set

a‘c; = corKn/K(m;), g; = COTKn/K(yz/‘)-

Then there exist matrices M and N in GLyx(Z/p"Z) taking (7}, . .. Tys) B (T, Tyy)
andﬁ(gj’lj o g%ﬁz) — (U1,...,Y#x), respectively, and letting M, N € GLygx(R,) be any lifts
of M, N under the map GLyx(R,) — GLyx(Z/p"Z) induced by the augmentation

€: R, > Z/p"Z,

the images of (2, . .. ,x’#z), (Y, ,y%ﬁz) under M, N are Ry-bases (z1,...,z4x%), (Y1, ..., yxs)
satisfying

corg, /i (xi) = iy corg, i (Vi) = Yi-
Lemma 3.12. With the above choice of R,-bases x1,...,x45 and yi1,...,Yyxx, we have
e(det((zi, yj)n)rt1<ijeps) = u- #(Sely (K, Ep=) jqiv)
for some w € (Z/p"Z)*.
Proof. Write
Gely(K, Ep<) jgiv 2 Z/p*Z & --- ZL/p*Z

Taking n from the outset to be sufficiently large, we may assume that s; < n for all <. Denote
by .’{E(K, E)pn the image of Ge[pE(K, E,») under the natural map

HY(K, Epn) — HY (K, E)pn
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Since the elements in g1, . .., g are in Sely (K, Epn) and 1, . . ., Yux, is a basis for 62[?([(, Epn),
we see that the natural surjection Ge[E(K, Ep) — .’{pE(K, E)pn identifies XPE(K, E)p» with
the span of ¥,41,...yxx and we have an exact sequence

0 = Gely(K, Epn) = X (K, E)pn — A(Sely (K, Epn)) — 0.
Thus we find that
)\(Gelpz(K, Ep)) ~p* (Z/p"Z) ® --- © p**(Z/p"Z) ® (Z/p"Z) ="k,

and choosing the basis elements Z,41,...,Z4s and Gri1, ..., Jgx so that (T;, y;) k.n = p*dij,
the result follows using the relation

(@i, Yj)n) = — (%4, Yj) K ns

which is immediate from the compatibility of the local Tate pairing with respect to corestric-
tion (see [BD94, Prop. 2.10]). O

Fix a generator v, € I',;, and set

&) 1= Sely (K, Eypn) N (30 — D1 Sely (K, Epn).

p,n
Then by deﬁnitiorﬁ
&y = lm &),

where the limit is with respect to the natural maps induced by the multiplication Ejn+1 — Epn,
= (k) (k)

and we have &, C &, . Let Thyt1y- s Thyters Yhpt1s - - - Uhptep, € Oely(Ky, Epn) be such
that

k—1~ . k—1~ -
(3.10) (Yo = )" Zhpri = Thyris (0 — 1" Ynpti = Uhyra-

For 0 <k <p, let D;lk) € R, be the derivative operator
p"—1 i
D) = (—1)Fy, kY <k>%i
i=0

(so DY = > er, 7 is the norm map) introduced in [Dar92l §3.1].

Claim 3.13. For every 1 < k < p, there exist elements x}LkH, - ,xﬁlkﬂk € @qez Hi (Kn.q, Epr)
and Yy, s Yy te, € Ge[pZ(Kn, E,n) satisfying

(3.11) Dgzk_l)(fﬂ;bkﬂ') = Thy+i, Dq(zk_l)(y;zk—l-i) = Yhy+i-

To see this, note that by and the definition of n-admissible set we may view the Z,, 1;
as elements in P, v HL (Kg, Epn) = (Dyes HL (Kp.q Epr))t™ and by injectivity of the re-
striction map , the equality in may be seen as taking place in € 4es HL (Kng, Epn).
Hence by [BD95, Cor. 2.4] applied to ®q62 Hi (Ky,q, Epn) (which is free over R, by Lemma,
the existence of elements mﬁlk 4 satistying 1) follows. The existence of elements y;% 4 sat-
isfying is seen similarly, viewing taking place in Ge[pE (Kp, Epn).

By (3.10), the resulting elements 2/, ..., 2. and v}, ..., y. are R,-linearly independent, and
setting «} := x; and y} := y; for r + 1 < i < #X an argument similar to that preceding
Lemma shows that, after possibly transforming the bases 27, . .. ,m%@ and ¥, ..., Yy by

2Since our hypotheses imply that Sel,(K,T) is free; in general G,Sk) is defined in [BD95| as the p-adic
saturation of lim G;’f}l in Gelp (K, T).
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matrices in the kernel of the map GLyx(R,) = GLyx(Z/p"Z) induced by the augmentation,
we may assume

(3.12) corKn/K(xg) = T, corKn/K(yg) =i
for all 3.
We can now conclude the proof of Proposition [3.9

Proof of Proposition[3.9. Let o, := e1+2ea+---+ (p—1)ep—1 +dp. (Recall that ey, are given
by 1) and d), := rankZPG(p ), which is expected to be zero.) To prove the inequality 1}
it is enough to show the inclusion

(3.13) Fittg, (Gely(Kp, Epn)Y) € Jn*

for all n > 1, where J,, is the augmentation ideal of R,,. Indeed, this implies that ord ; F,(f) >
op, and by Remark [2.6) we have

P
op = ZrankzZ,ng) > -1+ (r"—r7|=1) =2(max{rT,r"} - 1).
k=1
As noted earlier, we may choose n-admissible sets > = ¥, with #3 independent of n, and
we assume now that the preceding constructions of bases have been carried out with such X.
The Galois-equivariance property of ( , ), together with imply that forall 1 <i < e
and y € SeIE(Kn, E,») we have

ngil)(<wlhk+iv y>n) = (ngfl)(m;%_’_i)’ y>n =0,

using Lemma|3.10|for the second equality. By [BD95, Cor. 2.5], it follows that (z}, ,,,y)n € JE.
Since (3.12) readily implies the equality

(3.14) det((zf, yj)n)1<ijeps = det((i, yj)n)1<ij<ps,

and by Lemma |3.12| we have
(3.15) det({zs, Yj)n)1<ijeps = Fittr, (Sely(Kn, Epr)”),

the inclusion ((3.13) follows.
Finally, to prove the expression in Proposition for the image of Fy(f) in J*/J PF1 where

p =max{r",r~} — 1, we may assume that p = o, (otherwise the result is trivial, both terms
in the formula being equal to zero). Then by Lemma (3.14), and Lemma we get

(3.16) det (], ¥;)n)1<ijeps = det((@], ¥ )n)1<ij<r - tn - #(Sely (K, Ep=) aiv) € JF,

for some unit u,, € (Z/p"Z)*. Since by (3.10)), (3.11)), and the definition of the derived pairing

h,(f% (see [BDI5, p. 1526]) we have

(3.17) ho (T, 75) = (@ ) € JE/JEHL

for all hy +1 < 4,5 < hg + eg, combining Lemma with (3.14), (3.15)), (3.16)), and (3.17)
we arrive at the equality

p—1

k), - _
pn () = - [] det(hi (@, 7)) ms1<ig<tnten
k=1

in Jh/ JET and letting n — oo the result follows. O
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3.3. Calculation of #(&el, (K, Ep<)/giv). Define the p-relaxed Tate-Shafarevich group by

M E/K) = ker{Hl(K, E)— H Hl(Kw,E)},
w#p

and let IITPH(E/K )pee denote its p-primary component. Recall that by hypothesis 1) the
root number of E/K is —1, so by the p-parity conjecture if III(E/K )y is finite then E(K)
has positive rank.

Lemma 3.14. Assume that IIL(E/K )y is finite. Then HIPY(E/K )00 is also finite, and we
have
HITPH(E/K)poe = #I(E/K) oo - #coker(locy),
where loc, : Sp(E/K) — E(K,) ® Z, is the restriction map.
Proof. Define By, by the exactness of the sequence

0 — II(E/K )y — HY(K, E)poo — [[H'(Ku, E)poe = Boo — 0.
w

Then we have an induced exact sequence
(3.18) 0 — HI(E/K )y — TP E/K)peo — HY (K, E)poe 22 B,
By surjectivity of the top right arrow in the commutative

0 E(K)® Qp/Zy HY(K, Epe) HY(K, E) e

| L

0—— Hw E(Kw) ® Qp/zp - Hw Hl(KwaEp"O) - Hw Hl(Kw>E)p°° —0,

we see that ker(hoo) is the same as the kernel of the map ¢ in the Cassels dual exact sequence
0 — Sely= (E/K) — SellB (E/K) — H'(K;, E)pee % S,(E/K),

where Sel{ (E/K) is the kernel of the map H!(K, Ep) = [Ty H (K, E)poe.

Using that Eje := Homeis(Epe, pp) =~ T7 (which exchanges the restriction maps at p
and p) it follows that the kernel of ho, is dual to the cokernel of the map loc, : Sp(E/K) —
E(K,) ® Z,, which is finite under our hypotheses. The result follows. O

The following result is an analogue of [JSW17, Prop. 3.2.1] in arbitrary (co)rank.
Proposition 3.15. Assume that III(E/K),e~ is finite and ap(E) # 1 (mod p). Then
(Sely (K, Eyee) i) = #ULE/K ) o - (#hcoker(locy))?,
where loc, : Sp(E/K) — E(K,) ® Z, is the restriction map.
Proof. Let yi1,...,yr—1 be a Z,-basis for the kernel
By p(K) = ker{E(K) ® Zp = B(K,) ® zp},

and extend it to a Zy-basis y1,...,yr—1,yp for E(K) ® Zj, so

(3.19) E(K)®Z,=FE,(K)®Zy.yp.
Then the finite module U defined by the exactness of the sequence
(3.20) 0= Zpypy > E(K)®Z, -U—0
satisfies

(3.21) #U = |[E(K,) ® Zy: locy(E(K) ® Z,)] = #coker(locy),
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using the finiteness assumption on II(FE/K) for the second equality. The hypothesis that
ap(E) # 1 (mod p) implies that E(K,) has no p-torsion, and so E(K,) ® Z,, is a free Z,-
module of rank one. Tensoring (3.21) with Q,/Z,, therefore yields

0=V —=(Qp/Zy).yy » E(K,;) ® Qp/Zy, — 0
with #V = #U, and from (3.19) we deduce that

A
32 kel B 9QZ, M B 92, | = (Bryl(K) 9Qy/2,) 0 V.
Now consider the p-relaxed Tate-Shafarevich group IIIP}(E/K) defined by

mrHE/K) = ker{Hl(K, E) - [[H (K, E)}.
wip

It is immediately seen that its p-primary part fits into the exact sequence
0 — E(K) ® Qp/Z, — Sell? (E/K) — WP E/K) = — 0,

where Selz{,gg (E/K) is the kernel of the map H (K, Ep) — | B HY (K, E)pee. Consider also
the commutative diagram

0—— BE(K) ® Qp/Zy — Seli (E/K) —— 1PN B/ K )pe — 0
. | i
0——s E(Kp) ® Qp/Zp —_— HI(KP,Epoo) —_— Hl(Kp,E)poo —0

in which the unlabeled vertical maps are given by restriction. Since the map ), is surjective
by our assumptions, the snake lemma applied to this diagram yields the exact sequence

(3.23) 0 = ker(\y) = Sely (K, Epos) — IIPH(E/K) e — 0,
and hence from , and we conclude that
#(Sely (K, Bpee) aiv) = #IP (B /K)pee - #V = #1UP (B/ K )pee - Ftcoker(locy)
— HIU(E/K) o - #(coker(loc,))?,
using Lemma for the last equality. O

As in the proof of Proposition let y1,...,yr—1 be a Zy-basis for the kernel Selg, (K, T")
of

locy : B(K) ® Z, — E(K,) ® Zy,

and extend it to a Zy-basis y1, ..., yr1,yp for E(K)®Z,. We denote by log,, . : E(K)®Z, —
Z,, the composition of loc, with the formal group logarithm associated with a Néron differential
WE € QI(E/Z(p))

Proposition 3.16. Assume that III(E/K)y~ is finite and ap(E) # 1 (mod p). Then

#coker(locy) = p~ #(Zp/ 108, (4p))-

Proof. Let Eq(K,) be the kernel of reduction modulo p, so there is an exact sequence

0— Ei(K,) = E(K,) - E(F,) = 0.
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Set Y := Zy.yp, Yp,1 :=1locp,(Y)N(E1(Kp)®Zy,) and Z :=Y/Y, 1 (a finite group), and consider
the commutative diagram

0 Yo Y A 0

J(/\p’l llocﬂy

0 — E\(Ky) @ Zy — E(K}) @ Zy — E(F)) ® Z, —= 0.

Since the middle vertical is injective by our choice of y, and E(F,)®Z, ~ Z,/(1 —a,(E) +p)
is trivial by our assumption on a,(F), applying the snake lemma we deduce

(3.24) #coker(locy|y) - #Z = #coker(Np 1).

On the other hand, noting that #Z -y, is a generator of Y}, ; and the formal group logarithm
induces an isomorphism log,, = : E1(Ky) ® Z), ~ pZ, we find

#2Zp/1080, (#2Z - yp) 1
3.25 #coker(Ap 1) = £ =H#Z -p #(Zy,/locy, (yp))-
( ) ( Pl) #Zp/logwE(El(Kp)®Zp) ( p/ E( P))
Since clearly #coker(locp|y) = [E(K,)®Zy: locy(Sp(E/K))] by the definition of y,, combining
(3.24) and (3.25)) the result follows. O

We can now conclude the proof of Theorem

Proof of Theorem[3.4 By Propositionwe have ord; Fy,(f) > 2p with p = max{r*,r~} -1,
and the equality

p—1
(3.26) Fo(f) = #(Sely(K, Epo) jay) - det(A4) 2 - [T R
k=1

in (J?/J?’*1) ® Q up to a p-adic unit. On the other hand, combining Propositions and
[3.16] we obtain

(Sely (K, Bye) ) = 41/ K)o - (Hcoker(locy))?
= #IU(E/K)po - p~2 - log,,, (yp)*,
with the last equality holding up to a p-adic unit. Recalling the Definition @ of Regy ders
Il

the proof of Theorem now follows from (3.26)) and (3.27).
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