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LINE BUNDLES, RATIONAL POINTS AND IDEAL CLASSES

A. Agboola and G. Pappas

In this note, we will use the term “arithmetic variety” for a normal scheme X
for which the structure morphism f : X → Spec(Z) is proper and flat. Let V be
a proper, normal (not necessarily geometrically connected) variety over Q. Let
us choose a normal model for V over Z, that is an arithmetic variety X whose
generic fiber is identified with V . Suppose that F is a number field and consider
the F -rational points of V . These correspond bijectively to R-valued points of
X, with R the ring of integers of F . If P is an F -rational point of V , we will
also denote by P : Spec(R)→ X the corresponding R-valued point of X.

Suppose that L is a line bundle on the arithmetic variety X. We say that L is
trivial, when it is isomorphic to the structure sheaf OX . We will denote by P ∗L
the pull-back of L to Spec(R) via the morphism P ; then P ∗L is a line bundle
on Spec(R). It gives an element (P ∗L) in the class group Pic(R) of R. In what
follows, we will identify Pic(R) with the ideal class group Cl(F ). This paper is
motivated by the following question of the second named author:

Question. Suppose that the line bundle L on X is not trivial. Is there a
number field F and an F -rational point P of V such that the ideal class (P ∗L)
is not trivial?

As a variant of this question, we could also ask: Is there a scheme Z which is
finite and flat over Spec(Z) and a morphism P : Z → X such that (P ∗L) is not
trivial in Pic(Z)?

L. Szpiro has informed us that he independently raised this question earlier.
If the answer to the question is always positive, then line bundles on arithmetic
varieties are characterized by their restrictions to integral points. Here are some
interesting facts about this question:

1. The answer is positive when X = Pn. Indeed, restricting along any linear
morphism P1 → Pn gives an isomorphism on Picard groups. Therefore, it is
enough to show the statement for X = P1. Take L = OX(n), n �= 0. There
is a number field F with an ideal A whose ideal class is not n-torsion. We can
always write A = aOF + bOF with a, b in OF . Consider the F -rational point
(a; b) of P1. This gives a morphism

P : Spec(OF )→ P1
OF → P1

Z.
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2 A. AGBOOLA AND G. PAPPAS

Then the pull-back of L = OX(n) = OX(1)⊗n is the line bundle on Spec(OF )
which corresponds to An; this is not trivial.

Now suppose that X is a subscheme of projective space Pn defined by the
homogeneous polynomials f1, . . . , fk in Z[x0, . . . , xn]. Let L = OX(m) =
OPn(m)|X. The question then becomes:

Is there a number field F and an ideal A ⊂ OF generated by elements
a0, . . . , an such that:

A) the ideal class (A) is not m-torsion, and
B) (a0, . . . , an) is a zero of the polynomials f1, . . . , fk?
We observe that a positive answer to our question is closely related to exhibit-

ing ideal classes in number fields which are generated by elements which satisfy
a given (a priori) set of polynomial equations.

2. Let N be a natural number which is coprime to 6. The results in [A]
and [P] show that if X = E is an elliptic curve over the ring of integers OK of
a number field, then any N -torsion line bundle on E whose restriction to the
identity section is trivial restricts to the trivial line bundle on all torsion points
(in fact, for all m, it restricts to the trivial line bundle on the finite and flat
subscheme of torsion points E [m]).

3. Suppose that f has a Stein factorization X
g→ B → Spec(Z). Here

B = Spec(OK), where OK is the ring of integers of a number field K. Let A
be an ideal in OK and take L to be the pull-back g∗Ã of the corresponding line
bundle Ã on B. In this situation, since g∗ : Pic(B) → Pic(X) is injective, we
see that the question above is equivalent to the following question:

Let V be a geometrically connected normal proper variety defined over the
number field K and let A be an non-principal ideal of K. Is there a number
field L/K with V (L) �= ∅ such that AOL is also not principal?

If there does exist a geometrically connected variety V over K for which the
non-principal ideal A of K becomes principal (“capitulates”) in all extensions
L/K in which V acquires a rational point, it would make sense to call V a
“capitulating variety” for A.

In this note, we show that an “Arakelov variant” of the above question in
which we endow the line bundles with hermitian metrics has a positive answer.
This Arakelov variant of the question has also been suggested by L. Szpiro.
Heuristically speaking, one could view this result as showing that if a line bun-
dle on X is trivialized on integral points “using sections of uniformly bounded
length” then the line bundle is trivial.

Denote by L the restriction of L to the generic fiber V . Let K be the (number)
field of constants of V . For every embedding σ : K ⊂ C the complex variety
Vσ := V ⊗K,σ C is a proper connected variety over C and we have:

X(C) = V (C) =
⊔

σ:K→C
Vσ(C).
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A hermitian line bundle L on X is by definition a pair (L, || ||L) consisting
of a line bundle L on X and a collection || ||L = (|| ||σ)σ:K⊂C of continuous
hermitian metrics || ||σ on the complex line bundles Lσ over Vσ(C) which are
given by L ⊗K,σ C. We require that this family be invariant under complex
conjugation. The isomorphism classes of hermitian line bundles on X form a
group (the group operation is given by tensor product) which we denote P̂ic(X).
The identity is the isomorphism class of the “trivial hermitian line bundle”; this
is the structure sheaf OX with the trivial hermitian metric (i.e. ||1||σ = 1, for
all σ). If R is the ring of integers of a number field, we will call the group
P̂ic(Spec(R)) the Arakelov class group of R.

Theorem 1. Suppose that L is a non-trivial hermitian line bundle on the
arithmetic variety X. Then, there is a number field F with ring of integers R
and a point P : Spec(R)→ X such that the pull-back hermitian line bundle P ∗L
is not trivial in the Arakelov class group of R.

The main ingredients of the proof are standard results on height functions,
a theorem of Rumely on integral points of arithmetic varieties ([Ru]) (see also
[Mo]) and the Hilbert irreducibility theorem. Here are some remarks before we
give the proof:

1. Recall that there is a natural surjective homomorphism φ : P̂ic(X) →
Pic(X) given by forgetting the metrics. One can ask the following question.
Given an arithmetic variety X, is there a subgroup P̂ic

′
(X) ⊂ P̂ic(X) with

φ(P̂ic
′
(X)) = Pic(X) and a point P ∈ X(R) for some integer ring R such that

the restriction P ∗ : P̂ic
′
(X)→ P̂ic(R) is injective? If X is an arithmetic surface

with smooth generic fiber a natural candidate for the group P̂ic
′
(X) would be

the group of hermitian line bundles with admissible (in the sense of Arakelov)
metrics.

2. In [Bo] (see Theorem 1.2), J. Bost shows that regular X and for suitably
“very positive” points P : Spec(R)→ X we obtain a surjection on fundamental
groups:

P∗ : π1(Spec(R), η)→ π1(X, η)

where η is a geometric point of Spec(R). This can be viewed as a “Lefschetz-type
theorem for π1”; here we are dealing with Lefschetz-type statements about Pic
and P̂ic.

Recall our notation X
g→ B → Spec(Z) with B = Spec(OK) for the Stein

factorization of f : X → Spec(Z). We may define a height function (see [Si], p.
165)

hL : V (Q̄)→ R

in the following way: Suppose that P ∈ V (F ), where F/K is some finite ex-
tension. We set hL(P ) = [F : Q]−1d̂eg(P ∗L), where d̂eg denotes the Arakelov
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degree and where we also denote by P : Spec(OF )→ X the corresponding OF -
valued point. Up to the addition of a bounded function on V (Q̄), hL depends
only on the class of L in Pic(V ). In order to prove Theorem 1, we will need the
following result which is itself of some independent interest:

Theorem 2. The height function hL̄ : V (Q̄) → R is constant (resp. zero)
if and only if for some m > 0, L⊗m is isomorphic to the pull-back by g of a
hermitian line bundle (resp. of Arakelov degree 0) on B.

Proof of Theorem 2. Since the case in which dim(X) = 1 is trivial, we assume
that dim(X) > 1.

Suppose first that the m-th power of L is isomorphic to the pull-back by g of
the hermitian line bundleM on B. Then

(1) hL(P ) =
1
m

d̂eg(M)

for all points P ∈ V (Q̄), and so we immediately obtain one implication in the
statement of Theorem 2.

In order to show the reverse implication, we will first show that if hL is
bounded then L is torsion in Pic(V ) (this statement is due to L. Szpiro). If
V is a smooth projective variety, this statement follows from [La] Chapter 5,
Theorem 6.5. If V is normal and projective then by resolution of singularities,
there is a morphism π : V ′ → V with V ′ a smooth projective variety, which is an
isomorphism over an open subscheme U ⊂ V with complement of codimension
≥ 2. If hL is bounded then the height function hπ∗(L) on V ′(Q̄) is also bounded.
Also π∗ : Pic(V ) → Pic(V ′) is injective because, since V is normal, Pic(V ) →
Pic(U) is injective for U as above. Hence, if V is projective and normal the
statement follows. A similar argument, using Chow’s lemma, now shows that the
statement for V proper and normal follows from the statement for V projective
and normal.

Now assume that hL is constant. By the above, it follows that L is torsion,
and so by replacing L by a suitable power, we may assume that L is trivial.
Hence, there is a rational section s of L which is a trivialization over some
open U ⊂ X with fibral complement. Denote by S the finite set of places of
K consisting of the image of X − U under g together with all the archimedean
places. For each v ∈ S, the “norm” of s defines a map

fv = − log |s|v : X(Kv)→ R

which is Galois-invariant and continuous for the v-adic topology. We will show
that each fv is constant. Fix v ∈ S. If fv is not constant, there are Galois
invariant v-adic open subsets Zv and Z ′v of X(Kv), and ε > 0, such that |fv(x)−
fv(y)| > ε for all x ∈ Zv and y ∈ Z ′v. Now by Rumely’s density theorem (see
[Ru], p.128), we can find points P and Q in X(OK), all of whose conjugates
lie in Zv and Z ′v respectively, and such that for all other places w in S, all
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conjugates of P and Q lie within a w-adic ball of radius δ, for any prescribed
δ > 0. Since hL(P ) =

∑
w∈S hw(P ) where hw(P ) is the average value of fw over

the conjugates of P , it follows that hL(P ) �= hL(Q) if δ is small enough, which
is a contradiction.

We have now shown that for each place v ∈ S, the function fv is constant,
equal to cv ∈ R, say. Therefore, for each finite place v ∈ S we can write
fv = −mv · log |πv|v for some mv ∈ Q (here πv is a uniformizer for OKv ).
Denote by m the l.c.m of the denominators of mv. The above identity shows
that

(2) m · div(s) = (mmv) ·Xv

where Xv denotes the special fiber of g over v. Denote by Pv the prime ideal of
OK which corresponds to the finite place v. Let us consider the hermitian line
bundleM on B which corresponds to the fractional ideal A =

∏
v∈Sfin

Pmmvv of
K with hermitian metrics given by ||1||v = e−mcv , for v ∈ S∞. We obtain that
there is an isomorphism

(3) L⊗m � g∗M

which is given by the section s. Furthermore, if hL = 0, then equation (1)
implies that d̂eg(M) = 0. This completes the proof of Theorem 2.

An easy consequence of Theorem 2 is:

Corollary 3. Suppose that for every integer ring R and point P : Spec(R)→ X
the hermitian line bundle P ∗L is torsion in the Arakelov class group of Spec(R).
Then L is torsion.

Proof. If P ∗L is torsion for all points P , then hL is identically zero. Therefore, by
Theorem 2, a power L⊗m of L is isomorphic to a pull-back g∗M of a hermitian
line bundle M on B. Now if P : Spec(R) → X is a point of X, P ∗L⊗m is
isomorphic to the pull-back of M via the finite and flat morphism Spec(R) →
Spec(OK) = B. Since P ∗L is torsion in P̂ic(Spec(R)), its norm

NormR/OK (P ∗L) �M⊗ [R:OK ]

is torsion in P̂ic(B). Hence, M and L⊗m � g∗M are also torsion. �

Remark. The above statements and proofs of Theorem 2 and Corollary 3 were
suggested by L. Moret-Bailly and communicated to us by the referee. In the
first version of the paper, a more complicated proof of a statement equivalent to
Theorem 2 was given using the existence theorem of Rumely. The proof given
above, which uses the stronger “density theorem” of [Ru], is a simplification of
our original proof.
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Proof of Theorem 1. We will argue by contradiction. Let us consider a hermitian
line bundle L which satisfies:

(AR) For every integer ring R and point P : Spec(R)→ X the hermitian line
bundle P ∗L is trivial in the Arakelov class group of Spec(R).

We will show that L is trivial in the Arakelov Picard group P̂ic(X). Consider
the following statements:

A. If L satisfies (AR), then L is torsion.
B. If L satisfies (AR) and L is N -torsion for N a prime number, then L is

trivial.

C. If L satisfies (AR) and L is trivial, then L is trivial.

The statements A, B, C together imply that if a hermitian line bundle L
satisfies (AR) then it is trivial, and this implies the Theorem. Indeed, by A the
line bundle L is torsion. Therefore, for some n, L⊗n is trivial. The hermitian line
bundle L⊗n also satisfies assumption (AR) and we can apply C to it; we obtain
that L⊗n is trivial and therefore L is n-torsion. By a successive application of A
and B to powers L⊗a with a|n we see that L is trivial. Applying C again gives
the statement. �

Proof of A. This follows directly from Corollary 3. �

Proof of B. Suppose that the line bundle L is N -torsion with N a prime number.
Choose an isomorphism φ : L⊗N � OX . This equips the line bundle L with a
metric || ||φ given as follows: if s is a local section of L, then ||s||φ = |φ(s⊗N )|1/N .
Consider the Kummer fppf exact sequence

1 −→ H0(X,Gm)/H0(X,Gm)N −→ H1(X,µN ) −→ H1(X,Gm)[N ] −→ 1.

The isomorphism φ defines a µN -torsor t : Y → X whose class in H1(X,µN )
lifts the class of L in H1(X,Gm)[N ]. Denote by W the generic fiber of Y . We
are free to consider W and V as varieties over the field of constants K of V . We
will show that, under the assumption (AR), the geometric torsor tK̄ : WK̄ → VK̄
splits completely (i.e. WK̄ has N irreducible components). This implies that
the pull-back LK̄ of L to VK̄ is a trivial line bundle. Then, by Hilbert’s theorem
90, L is trivial on V and this proves the statement.

Let us base change to K(ζN ) in order to include the N -th roots of unity in
the coefficients. For simplicity, we will use a prime to denote base changes from
K to K(ζN ) (i.e. we will write V ′ instead of V ⊗K K(ζN ) etc). Over K(ζN )
there is an isomorphism µN � Z/NZ and we can identify t′ : W ′ → V ′ with a
Z/NZ-cover.

Denote by τa the automorphism of t′∗(OW ′) which is given by the action of
a ∈ Z/NZ on W ′. The base-change L′ of L on V ′ can be identified with

(*) L′ = { λ ∈ t′∗(OW ′) | τa(λ) = ζaNλ }.
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The isomorphism φ′ : L
′⊗N � OV ′ is given by the ring multiplication in t′∗(OW ′);

there is a corresponding metric || ||φ′ on L′.
Now let P be an F -valued point of the generic fiber V with F a number

field over K(ζN ). We can write the specialization Spec(F ) ×V W of the cover
t′ : W ′ → V ′ at P , as Spec(Ft) with Ft an F -algebra which is an N -dimensional
F -vector space. Consider the Kummer fppf exact sequence

1→ O∗F /(O∗F )N → H1(Spec(OF ), µN )→ H1(Spec(OF ), Gm)[N ]→ 1.

Since the pull-back P ∗L is a trivial line bundle, this exact sequence implies that
the Kummer extension Ft/F can be generated by extracting the N -th root of
a unit u(P ) ∈ O∗F . As in (∗) above, the pull-back P ∗L can be viewed as an R-
submodule of Ft. In fact, we obtain that the pull-back P ∗L is R·u(P )1/N . For σ :
F → C, the length of the generator u(P )1/N at the corresponding complex point
of Spec(OF )(C) with respect to the restriction of the metric || ||φ′ of L′ given
above is equal to |σ(u(P ))|1/N . Its length with respect to the metric obtained by
restricting the original given metric || ||L of L is then c(σ(P ))·|σ(u(P ))|1/N where
c is a continuous function on V ′(C) which is bounded away from 0 and infinity
(since both the metrics || ||L and || ||φ′ are continuous and V ′(C) is compact).
By our initial assumption, there is an isometry P ∗L � ŌSpec(OF ); it follows that
there is a unit v(P ) ∈ O∗F such that |σ(v(P ))| · |σ(u(P ))|1/N = 1/c(σ(P )) for
all σ : F ⊂ C. By replacing u(P ) by u′(P ) = v(P )Nu(P ) we see that there is a
unit u′(P ) such that Ft is generated by u′(P )1/N and such that |σ(u′(P ))| for
all σ : F ⊂ C is bounded independently of P and F . As F contains ζN , we
conclude that for each F -valued point P of V ′ the extension Ft/F obtained by
restricting the torsor t to P is obtained by extracting the N -th root of a unit
u′(P ) in O∗F with archimedean valuations which are bounded independently of
P and F .

Now consider all field extensions F of K(ζN ) of degree bounded by a number
d, say. Given any constant C > 0, there is only a finite number of units with
archimedean valuations bounded by C in all these fields (see for example [Si],
Theorem 2.1). Therefore, there is a number field K̃ over K(ζN ) which contains
all the N -th roots of all of these units.

We next observe that, using Noether’s normalization theorem, we can find a
rational map ψ : V ′− → PnK(ζN ) which is generically finite étale. Suppose that
ψ is of degree d, and consider the composite finite cover of varieties over K(ζN )

W ′ ⊗K(ζN ) K̃ →W ′ → V ′.

If the cover tK̄ : WK̄ → VK̄ is not completely split then, since N is prime, the
varieties W ′ and V ′ are irreducible. The scheme W ′⊗K(ζN ) K̃ is also irreducible.

There exists a Zariski open subset U ⊂ V ′ such that ψ(U) is Zariski open
in PnK(ζN ) and ψ|U : U → ψ(U) is finite étale of degree d. By the Hilbert
irreducibility theorem (for example [La], Chapter 9; see the formulation in loc.
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cit. §5, especially Prop. 5.2) there is an infinite set H of K(ζN )-rational points
of ψ(U) ⊂ PnK(ζN ) such that, over these points, the fibers of the composite cover

W ′ ⊗K(ζN ) K̃− → PnK(ζN )

are irreducible. The corresponding points of V ′, i.e the points in ψ−1(H), are
all defined over number fields of degree ≤ d over K(ζN ). Let F be the field of
definition of one of these points in ψ−1(H). By the discussion above we have

K(ζN ) ⊂ F ⊂ Ft ⊂ K̃F.

Therefore, Ft ⊗K(ζN ) K̃ splits (i.e is not a field). Hence, the fiber of
W ′ ⊗K(ζN ) K̃ → V ′ over this point is not irreducible. This is a contradic-
tion, and so it follows that the cover tK̄ : WK̄ → VK̄ is split. By the argument
above, this completes the proof of B. �
Proof of C. For this part, we assume that L is trivial. As in the proof of Theorem
2, let us take a rational section s of L which trivializes L on an open subscheme
U ⊂ X with fibral complement. The section s allows us to identify L with a
sheaf of rational functions on X. For every R-valued point P : Spec(R)→ X, the
pull-back P ∗L then corresponds to a metrized fractional ideal AP of F = Fr(R).
Under our assumption (AR), the metrized ideal AP is isometric to the trivial
metrized ideal R; i.e there is an element fP ∈ AP such that the homomorphism
R → AP given by 1 �→ fP is an isometry. If w is a place of F then the w-adic
absolute value of fP is bounded independently of P and F .

Suppose that d > 0 is any number. We conclude that for P running over all
points of V defined over number fields F of degree over K bounded by d, there is
a finite number of possible “normal generators” fP of the ideals AP . Therefore,
for each d > 0 there is a number field M(d) which is generated over K by the set
of the “normal generators” fP of P ∗L for all P defined over F with [F : K] ≤ d.

Now let d be the generic degree of a generically finite rational map
ψ : V− → PnK . A similar argument as in the proof of B, using the Hilbert
irreducibility theorem applied to the cover

V ⊗K M(d)→ V− ψ→ PnK

shows that V has a point Q, defined over a number field L over K with [L : K] ≤
d which is linearly disjoint from M(d) (i.e L⊗K M(d) is a field or equivalently
L ∩M(d) = K). Take fQ ∈ L a normal generator of Q∗L as before. By the
definition of M(d), fQ belongs to M(d). Using the linear disjointness of L and
M(d), we see that fQ ∈ K.

Let us now apply the results and notation used in the proof of Theorem
2. By equation (3), we have that L⊗m is the pull-back of the hermitian line
bundle M corresponding to the metrized ideal A in K. It follows that the line



LINE BUNDLES, RATIONAL POINTS AND IDEAL CLASSES 9

bundle Q∗L⊗m on Spec(OL) corresponds to the metrized fractional ideal AOL.
Hence, AOL = fmQOL as metrized ideals, with fQ ∈ K. We can conclude that
A = fmQOK and therefore that the rational numbers mv, for all v ∈ Sfin, are
actually integers. Also, we obtain that e−mcv = |fmQ |−1

v for all v ∈ S∞.
Now consider the hermitian line bundle N on B which corresponds to the

metrized ideal of K generated by fQ with metrics given by ||1||v = |fQ|−1
v . Using

the above discussion, we see that the hermitian line bundle L is isomorphic to
g∗N and is therefore trivial. This completes the proof of C. �
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