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Class invariants of Mordell-Weil groups

By A. Agboola') at New York and Berkeley and M.J. Taylor?) at Manchester

§ 1. Introduction and statement of results

Let K be an imaginary quadratic number field of classnumber 1; let E/K be an
elliptic curve with complex multiplication by the ring of integers O of K, and let F/K be
a finite abelian extension over which E/F acquires everywhere good reduction. Set
A = Gal(F/K). For any field L, we write L for a separable closure of L and @, for
Gal(L/L).

Choose a prime p € Z such that

(a) p is non-anomalous and splits in Og with p = - ¥, p = Oy, p* = 1*Oy.

(b) p, p* are primes of good reduction of E/K.

©) ptIAl

@ p>3.

Let E,. (resp. E,.») denote the group of p" (resp. p*")-torsion points of E(F¢). Set
G,=E,., GF=E,n.

(We remark that from time to time we shall abuse notation and also write G, (resp. G,¥)
for the Op-group scheme associated to E, . (resp. E.»).)

In §2 we shall introduce O,-orders B, = Map (G,, F°)?* and U, < (Q°[G,])?F such
that
Spec(B,) = G,, Spec(¥,) =G,

as Og-group schemes.

1) Supported by an NSF Postdoctoral Research Fellowship. The first named author gratefully acknowled-
ges the hospitality of the MSRI, Berkeley, where much of this paper was written.

2) Much of the work for this paper was done whilst the author held a Royal Society Leverhulme Senior
Research Fellowship.
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If B is a prime of F, we write kg for the residue field of F at B, and we let E (kg)
denote the reduction of E(F) at . Define E, ,. via exactness of the sequence

0 > E . EF) - ] E(k.p).
Blp*

Each principal homogeneous space (or p.h.s., for short) of B, is a locally free U,-module.
In § 3, we shall use this observation to construct a homomorphism

v,  E; . » CI(Y,)
where C1(U,) denotes the locally free classgroup of U,,.

Let M, denote the maximal order in (Q@°[G,])?r containing 2. Composing v, with
the extension of scalars map e, : C1(Y,) - CI(9R,), we obtain a homomorphism

¢, Ep v = CI(M,).

In § 5, we show that by piecing these maps together via inverse limits, we obtain a
diagram
v

Ey o ®ox Ox.9 Lim CI(%,)

!

Lim Cl(M,) .

The techniques for applying Iwasawa theory to the study of the maps y and ¢ originate
from the first-named author’s thesis (see [A1]).

The U,-module structure of p.h.s. arising from torsion points on E (F) has been fully
studied in [ST] (see also [CNT] and [CNS]). In the special case when n» = 1, Kery, has
been studied in [T1]. Since principal homogeneous spaces are very closely related to the
rings of integers of number fields obtained by dividing points of E(F), knowledge con-
cerning the homomorphisms 1, yields important information on the Galois module
structure of these rings of integers. For further details on this matter see the introductory
discussion to § 3. The main purpose of this paper is to investigate the behaviour of y, on
points of infinite order.

Set A = Hom (A, @Q;"), and let O’ (resp. O”) be the ring of integers of some finite
extension of K, (resp. K,.) which contains all of the character values of A. For each y e A,
define

rx = rankb,(E(F) ®DKDI)X .

(Here, and in the sequel, the superscript y denotes the y-eigenspace of E(F) ®4, O’ for
the action of A.) Let 7 be the contragredient of the character y. Let Il (F), denote the p-
primary component of the Tate-Shafarevitch group of E/F, and write {,}p ,. for the
algebraic local height pairing

{’}F,"' : E(F) ®OKDK,9 X E(F) ®DKDK,P‘ - @p

described in [PR].
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The first main result is the following, which is contained in [A 1] (see also [A2]).

Theorem 1.  Suppose that | I (F),| < oo and that the pairing {,} F.p+ S non-degenerate
modulo torsion. If r, 2 1, then

rankg, (Ker ¢ ®ox,,‘0,)x =1,

It is interesting to remark that such distinguished one dimensional subspaces of the
completed Mordell-Weil group have been constructed, in a completely different setting, by
both Greenberg and Plater (see [G] and [P], see also [R]).

Although our main concern is the study of the kernels of y and ¢, we shall also
show that under the same hypotheses as Theorem 1:

Theorem 2. Let H, = F(E,.») and write T, for the n*-adic Tate module of E. Then
Imy is isomorphic to a submodule of finite index in Hom (T,., Lim Cl (Og,))?. Here the
inverse limit of ideal class groups is formed with respect to the norm maps from H, to H, _ .

Our main result on the kernel of y is

Theorem 3. Suppose that p* is completely split in F and that F and K(E,.) are
linearly disjoint over K. Then v is injective on E, ..

We remark that a similar result also holds in the case of CM abelian varieties defined
over global function fields (see [A1]).

It is our belief that the results of this paper (when taken together with certain results in
[MT], [P] and [W]) strongly suggest a new and as yet not understood relationship between
class invariants and p-adic height pairings on abelian varieties.

The structure of this paper is as follows: In §2, we give a detailed description of the
orders A, and B,. In §3 and §4, we briefly recall required results on the class invariants
of p.h.s. and on locally free classgroups. §5 deals with Selmer groups, and in § 6 we
introduce the local height pairing of [PR]: we remark that this plays a fundamental role
in the proof of Theorem 1.

The remainder of the article is devoted to a proof of Theorem 3. In §7 we give
Kummer descriptions of various subgroups of p.h.s. In § 8 and §9 we describe a new norm
operator, together with certain group ring related higher congruences which were first
introduced in [T2]: these algebraic results are the key tools in the proof of Theorem 3.
Finally in §10 we prove Theorem 3.

The authors wish to express their gratitude to Philippe Cassou-Nogués for his
detailed comments on an earlier version of this paper.
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§ 2. The orders A, and B,
In this section we shall give a description of the orders U, and B,.
Consider the Hopf algebras
B, =Map(G,, F)*, 4,=(F[G,])"

where in both cases £ has its natural Galois action on both F* and G,.

There is a natural pairing (Cartier duality)

B,x A, —» F°¢

given by

(f, S ag) - T as@.

geGn geGn

Since E/F has everywhere good reduction, G,/Spec O and G;*/Spec O, are both
finite, flat group schemes. Thus there exist orders B, in B, and U, in 4, such that, over
Spec (D),

Spec(B,) =~ G,, Spec(¥,) = GF.

A, and B, are dual to each other with respect to the Cartier pairing. To identify U, as
an Og-order, we show

Proposition 2.1. Let q be a prime of Or.
@) If qxp*, then U, , is the maximal O ,,-orgier in 4, ®p,OF 4
(b) Let L = F(E,,). Then if q|p*,
(U, ®o, D) = Oy 4[G] -
(Here and elsewhere, the subscript q denotes semi-localisation at q.)

Proof. (a) Since E/F has everywhere good reduction, G}/Spec Oy is étale away
from p*, which implies the result.

(b) Write B, , = B, ®,, 0, ,; then the Cartier dual of B, . is (U, ®5,O,),- Since
q is non-ramified in L/F, we have Spec (B, ,) = Spec(B) Xy, Spec (O, ,) (because locally
the Néron model is stable under non-ramified extensions). As E/F has everywhere good
reduction, Spec (B, ,) is étale. Hence B, , is the O, -maximal order in B, ® O, ,, and
so the Cartier dual of B, , is the group ring O, ,[G,]. O

We remark that 2, acts on 8B, via

(f' Y a,g)(R)= Y f(R—g)a,

geGn geGn
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for fe®,, ), «,geN,, and Re G,. It is shown in Proposition 2 of [T 3] that B, is a free

9€Gn
A,-module with respect to this action.

Let
W,:G,x G} -

denote the Weil pairing on E. (We shall sometimes regard W, as being extended to a pairing
F°[G,]1 % F'[G}¥] — F* via F*linearity.) W, identifies G, (resp. G*) with G* (resp. G,).
Set H, = F(E,.), F, = F(E,).

Proposition 2.2. (a) Let G}/Qp (resp. G,/Qy) be a set of representatives of Qg-orbits
of G¥ (resp. G,). Then

4,= [ FW®, B,= [] F@©.

ReG}/QF QeGn/QF

(b) In particular, if F is linearly disjoint from K(E,.) over K, then

=f[Hi, B,=[1F

i=0 i=0

Proof. It is clear that (b) follows immediately from (a). We shall just prove (a) for
the algebra 4,, as the proof for B, is similar.

The F-algebra 4, = (F°[G,])?F = (F,[G,])" is generated by all elements of the form
Y.£°g", where ¢ € F,, g € G,, and the sum is over a transversal of Q; \Q,. Suppose that

Re G* and A€ Q;. Recall that we have identified G, with G* via the Weil pairing W,.
Then

(Z oW, (g% R))‘ = Y/ W, (g™, RY)

=) (W, (g% RY).

Hence the map H W(—, R) yields an embedding (F, [G,])*F < H F(R). Since
REGn/ﬂp
both sides of the 1nc1us1on have the same dimension over F as F-vector spaces, the result

follows. O

Remark. In the sequel we shall always suppose the isomorphisms in (b) to be

induced by evaluation on @ p"~iQ for B,, and by 6—) W,(—,p""'R) for A4,, where Q
i=0
(resp. R) is a point of order n" (resp. n*").
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§ 3. Class invariants

We shall now recall the basic properties of class invariants. General references for
the material discussed in this section are [BT] and [T 3].

Let C denote an F-algebra on which A, acts via its co-algebra structure. Thus Cis an
A, module, and if A: 4, - 4, ® A4, is the comultiplication of A4,, then for ae 4, and
¢, ¢; € C, we have F

(crrc))=a Z (c1a;) - (cza;;)

where
Aa) = Z a4, ®a,;.

We call such a C a principal homogeneous space for B, if there exists a field extension
L/F and an isomorphism

(:C®®L - B,®L
F F
which respects A4, action in the first variables and L-action in the second. We call ¢ a

splitting isomorphism for C. Note that if we take L > F,, then 4, ® L = L[G] and so ¢
will be an L[G] module isomorphism.

A principal homogeneous space for B, is an O-algebra € on which U, acts, such

that € is an order in some p.h.s. C = € - F for B and such that the splitting isomorphism
¢ for C induces an isomorphism

(:C®p,. 0 — B,8,,. 0.

We write PH(B,) (resp. PH(®B,)) for the set of isomorphism classes of p.h.s. for B,
(resp. B,). Both PH(B,) and PH(B,) carry the structure of abelian groups.

¢ is an A,-module since ¢ is G,-equivariant and B, is an A ,-module. It can be shown
that B, is A,-free; it therefore follows that € is projective over U,. This implies that €
is a locally free A,-module (see for instance [F2]). Let (€) denote the class of € in the
locally free classgroup C1(,). Then we obtain a map

3.1 $,: PH(B,) - ClI(YU,),
¢ (©).

¥, is a homomorphism (cf. e.g. Theorem 3.1 of [BT]).
For a more general version of this homomorphism, see [W].

We shall now recall the notion of the Kummer order associated to a point Q € E(F)
(cf. §1 of [T3]). Suppose that Q € E(F), and write

Go(m) ={Q'€e E(F)|n"Q" = Q} .
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Define the Kummer algebra F,(n) by
Fo(n) = Map (G, (n), F©)?r .
Then A4, acts on Fy(n) via

(32 (f' ) agg>(Q’)= 2 % f(Q'~g)

geGn 9€Gn

for fe Fy(n), Y 2,g€ A, and Q'€ Gy(n). Fy(n) is a p.h.s. of B, (see §3 of [T3]).

geGn

Let Dy(n) denote the integral closure of Oy in Fy(n). In general, Oy(n) does not
admit an action of U,. We define the Kummer order €, () to be the maximal %,-stable
submodule of D, (n), i.e.

Co(n) = {xeDy(n)|x - A, Oy(n)} .

It is shown in [T 3] that, since E/F has everywhere good reduction, €, (n) is a p.h.s.
of B,. Furthermore, €, (n) is a trivial p.h.s. for B, if and only if Q € p" E(F). Hence we
obtain a map

(3.3) E(F) - PH(B,),
Q0 ~ Gy
which yields an injection

(3.4) E(F)/p"E(F) —» PH(B,).

This injection may also be described in terms of a cohomological exact sequence arising
from Kummer theory on the Néron model €/Spec O of E/F. The endomorphism n" of
E yields the exact Kummer sequence

(3.5) 0> €G> €E—25E-0.
This in turn yields the following exact sequence of flat cohomology
36) 0 - €. - E©Op) — E©Op) — H'(Spec(Dp), E,n).

Since H!'(Spec(Of), €,) ~ PH(B,) (see e.g. [M], Chapter III, §4), and
E(F) = €(O;) (via the universal property of the Néron model), we obtain a composite
homomorphism

EF) _ €©p
VEF) €Dy

(3.7 - PH(B,);

this is the same as the injection (3.4).

3 Journal fir Mathematik. Band 447
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(3.1) and (3.4) yield a homomorphism
3.8) E(F) - Cl(¥,).
Via restriction, we obtain homomorphisms
3.9 Y, E; o = CI(A,)
and
(3.10) ¢n:E;y o > CI(M,),

where ¢, = e, o y,. Since p"E, ,. S Kery, it follows that both y, and ¢, factor through
E; ,+/p"E, .. This gives homomorphisms (which we also denote by y, and ¢,)

3.11) Y,  Ey /P "E; ,» —» CI(Y,)
and
(3.12) b0 Ey o/ P"Ey e — CIR,).
We shall write p® (resp. ¢{F’) when it is necessary to indicate the dependence of v,
(resp. ¢,) upon the field F.
§ 4. Classgroups

In this section, we often view n as being fixed. When this is the case, we shall fre-
quently write G, G* M, A, etc. in place of G,, G, M,, A, etc.

It follows immediately from Proposition 2.2 (a) that we have a decomposition

M [ Ora

ReG*/QF
and so
4.1) CI(M) = H Cl(Op ) -
ReG*/QF

We now briefly recall Frohlich’s Hom-description of locally free classgroups of orders.
For details of this construction see [F1]. For any number field N, we write J(N) for the

group of finite ideles of N. Let J denote Lim J(N), the direct limit of the finite idele
FcNcFe

groups of number fields N containing F. Set
A= l—[ a4,
q ,

where the product is taken over all maximal ideals of Oy.
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Suppose that ue ™. Then u determines a map Det(x) e Map (G*, J)®F, which is
defined by

Det (u)(R), = xr(4,) .

(Here x denotes the character of G which is identified with R € G* via the Weil pairing ¥.)
Then there is an isomorphism
Map (G* J)*F

4.2 1 & =
“.2) clen Det (A *)Map (G*, F<*)%r

Let U denote the subgroup of unit ideles of J. Then
Det (M) = Map (G*, U)?r,

and we have an isomorphism

Map (G* J)%F

4.3 1 >~ .
“-3) ClON) = Map (6% 0)™ - Map (G*, F)

The isomorphism (4.1) is obtained from (4.3) by evaluating on a set of orbit repre-
sentatives of G*/Q, and taking idele content.

Recall that the kernel group D () is defined to be the kernel of the homomorphism
e: C1() — C1(M). Hence, via naturality of the Hom-description, we have an isomorphism

DD = Det (M)
~ Det(A*) - Map (G* D)%

From (2.1) A, = M when q 4 p*; this implies that

Det (I,.)

“4) DO = Bt @) Map (G, D5

Recall that F, is the field generated over F by the coordinates of E,.. Let C e PH(B).
Then in general C is not stable under the action of G; however, C ? F, is Galois over F,

with Galois group G — since B® F, = Map (G, F,). Moreover, this latter algebra is seen
F

to be a Galois algebra over F with Galois group Gal(F,/F) % G, where for ge G and
y € Gal(F,/F):

7 'gy =y(g) (i.e. Galois action of y on g).
In the sequel we write this value unambiguously as g’.

Since C® F, is a p.h.s. of B® F, over F, we conclude that C (% F, is also a Galois
F F

algebra over F with Galois group I''x G, where I'' = Gal(F,/F). For Ce PH(B) we
define the resolvend map

rc:C - (C®F)[G]
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re()=Y c?-g7*.

geG

Note that by the above remarks c? € C ® F,, but that in general ¢? is not in C. From time
to time it will be advantageous to enlarge the range of r, to C ® F,, by allowing ce C® F,
in the defining formula. With this convention note that for he G

reem =Y cMg =Y c'%¢"'h
=rc(0)h
and so we conclude that the map r. is an 4-module homomorphism. It is a standard result

in Galois theory that r.(c) is invertible in (C ® F,)[G] iff C = cA. In the sequel we shall
write r instead of r, when C is clear from the context.

Now let € € PH(B) with C = €F. We next show how the resolvend map r. can be
used to construct a representing map for y(€) € Cl1() (under the isomorphism (4.2)).

Proposition 4.5. (a) Both yw(€) and ¢ (€) are represented under (4.2) and (4.3) by the
map

Det(r(c)r(&)1),

where C=c- A, é= [] ¢, and €, = ¢,  U,.
g<o

(b) Suppose that (€) € ker ¢, with €M = c- M and €. = c,. W,.. Then p(€) is re-
presented under (4.4) by -

Det (r(c)r(c,»)™").

Proof. (a) is proved in Proposition 6 of [T 3] (see also Lemma 3.11 in [BT]), and
(b) follows immediately from (a). O

For future reference, we record

Lemma 4.6. Let O;g, denote the integral closure of O in C ® F,. Then, with the
above notation,

@) r(c,) €©cgr, »[GD*,

(b) m~"r(c,) is a unit in the maximal order containing (D¢ g, ,[G])™ for all primes
q of Op.

Proof. Clearly (b) implies (a). However, (b)‘follows immediately from Theorem 3
in[T3]. o
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Proposition 4.7. There is a commutative diagram

4.8) E, . —— CI(Y,,,) =5 CI(R,,,)

T !

Cl (Q’In) _—_e_’ Cl (m‘n)

where the vertical arrows are induced by the quotient maps [n]: W, ., = A, [z]: M, ., = M,
which are in turn induced by the natural homomorphism [r]: G,,, — G,.

Remark. In order that the corresponding diagram commutes, when the classgroups
are given in their Frohlich-descriptions (4.2), (4.3), we need to normalise the Weil pairing
so that for ge G, ,;, ReG}F

W,(rg,R) = W,,,(g,R)
(see (3.7) in [PR]). This then guarantees that the diagram

Map (G, ;, J)r — Cl(¥, 1)

l I

Map (Gn*s J)QF — Cl (Q’In)
commutes, with the left-hand vertical arrow being induced by G} = G*, ;.

Proof. The fact that the square commutes is a standard functoriality property; we
now prove that the triangle commutes.

Let = Y g. It is shown in Proposition 1 of [ST] that there is an isomorphism
geGy

IR

Al

¢n+1' cn

of A -modules. Hence (using the notation of Proposition 4.5), if (€,,,)eCl(¥,,,) is
represented by Det(rc, ., (c) rc,_”(é)'i), then (€,) e C1(,) is represented by

(e D)e(e2))

[, @= Y ¢ [rlg™!

9€Gn+1

However,

= rcn(C‘Z) N

which implies the result. O
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It follows that, using (3.11) and (3.12) and passing to the inverse limit of diagram
(4.8), we obtain the commutative diagram

E{ 3+ ®0, Ok, —— Lim CI(Y,)

e

¢
Lim CI(2,)
—

of the Introduction.
We now return to the point of view of (4.1).

Proposition 4.9. (a) For he G* let y:(CQ® FE)[G] — F°. denote any F,-algebra
homomorphism such that |G = W (—,h), then

X(’c(c))D e = Dd(h) Op.

for some ideal d(h) in F(h). If h is a chosen orbit representative in the decomposition (4.1),
then the class (€M) € C1(M) has h-component given by the O, -class of d(h).

(b) For me Z, we have
(d>(mh)) = ((W)™)
in Cl(Opg)-

(c) The equality
(b (Ph)) = Nrw/F(oh) (b (h))

holds in C1(Og,,y,), provided that the order of h is sufficiently large.
Before proving this Proposition, we note that we have two Corollaries.

Corollary 4.10. Each principal homogeneous space € € PH(B,) determines an ele-
ment in Hom (E, .», C1(Dy,))?r which depends only upon (€ - M,) € CI(M,).

Proof. This homomorphism is given by
C— {h—> (b)) Oy)}. O

From Proﬁositions 4.7 and 4.9 (c), we see thatif € e PH (B, , ;) and if f, , ; (resp. f,) is
the homomorphism corresponding to (€ - M, , ,) e C1(M, ., ,) (resp. [z] (€ - M, . ) e C1(M,))
under Corollary 4.10, then we have a commutative diagram
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(4.11) Epones — 2, CID,, )
l[ﬂ] lN”»-u/Hu
Epr — Cl(©y) .

(Here the left-hand vertical arrow is the natural map induced by [p] € End(E).)
Now the element [n"] € End (E) induces an Q,-automorphism on Gr.

Let 7,: G;* - G;* denote the inverse of this automorphism. Then (4.11) implies that
the following diagram commutes:

(4.12) Eyoes 22550, (D, )

l["'] lNH,...m,.

Ep.n “foz —> Cl (DH'.) .

Passing to the inverse limit of (4.12) yields a homomorphism

(4.13) Limf ot,: T — Lim CI(Dy,).
Piecing together Proposition 4.7, Corollary 4.10, and (4.13) gives

Corollary 4.14. The homomorphism

¢ E; ju®p, Dk, — LimCI(IM,)
determines a homomorphism
¢': E s ®p, Og,, = Hom(7., Lim CI(Dy ). D

Now it follows at once from the construction of the homomorphism ¢’ that
ker¢ = ker ¢’ and im ¢ = im ¢'; we therefore deduce that in order to prove Theorem 1,
we may work with ¢’ rather than ¢.

We now return to the proof of Proposition 4.9.

Proof of 49(a). r=r(c)r(é)”! is an idele of the algebra A; thus, as per (2.2), the
value x(r) is an F(h)-idele, which is independent of the particular choice of extension y.
However, by 4.6 (b), x(r(¢)) has content n". This then shows that the content of y(r(c))
is the content of some O, -ideal (k). The result now follows. O

Recall that C® F,/F is a Galois algebra extension with Galois group £ =I'x G,
F

where I' = Gal(F, /F). Let E act on C @ F,[G] via Galois action on the coefficients C ® F,
and via the Galois action of I' on G. Then

(C@E.[G])E =(RIGD) =4.
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In order to prove 4.9 (b) and 4.9 (c), we shall require the following result, which will
be proved in § 7. (See the proof of Proposition 7.5.)

Lemma 4.15. Recall that, for me Z,

[mlrc(e)= ) c?g™"

geGn

for all ce C. Then given w € E there is a g, = g,(w) € G, such that for all me Z,

R PRI

geGn geGn

[m]re(e)® = [m]rc(c) - &5 -

Proof of 4.9(b). This follows at once from 4.9 (a), together with the observation
that, by Lemma 4.15, [m] r.(c) - r.(c)™™ is £ fixed and so lies in 4,,.

Proof of 4.9(c). Suppose that 4 has order p"*!, and that this order is sufficiently

large to guarantee that the extension F(h)/F(ph) is of degree p. Then Lemma 4.15
implies that

p—1
e@ 7 [T ([ +ip"1re(@) € Ay

The result now follows upon applying the character W,(—, /). 0O

§ 5. Selmer groups

We shall now recall the definitions of certain Selmer and Tate-Shafarevitch groups
associated to E.

Let L be any extension of K. The Selmer group S(L)*®" of E/L relative to n*" is
defined to be the kernel of the homomorphism

HY(L,E,w) - [[H'(L,, E).
q

The Tate-Shafarevitch group III (L) of E/L is defined by

(L) = Ker(H'(L,E) - I—[ Hl(Lq, E)).
q
We shall also require the enlarged Selmer group S’(L)™" which is defined by

S'(L)™" = Ker (H‘(L, E,») - [l H'(Z,, E))

arp*
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and the enlarged Tate-Shafarevitch group

II'(L) = Ker (H‘(L, E) » [] H'L, E)).

atp*

Write S(L,n"") = Lim S(L)™", S'(L,z"") = Lim S'(L)*™" and denote the
n BN
Pontryagin dual of S(L,n*") by Y(L, n*").

Set I' = Gal(H,,/F) and D,. = K./O,.. Then I' = A; X I', where I} = Z, and A, is
of order prime to p. We observe that, as F/K is abelian, Y (H_, n*”) is a torsion module
for the Iwasawa algebra associated to I. (See e.g. [C], Theorem 12 and Proposition 15.)

Theorem 4 (Coates). Let X denote the Galois group over H, of the maximal pro-p
abelian extension of H,, which is unramified away from all primes dividing p*.

(@) There are natural I-isomorphisms

S(H,,n*”) = Hom (X, E, )

and
S'(F,n**) ~ Hom (X, E,.m)’.

(b) There is a further isomorphism
Y(H,,n*") = Hom(T,., X,) ,
and the following diagram commutes for some isomorphism a:

S(H,,, n*") X Y(H,,n*") — D,.

l l I

Hom (X, E,«=) X Hom (T4, X)) — Ejo=
where the bottom row is the pairing given by
(5.1) (fio ) = £ (£2(0)
for a chosen generator t of T...
Proof. (a) See Theorems 12 and 9 of [C].
(b) Choosing a generator ¢ of T,. over O,. is equivalent to fixing an isomorphism
O, —=— T,. such that 1+ ¢. This in turn induces an isomorphism a: D,. = E .. It is

easy to check that the pairing induced by (5.1) and a~! is non-degenerate and indepen-
dent of the choice of ¢. This gives the result. O
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Now let 2, denote the Galois group over H,, of the maximal pro-p abelian extension
of H,, which is everywhere unramified. Define # = Hom (Z,,, E,.~). Then there is a natural
injection % — S(H,,n*"). We shall refer to % as the unramified Selmer group.

Let V be the subgroup of Y (H,,n*") defined by

V = Ker(Hom(T,., X,) - Hom(T.., %)),

and set
W =Ker (X, - Z,).

Proposition 5.2. VY= % and U* = V, with respect to the pairing (5.1).

Proof. We first show that #* = V. Plainly fe V implies that fe #*, and so V < #*.
Suppose that fe #*. Then f,(f(#)) =0 for all f,e%. Thus f(He (| Kerf, = and
ut=. | few

Next, observe that clearly # < V. So suppose that he V. Then h(f,(t)) =0 for
all f,eV. However {f,(t)| f,eV} =2, and so h vanishes on B i.e. he# Hence
Vi=4 o

Corollary 5.3. There is a perfect duality

S(Hy, n*7)

u XV_’th

and hence also a perfect duality

(S(Hw, n*”)

U )rXVr‘?DP" O

§ 6. Height pairings

Throughout this section we shall assume that III(F), is finite. In [PR] B. Perrin-
Riou defines an algebraic local height pairing

{3y E(F) @, Ok p X E(F) ®0, O o — @, .

It may be shown that this pairing is A-equivariant. In this section we shall always suppose
that this pairing is non-degenerate modulo torsion. The main result of [PR] asserts that,
with the above assumptions, a certain p-adic L-function %,.(E, s) attached to E/F, has a
zero at s = 1 of order equal to rankg (E(F)) and satisfies a certain p-adic conjecture of
Birch-Swinnerton-Dyer type.

Define X (F)*" to be the subgroup of S(F)*" which makes the following sequence
exact |
0 - Z(F)*™ - S(F) - [] H'(F, E,»).

qlp*
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Set Z(F) = Lim Z(F)™". Then there is a natural injection
Ei @5, D, = Z(F).
Lemma 6.1 If |WL(F),| < o, then E; ,.® o, Oy, = E(F).
Proof. See Corollaire 3.3 of [PR]. O

Let J, denote the group of ideles of H,, and write U®" for the subgroup of unit
ideles whose components at all places above p* are equal to 1. Define

A
‘= o

and
I/Vn = H l“,,"(Hn,q) .

qlp*

It is shown in Proposition 3.13 of [PR] that there is an isomorphism

Hom (E,.», €,)°F
Hom (E,.», W)

(6.2) My ' Z(F) >

Suppose that Q€ E, ,., and write @, for the image of Q under the projection
E{ - Z(F)™. Then, by Corollary 4.10, we may associatt a homomorphism
b, o € Hom (E,.», C1(Dy, ))? to the p.hs. for B, afforded by Q,. It follows from the
construction of #, given on p. 385 of [PR] that

(6.3) (c(m " (@) W)) =D, o(h),
for all he E,.», were ¢ denotes idele content.

Let M, be the maximal abelian pro-}; extension of H, which is unramified away
from p*, and set X, = Gal(M,/H,). The global Artin reciprocity map yields a homo-
morphism

(_’Mn/Hn) : (gn - xn .

Define
Pn: Hom (Ep"‘a (g")r — Hom (Ep"‘9 x")l‘

by y,.(f) = (-, M,/H,)~ f, and
%,: Hom (E,u, €)" — Hom(E,w, 6,)"

by 7,(f) = fo1,. (Recall that t,, is the inverse of the automorphism of E,.» given by n".)
Then we have a homomorphism

(6.4) Yoo Tpony L Z(F)™ — Hom (B, X,)" .
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It is shown in § 3.2 of [PR] that we may take inverse limits of (6.4) and that this yields an
isomorphism X (F) ~ Hom (T,., X)".

Let @’ denote the composite homomorphism

(6.5) X (F) —— Hom(T,.,X,)" - Hom(T..,Z )"
(where the right-hand arrow is the natural projection). Recall from § 5 that ¥ denotes the
orthogonal complement of the unramified Selmer group # with respect to the pairing
afforded by Pontryagin duality.

Proposition 6.6. (a) Kerd' =~ V',

(b) The following diagram commutes:

Ey p+®0,Oxp 2(F)
g 2

Hom (T,., Lim C1(Dp,))?** —=— Hom(T,., Z,,)" .

Here ¢’ is the homomorphism defined in Corollary 4.14 while the bottom arrow is induced
by the Artin map.

Proof. (a) Follows at once from the definition of ¢’ given in (6.5), and from the
definition of V. :

(b) This is immediate from (6.3) together with the definition of ¢’ given in Corollary
4.14. O

It follows from Proposition 6.6 that
Ker¢' = Kerd' = V7T,
Hence, in order to prove Theorem 1, we can now focus our attention on V7.

Before stating the next result, we introduce some notation. We shall say that two
Z,-modules, 4, B are pseudo-isomorphic, and write A ~ B, if there is 2 homomorphism
A — B with finite kernel and cokernel. Thus, if 4 and B are finitely generated, then 4 ~ B
if and only if rank, (4) = rank, (B), and so A ~ B if and only if B~ 4. In the sequel 4
always denotes the Pontryagin dual of A4.

We would like to thank Karl Rubin for showing us the following result.
Proposition 6.7 (Rubin).

S(Hy, n*")

(0/?)’@( o )~Y(Hw,n*_)’.
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Proof. The exact sequence

6.8) 0>~ S@H,w) - W)
yields
S(H,, n*)\>T
(6.9) 0 - (—(—%"T’t——)) - Y(H,,n*") - @)F.

We claim that the right-hand arrow of (6.9) is surjective up to finite index. For
suppose not. Then,

S(H,,n**)\"T
rank, (—(in—)) + rank, (4)"> rank, Y (H,,n**)".

Theorem 3.2 of [PR] implies that

rank, Y (H,,n**)" = ranky, (E, ,.(F) ®DKDK,.)
= ranky, (E(F))
=n ,

say.

Since A, is of order prime to p, taking A, invariants of (6.8) gives an exact sequence

*® Ay
(610) 0 —» %™ - S(H,,n*")" - (S(Hw’n )> - 0.

U

This implies
rank, (S(H,,n*")*") = rank,, (Y (H3:, n*))

*2\\A1,~
= rank,, ((_S_(f{o;_”,_n_)) ) + rank, (%*")

*®\\ It X 44,"
Z rank,, [(%%) ] + rank (@b 17)

= rank, [((ﬂ%ﬂfﬁ) ) :I +rankz,(0?2,) .
r

Let M denote any Z, [I']-module which is a finitely generated torsion module for the
associated Iwasawa algebra. Then by standard theory

(6.11) rank, (M") = rank,, (M;) .

Since H, /K is abelian and since Leopoldt’s conjecture is known to hold for abelian
extensions of K, it follows that S (H,,, n*") is a finitely generated A-torsion module. (See
§2 of [C] for details.) Hence
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w S(H,_,n**)\ T
rank, (Y (HZ!, n*")) 2 rank,, [(—4“;@———-— +rank, (@)

i.e.

> n, by the above.

However rank, (Y (HZ!n*")) is equal to the order of vanishing of the p-adic L-function
L,.(E/F,s) at s = 1. It is shown in [PR] that this order of vanishing is equal to n when
| (F),.| < oo and {,}f,,. is non-degenerate modulo torsion. Thus we have obtained a
contradiction, and so the result follows. O

Corollary 6.12. Suppose that y € A. Then,

S(Hy,n*")\ " x -
[(*(—@—)) ®ox, O | @A) ©0, OV~ ¥ty 1) 00, O

We shall now introduce a certain subgroup U(E, p*) of E(F) ®,, O, . which we
shall call the group of unramified points of E(F) ®o, Dx,.- ’

Let x,, : I' > D, be the character of I' which gives the action of I on E,.~. Sup-
pose that Te E(F) ®, Ok,., and for each ne N, choose T, € E(F) such that

T, = T(mod n*" (E(F) ®o, Ox,.)) -
Choose any 7, € E(F¢) such that n*" T, = T,. We may define a homomorphism

hn : xw - Epcw

by
hy(w) =T, —T,.

We say that Te E(F) ® Ok ,. is an unramified point if 4, vanishes on 9B for all ne N.
(Recall W = Ker (X, —» Z,).) We write U(E, p*) for the group of all such unramified
points.

We shall now give another description of the group U(E,p*) up to pseudo-
isomorphism. For each prime B of F lying above p*, write E, (Fy) for the kernel of
reduction of E(Fg). Set E, ,. = [1 E,(F). Then E, (F) is an Oy,.-module, and so there

is a natural homomorphism  ®/**
Jo 1 Ey o (F)®p, Og,. = E (Fy)

which induces a A-homomorphism

f= l;] j‘”:El”'(F)®DKDKp‘ g EI,P"
Ble*

Proposition 6.13. (a) £, ,. ~ O ®p, Og,..

(b) Kerf~ U(E, p*).
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Proof. (a) This follows immediately from [Si], Chapter VII, Proposition 6.3.

(b) We shall show that U(E, p*) " (E, ,.(F) ®, Oy,.) ~ Ker f. (This will suffice,
since [E(F): E; ,.(F)] <.)

It is clear from the definitions that

Kerfg U(E9 p*)nEl,v‘(F) ®DKDK°.~

Suppose that Te E; ,.(F) ®ox O,.- For each ne N and P|p*, let Hw,,,(n—l—f,,'(T))

*'I
be the field obtained by adjoining n*"th roots of fy(T) (taken with respect to the
formal group law on E) to H_ 4. Then Te U(E,p*) if and only if the extension

1 . .
H, ¢ (;F f,,(T))/Hw,m is unramified for all B|p* and for all ne N. As we are only

concerned with modules up to pseudo-isomorphism, we may assume that either f(7) = 0
or that fo(T') is of infinite order, for some P|p*. However if fo(T) is of infinite order,

1 [
then H, ¢ s JSe(T) /Hm,g; is non-trivial and ramified for all sufficiently large n (see

[CW], Theorem 11), and so T¢ U(E, p*). The result follows. 0O

Proposition 6.14. Suppose that y € A, and write § for the contragredient character of
x- Then

(a) ranky. [Y(H,, n**)r ®p,,.O"]* = ranky. (E(F)®o,D")%.

(b) ranky, [(%) ® oy, O"1* = ranke,. (U(E, p*) ®,.O")*.

Proof. Combining the standard exact sequence (see (24) in [C])

0 > E(F)®o,D,e = S'(F,n*7) » II'(F),. » 0

with Theorem 5 (a) yields an exact sequence

6.15) 0 » E(F)®p,Dye = S(Hy,n**)' —» W'(F),. —» 0.
From the very definition of U (E, p*), it is clear that

(6.16) U(E, p*) Qo Dpe SU" .

Next note that | III'(F),..| < co since we have assumed that | I (F),| < co. (See for instance
Proposition 2 of [C].)

Foran Oy ,.-module M write T (M) = Hom (D,., M) for the associated Tate module.
Then from (6.15)

T@") € T(S(Hy, v*™)") = T(E(F) @ D).
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It therefore follows from the definition of % and U (E, p*) that
T@") = T(U(E, p*) ® D,.)
and so by (6.16) these two Tate modules coincide. Now U (E, p*) @ D,. and %" are both

isomorphic to O ,. modules of the form D;. ® M, with M, finite. We therefore deduce
that '

[%r: U(E’ p*) ®Dx,vt Dp‘] <
and this immediately implies that

[U(E,p*) ®o,. . DpeT ~ 4"

There are isomorphisms

(E(F)®o, D,+)” = Hom (E(F) ®o, Ogyer DK,a)

and
(U(E, »*) ® D,.)” = Hom (U(E, p*), Og,.) .
Also,
S(H,,n*)"" =Y (H,, 7)),
and

%F’A = (@)r .
Piecing together the above yields

ranke. [Y (Hy, 7*7) r ®o, . O"1* = ranke. (E(F) ®5, O")*

and
rankg..[(#) o, D) = rankg.. (U (E, p*) ®°x‘p_D”)7 ,

as asserted. O
Theorem 5. For each y €A, set

r, = rankg. (E(F) ® o, O')*

and
rx* = rankon(E(F) ®DKD”)X .

Suppose that r, 2 1. Then
ranke. [¥ (Hy, 7*°)F ® g, 0"1* =1 + rank, [(#)” ®o,,.O"1*.

We note that Theorem 1 is an immediate consequence of Theorem 5 and 6.6 together
with Corollaries 5.3 and 6.12.

The next part of this section will be devoted to giving a proof of Theorem 5. First we
show .
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Proposition 6.17. Suppose that y €A with r* 2 1. Then
ranky,.. (U (E, p*) ®o,,. O")* = ranky,. (Ker f®g, 0" )t =r*—1.

Proof.  The first equality follows at once from Proposition 6.13 (b), and so we shall
just prove the second. .

Let {x; =, ..., Xm} be the set of all characters in A lying in the 2,-orbit of . Then
rp=rt 21 for all 1 <j<m, and so we deduce that E(F)n( @ (E,(F)®,,0")u
contains a point Q of infinite order Since f is a A- homomorphlsm and f(Q) is of

infinite order, we deduce that H (Im f ®p,,.O")* has O"-rank at least 1. But this
implies that i=1

sy, = 1ankg. (Imf®4, 0" )" 21,

since s, ,= S for all 1 £ j < m. However, it follows immediately from Proposition 6.13 (a)
that s, = 1, and this implies the result. 0

From the existence of the height pairing {,} ,. together with the fact that

[E(F):E,(F)]< o,

it follows that
(6.18) rr=r.

X

Using (6.11), together with 6.13, 6.14, 6.17 and (6.18), then gives Theorem 5. This
also completes the proof of Theorem 1.

Remark. One can use the localisation map f to give an alternative characterisation
of ker¢. Using the definition of the height pairing

(,}: E(F)®p, g, X E(F)®0,Ox.pe = @,

together with the above work, one easily shows that ker¢ ~ ker f*. (For further details
see [A2].)

We conclude this section by proving Theorem 2. By the remark after 4.14 we know
that Im¢ =~ Im¢’, and by 6.6 Im¢’ = Im®".

Thus, by (6.5), it will suffice to show that the map
Hom (T, Z,,)T —— Hom (T, Z,,)"
has finite cokernel. By the very definition of ¥ (given prior to 5.2),

0 - V » Hom (7., %,) - Hom(T,.,Z,) - 0.

4 Journal fiir Mathematik. Band 447
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Taking I'-fixed points and Pontryagin duals, and then using both 5.3 and Theorem 4, we
obtain an exact sequence:

*ao
[Hom (Z,., 2,) 1y 2 S(H,.7*"); - (&I"Zg—n‘)> o0
r

Reasoning as per Theorem 4 (b), # (= Hom(Z,,, E,. )) identifies as the Pontryagin dual
of Hom (T,., Z,)). Therefore 6.7, together with (6.11), then shows that Kerb ~ 0, as
required.

§ 7. Kummer theory of principal homogeneous spaces
The remainder of this article will be devoted to the proof of Theorem 3; so from
now on we assume p* to be completely split in F/K, and that F is linearly disjoint with
K(E,.) over K. The splitting condition on p* will only be needed for the proof of Propo-
sition 7.9 and Lemma 7.10.

Throughout this section, we suppose that » is fixed and we set N = H, - F,.

Write 8, = B Q®,,.0Oy; then By is an Oy-order in By = B N = Map (G, N).
F
Recall from § 3 that PH(B) (resp. PH (B)) denotes the group of isomorphism classes of
principal homogeneous spaces of B/Op (resp. B/F). We use similar notation for B,
and By.
If follows from standard theory (see e.g. [BT]) that there are -isomorphisms

PH(B)~ H!(F,G)

and .
PH(By) =~ H'(N,G) = Hom(Qy,G) .

It may also be shown via a simple cohomological argument that the natural map

PH(B) - PH(B),
CrH CRq, F

is injective. A similar result holds if B (resp. B) is replaced by By (resp. By).
We set A = Gal(N/F,), and I'' = Gal(N/H,).
Lemma 7.1. (a) H'(I''x A4,G) = {1} for i =1,2.
(b) The natural restriction map
Res: H'(F,G) - H'(N,G)" 4

on cohomology groups is an injection.
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(c) The natural map
PH(B) - PH(By),
€ € RO,
OF

is an injection.

Proof. (a) We first consider the case i =1. From the restriction-inflation exact
sequence of cohomology groups, we obtain

1 > H'(4,GT) > H'I"x 4,G) - H'(I",G).
As G"' = {1}, it follows that H'(4, G™") = {1}. Since I'" is cyclic we know that

G™
Np.G

|H'(I',G)| =|A°(I",G)| = =1,

where here N = Y y. This shows that H*(I'' x 4, G) = {1}.

yel’

For the corresponding result for H?(I'’ x A, G), we argue as above, applying Pro-
position 5 of [CF], p. 101.

(b) This follows from the above and Proposition 3 of Chapter VII of [S].

(c) This follows from the diagram

1 > H'(I"x A4,G) » H'(F,G) 2, H'(N,G)

1 1

PH(B) —— PH(By) . a
Lemma 7.2. For brevity write H in place of H,; then
(N IN*Y" > H*/H™1.
Proof. Consider the exact Kummer sequence
1—+uq—»Nx-—>Nx"—vl,
X x7.
Taking I'-fixed points yields the long exact sequence

1 51 o H* > N9aH* - H'I"u) » H\(I',N%)
- Hl(r’,qu) - Hz(r,’”'q)'
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Via an argument similar to that of Proposition 8.1 (a) we have that
H'(I',p)) = H*(I', p,) = {1},
and by Hilbert’s Theorem 90,
. HY(I',N*)={1}.
This shows that
(@) N9nH* = H*9 and
(b) HY (I, N*%) = {1}.
Next consider the I'-fixed points of the sequence

1 > N9 5 N > N*N*1" - 1;
this yields
1 > (N 5> H* > (N*/N*)T - HY(I'",N*9).

It follows at once from (a) that
(N*)' = NN H* = H*1,
and now using (b), we deduce that

H*[H* = (N[N,

as asserted. O
Proposition 7.3. There are isomorphisms
H'(N,G)"" 4 = [H'(N,u)" ] = [(WIN*)] = (H*/H*)*,
where ¢ is the character of A giving the action of A on Ep«n.

Proof. Let P be a generator of Eps», and let x : G — u, be the corresponding faith-
ful character of G afforded by the Weil pairing. Then x induces an isomorphism
H'(N,G) = H' (N, ).

Now suppose that fe H'(N, G)"'*4 = Hom (2y, G)" *4; then for yeI'’x A and
w € Q, we have

1(f(@ )= W,(f(@), P)" = W,(f(), P?)
=1 (f(@)*®.

Hence y induces an injection

H'(N,G)F*4 —» [H'(N,p)"1;
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that this injection is also surjective follows from the fact that the Weil pairing W, is Q-
equivariant.

The isomorphism [ H*' (N, u1,)"]* = [(N*/N*9)""]* comes from the Q-equivariant
Kummer pairing

Qux N*/N*¢ > p .

The final isomorphism [(N*/N*9)7]* > (H*/H*%): follows immediately from
Lemma 7.2. 0O

Before proving the next result, we recall some elementary facts concerning the Galois
theory of principal homogeneous spaces (see [T4]). Fix a faithful character x of G.
Recall that we have an isomorphism

(1.4) N*/N*1= PH(B,).

Explicitly, this is induced by the map

N[X]

= C=Fiay

neN™,

where G acts on the algebra N[X]/(X?— n) via the rule X? = y(g) X. By standard Galois
theory, the inverse of this map is the homomorphism

Oy:PH(By) » N*/N™4,

C > x(re(c)?),
where r.(c) is the resolvend of a normal basis element ¢ of C. Let G act on C[G] via
Galois action on the coefficients C; then, of course C[G]® = N[G]. In order to show

that r.(c)?e N[G]* (and hence x (r.(c)?) € N*), it suffices to show that r.(c)? is G-fixed.
However, this follows at once from the standard G-action formula for he G:

re@t= Y cog =Y g 'h™'h
geG geG .
=r.(0h.
We now give a similar result for PH(B).

Proposition 7.5. The following diagram commutes:

PH(By) —— N"/N*¢

l l

PH(B) —— H/H* .
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Here 0 is defined as follows: if C is a p.h.s. for B and if C = c- A, then 0(C) is
represented by x(rc(c)?).

Proof. We adopt the notation given prior to Proposition 4.5. To prove that the
diagram commutes, it suffices to show that r.(c)?e 4. Now r.(c)e C® F,[G] and we
F

know that CQ® F, is a Galois algebra over F with Galois group E=1I'KXG,
F
where I'' = Gal (F,/F). We let £ act on C @ E,[G] by Galois action on the coefficients

and by the rule that for (y,h)eI'" X G, g™® = g? (= y(g) as explained in §4). Then the
fixed point algebra

(CQEIG) "% = (£[GD" = 4
and so it will suffice to show that for we =&
re(©)® =r1:(c)h for some heG.

Note that, on applying the endomorphism [m] of C® F,[G] induced by g+ g™, we
shall have also proved Lemma 4.15.

Write w = (y, h). Then
rc(c)m = Z cgwg—w = chgwg—w
geG
— Z chg“’g—w
=) Mg h"1h
=r.(c)h. O
There is also a local version of Proposition 7.5. For each prime £ of F, we have an

isomorphism
Ng|Ng'* = PH(By,4)

together with a map
Oy, : PH(By, ) ——Ng/Ng*;

these are defined as in the global case. Then we have

Proposition 7.5'. The following diagram commutes:

On
PH(By,5) —=> N/ Ny

1 l

PH(BQ) _9——’ Hn):.‘?/Hr:.; :

Proof. As per Proposition 7.5. O



Agboola and Taylor, Class invariants of Mordell-Weil groups 51

We now define PH,.(B) to be the subgroup of PH(B) consisting of all principal
homogeneous spaces of B which are trivial at all primes of F lying over p*. Thus
€ e PH(B) lies in PH,.(B) if and only if

c ®DFDF,))‘ = % ®DFDF.;:‘ *

We define a subgroup PH,.(B) of PH(B) etc. in a similar manner. Note that, as the endo-
morphism n of E acts as an automorphism when restricted to the local points E, ,+(Fp),
the natural homomorphism

E(F) - PH(B)
of § 3 induces a homomorphism

E,, — PH,.(B).

Suppose now that €e PH(B,), with €My =c-M,, where M, denotes the
maximal order of Ay. Then it follows from Lemma 4.6 (b) that ™ "r(c) is a unit in the
maximal order of C[G]. Hence, this shows that

OIN*T O

>

(7.7) (@) Oy (Ker ¢;") « —— = =g -

Identical reasoning shows that

X xXq X
Og, H,* _ On,

(7.7 (b) O (Kerg,) © —oct— = Sl

We next claim that a p.h.s. C lies in PH,.(By) (resp. PH,.(B)) if and only if a repre-
sentative of 0y (C) (resp. of 0;(C)) is a local ¢'* power at primes above p*. It is clear that
the assertion holds for By, since for each prime 2 of N over p*, we have the Kummer
isomorphism

PH(Byq) = N3 [N;7.

For B the result follows from the diagram

(7.8) PH(B) <% HXH*

l l

[1 PHBy) == [] Hys/H.$
B|p* I Blv*

0 ry

From this, together with (7.7) and Proposition 7.3, we shall now show

Proposition 7.9. Let M denote the maximal order in A and for an abelian group Y,
let Y,, denote the subgroup of elements annihilated by p". There is a natural injection

0, :Kerp, - (Of, ,./On,)on -
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Proof. The injection is defined as follows: consider the isomorphism

x On
DH,.,,a ~ (gll_‘l,t Hn, 9)

and suppose that € € Ker¢, with €M = ¢- M. Then € is mapped to the class whose
representative in Og  is given by the unique gth root in H, 'y of x(r(©)?). The uni-
queness of the root follows from the first part of:

Lemma 7.10. (a) p,(H,¢) =1.
(b) Let f denote the Frobenius automorphism of p* in N/ F(u,). Then e(f) % 1mod (p).

Proof. (a) Since p* is totally ramified in H,/F and totally split in F/K, it follows
that H, g has residue classfield F,. As p is not anomalous, E,(F,) = 1,and so E,(H, ¢) = 1.
Therefore by the Weil pairing, 1t follows that H, ¢ has no non-trivial pth roots of unity.

(b) Suppose for contradiction that ¢(f) = 1mod (p). Then f fixes both u, and E,.;
hence, by the Weil pairing, f fixes E,. This would then imply | E,(F,)| > 1 which would
contradict p being non-anomalous. O

§ 8. Galois action
In this section we establish a number of results describing the action of Galois groups
on various resolvents. As in the previous section 7 is fixed and we therefore write G, 4, A
etc. We again put N = H, - F,, and we set L, = F,- H, = F,({,).

Since F and K(E,.) are linearly disjoint over K, by 2.2 (b) we have decompositions
8.1 @) A= éOH,., B= (—"BF,..
i= i=0
Tensoring the first decomposition by F, gives
8.1)(b) E[G] = é—% L.

Let {x;}7-, denote a sequence of abelian characters of G such that y; has order p’
and x?,, = x;- Then, by the convention stated after 2.2, we may assume the decomposi-

tions of 4 and F,[G] to be induced by @ ;.

i=0

For each i with 0 <i<n, we let N,,;: H - H; be the norm map. Using the
decomposition (8.1) (a), we define the norm operator

8.2) 6:HX—> A by a(x) E}-) i (%) -
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More generally, for any finite dimensional commutative F-algebra R, we write

GR:(H"@R)" - (A§>R)"

for the norm operator induced by the norm maps H,® R — H;® R. Fix a p.h.s. C for
. . F F
B. Choose ce C with C = c- 4, and write r (c) for r.(c). Recall that C® N/F is a Galois
F

algebra with Galois group £ = Q X G where Q = Gal (N/F). The first of our Galois action
formulae concerns the Lagrange resolvent x(r(c)):

Lemma 83. Let yeGand ¢ =w-geE with weQ, geG. Then
1 (r (@) = £ (r (@) £ (g)
where K, denotes the character giving the action of Q on G*.
Proof. Suppose P e G* is such that x(g) = W,(g, P) for all geG. Then

1(r(@) = (,.ZG c" W,(=h, P))*
= Z chwg VVn(—hw, Pw)
h
=Y "W, (=h°, k() P)

=@ (r(c)-g) asc=c”. O

We can now use this result to study Galois action on the components of a(x,(r(c)))
under the decomposition (8.1) (a); we shall then be able to conclude that

Proposition 8.4.
a(u(re))rc) ted™.

Proof. From (8.1)(a) we see that it suffices to show that
1@ (r @) @) ") e H .
Thus by the very definition of ¢ this amounts to showing
8.5 Nyi(ta(r@)) 1:(r(@) e H*.

With this in view we let =; denote the subgroup of £ which fixes H; = F(% H,cC®N.

For ¢ = wge E,, we know that o fixes G*; hence K, (w) = 1mod (p'), and so by 8.3

(8.6) (@) =1 @) 8-
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Therefore, in order to establish (8.5), it will be enough to show

3.7 Nn/i(Xn ("(C))y = Nn/i(Xn ("(C))) x:(8) -

Since (C @ L,)/(C® L,) is generated by u,, we have
F

(8.8) Ny(aG@) = I  a(r().

mmod p"Z
m = 1 mod (p')

Thus, by 8.3, for ¢ = wge &,
Nn/i(Xn (’(c)))g = H/ An ("(C))e
=T xm™@C@) [T 2 -

But, because x, (w) = 1 mod (p'), m— mxk, (w) is just a permutation of the exponents m of
Xn» and so finally we have shown

Nn/i(Xn(r(c)))§ = Nn/i(Xn(r(c))) l—,[’ X,'."(g)
= Npi(t(r@)) 22" ' (8) -

This then proves (8.7) since " '=y,. O

§ 9. Local group }ings

We keep the notation of the previous section. Let fe Gal(N/F(y,)) denote the
Frobenius automorphism for the primes of F(u,) above p*. Because p* is completely
split in F/K and is non-ramified in F,/F, we note that for all x € Op_

©.1) x7 = xPmod p* .

We abuse notation slightly and also write f for the F automorphism of B, = Map (G, N)
given by the valuewise action of f, i.e. for be B, and ge G

02 ®")(g) = (6(2)” .

Lemma 9.3. f commutes with the action of Z. (Here we regard = as a Galois group
of the Galois algebra By [F.)

Proof. Let E=w-gekE. Then for be B, he G:
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b (k) = (b°* ()’ = (b°(h — g))”
=b(h—g)" ")/,
bl =bT(h—g) = (b/((h—g)°"))°
=b(h—g°")"".
The result follows as wf = fw, since N/F is abelian. 0O

We shall now extend this valuewise Frobenius to the semi-local algebra C,. for any
C < PH.(B,). Indeed, by the very definition of PH,.(B,) in §7, we have the triviality
condition at p*:

CRK,.=BQK,..
K K
So, tensoring by N and writing Cy = C (%) N, we have an isomorphism of (G, N,.) algebras:

Cy@K,o = By ® K,

and therefore we obtain an automorphism of Cy ® K,. which we again denote by f. A
priori f depends on the above choice of isomorphism; however, for each prime P of N

~above p* the isomorphism Cy ¢ = By ¢ is unique up to an element of Auty (By,¢) = G,
and from 9.3 we know that f commutes with the action of G. We therefore conclude that
the valuewise Frobenius automorphism of Cy .. is uniquely defined.

The remainder of this section is devoted to various character value congruences for
local group rings. The basic such congruences from which we derive all others is

Proposition 9.4. (a) Let ye G and let xe Oy, . [G]. Then

2(x)? = xP(x)/mod p*.
(b) For t<mZ<n:

Nm/m—l (Xm(x)) = Xm(x)med p* .

Proof. (a) Write x =) x,g with x, € Of, ,+. Then by the Binomial theorem we
have congruences mod p*:

X()P =3 xF P ()
by (9.1) =Y. x/1%(8)
=(*()’,
with the last congruence holding because by definition f fixes u, and so x?/ = x?.

(b) As per (8.8) we know

Nm/m -1 (xm (x)) = ],_I X;. (x) .

r=1mod (p™ 1)
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p—1
Let g denote a generator of the cyclic group G, write x = ) x;g° with x;e O, ,.[G]
and put x,,(g) = {,m Then i=0

Xm (%) = 3 Xm (%) Cpom-
It will therefore now suffice to prove:

Lemma 9.5. Let { denote a primitive pth root of unity and let X,,...,X,_, be p
algebraic independent commuting indeterminates. Then

p—1 p—1
[l CXL) = X X7+ pk(X, ... X, )

Sfor some k(X,, ..., X,_) € Z[X,,...,X,_,]
Proof. By the Binomial theorem the left-hand expression is congruent to
ZX,med(l _C)Z[C9X01 '--9Xp—1] .

However, by Galois theory we know that the left-hand term belongs to Z[X,, ..., X,_;].
We therefore conclude that the congruence indeed holds mod(p). O

Proposition 9.6. Let Ce PH,.(B). Then for ce (€ ®g, Of [G]1),» and for any
m:nzm>1

Nm/m—l (Xm(c)) = Xm—l(c)medp* .

Proof. Since this result is semilocal at p*, by 9.4 we may, without loss of generality,
take € = B. Using the decomposition

(B ®o, Or,)+ = Map (G, O, ,) = DOy, .
we are reduced to showing that for xe O, .[G]
Nm—1 (tm () = Ym—1 (x)" mod p*
and this congruence follows at once from parts (a) and (b) of 9.4. O

We now conclude this section by using the above congruences to construct a homo-
morphism

X

%*
H,._x,,.mOdP

(97) V! D(QI) - —Tn—(—o;;——)——

where D () = Ker (C1(2) — C1(M)) is the kernel group described in (4.4) and Im(Dy, _,)
denotes the image of Of  modp*. For a class €e D(A) which is represented by
Det (m) € Det (M,.) under (4.4), we define

Va(©) = Ny (1a (™) 2a—1 (m)~Im (D55, _,) mod p* .
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There are two important points here: firstly for me I,
Non—1 Gam)) oy ()T € OF |
secondly thanks to 2.1(b) U,. = Oy, ,.[G], and so by 9.6 it follows that for ae A,
Nyjw-1(ta (@) 277, (@) = 1mod p*,

which in turn implies that v, is a well-defined homomorphism via (4.4).

§ 10. Proof of Theorem 3

The notation is again as in the previous section, and we now let M denote an integer
greater than n. We recall the injection

O, : PH(B)) — (Hy/HyP™)"
and we consider the behaviour of 6 with respect to the homomorphism
[™~"]: PH(B,) — PH(B,).

Proposition 10.1. Let G, € PH(B,,) and put €, = [«™""]€,,. Then 6,(C,) is
represented by Ny, (xa (r(cy)))?", where €\ - F = ¢\ A.

Remark. It is precisely the ability to choose large M in the above which gives us
the required leverage for our proof of Theorem 3.

Proof. Recall that &, = Gal(N/H,) X G is the Galois group of C®N/H Now
from (8.6) and (8.7) we know that

Xn (’ (CM)) and N, Min (XM (" (CM)))

have the same E, action formulae, and so

xa(r (CM)) -t Ny/n (tm (’ (CM))) eH.

It therefore remains to show that y,(r(c,))?" represents 6 ,,((i ). To this end we view
C, =G, F as a subalgebra of C,,. Then,

In(ep () =1 ( X chie™)

9eGm

=x(Y tam(Cre)? g™

9€Gn
= Xn ("c,, (tM/n (cn))

where ), : Cyy — C, is the trace map. The result then follows at once since ¢y, (c,) is
an A, normal basis of C,. O
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Suppose now that €, lies in Ker(¢, : PH,.(B,) — CI(M,,)). Then by 4.5(b) we
know that the class (€,,) € D(U,,) has representative Det(m’) € Det (I,.) for

m' =r(cp)rics)™!
where
GM.MM=CM.th and &M'v‘=C:{' Q[M,v“

Now put y,, = 1, (r(n "™ c,,)); then by 4.6 (b) it follows that y,, is a unit.

Lemma 10.2. Let s(y,) denote the unique solution in Hy ,. to the equation
XM = yi*. Then O, (€,,) is represented (in 7.9) by s(yy). Moreover yiy ' € O . and

- _ HM,p*
J")lw S = S(J’M)1 7.

Pro'of. The first part comes from 7.9. For the final equality it will suffice to show
¥a 7 € Hy ,a, for then both sides are the unique solution in H,, ,. to X?* = y{f = )?™,

We now compare Galois action formulae for y,, and yj: for ge G
1 (r(€30)? = 130 (r (1)) 104 (8)
and applying f, using 9.3 together with the fact that f fixes p-power roots of unity, gives
1 (r (€)= 1,(r(ean))” - 10(8) -
This then shows yi 7 is fixed by G, and is therefore an elemeni of Hy ,«. O
We also observe that by 8.4
Det (r(cy) 6 (yy) 1) € Det (4%) = Map (G, F* *)ar

Therefore, because this element lies in the denominator of the description (4.4), we con-
clude that the class (€,,) € D(¥,,) is represented by Det (m,,)

(10.3) My =a(g)r;
where we now write r, for r(cy).

Prior to embarking on the proof of Theorem 3, we need a further result which relates
global and local units:

Proposition 10.4. Given positive integers n and k, there exists a constant ¢ > 0 with
the following property: if ze Oy . with zP" € Oy and with |z —1|, < ¢ for all v|p*, then

zP" € O5P" (Here | |, denotes the normalised absolute value associated to v.)

Proof. Let u,,...,u, denote a system of fundamental units of H,. Then by
Leopoldt’s conjecture, which is true for H, (by the theorem of Ax-Baker-Brumer),

{uo = 1 +p, ul,..., u,.}
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is a Z, basis for a submodule of finite index in Og .. We may then write
r
2= [T u™, mez,;
i=0

indeed, because z”"e Oy , it follows that m, =0 and m;e Z for i>0. As z*" is p*-
adically close to 1 and as the u; are Z, linearly independent, it follows that all the m; are
p-adically small. This then shows that, by choosing ¢ sufficiently small, we may ensure
that z”"e O3 O

To prove the theorem we consider

QeKer(y:E; e ®0, Ok, @Cl(mn))‘

For each n we choose a representative in E; ,. of Qmodp”, and thereby obtain a
sequence of €, € PH,.(B,) with

(..., €, €y, ...)eLim PH .(B,)
and with each €, € Kery,. We shall show that
(10.5) €, =1 foralln.

Again we now view n as being fixed, and M denotes some integer greater than n. Since
vy (€,) =1, clearly v, (€,,) =1 (see (9.7)). We therefore conclude that

(10.6) Ny -1 (e (M) = ttyg 1 Xag -1 (myg)” mod p*
for some uy,_, € Op, . However, by (10.3)

X (M) = Xy (U(J’M)) ()™t

by (8.2) =yu m() 7
A -1 ) = Xag =1 (6(p)) 2a-1 () 7*
by (8.2) = NM/M—1()’M) JCM—1("2)-1 .

Next observe that by Lemma 4.6 r, € €\, ® 5. Op,, [G],+, and so by Proposition 9.6
Nuim-1 (XM ("z)) =xAM-1 ("z)med p*.
Substituting into (10.6) now gives
(10.7) Nyjp-1(n)' ™7 =y _ymod p*.
Note that by 10.2 and 9.3

(10.8) NM/M—I(y;l—f) = NM/M-I(yM)l—feD;;M—x,v.-
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Thanks to 10.1 we know that 6, ¢(€,) is represented in (H,/ H,'")® by the unit

NM—1/n(J’M—‘1)p" where yy,_, = Nyjm-1(Wn) -

By 7.10 (b) we know that 1 — f'acts as an automorphism of (H,/H,'*")®, and so, in order
to show that @, is the trivial p.h.s. (as per 10.4), it will suffice to show

nl_. n
Ny 1 -1)" a-Ne D;}f

ie. by 9.3
NM—1/;.()’1{}:{))1"l € D}?f" .

Multiplying by Ny _,,,(t4pr 1) 7", we need only to show
(10.9) Nyt n O g )P € OFP".
Now by (10.7) we know that
(10.10) Vi uyt = 1mod p*.
Lemma 10.11. Fori=1
M- o

Ny - 1/i(y}%{.—ji Uyt,) =1modp

Proof. We argue by induction on M — 1 —i. The case i = M —1 is then given by
(10.10).

Writing Tr;

;1j—1 for the trace map from C® L; - C® L;_,, by standard cyclotomic
theory, F F

Trj)j-1®Oco L) = P*Ocor,_1,pe>

and therefore for h 21

K)ht1

Nj/j—1(1"‘p"'hbcm.,,»*)g 1+ p*" Ocor, .-

This then establishes the inductive step. O

Choosing M to be large and applying the above lemma, it follows that we can make
the element of the left-hand side of (10.9) as p*-adically close to 1 as we choose. We then
apply 10.4 with k =n to '

z2=Ny_ 1/n (yltl_—ji “L—ll— 1)

observing that ze O} . by (10.8); this then shows zP"e OpP", and so proves (10.9), as
required. 0O
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