
CORRECTION TO ‘ON THE RELATIVE GALOIS MODULE
STRUCTURE OF RINGS OF INTEGERS IN TAME EXTENSIONS’

A. AGBOOLA AND L. R. MCCULLOH

Abstract. This note explains and corrects an error in our paper ‘On the relative Galois

module structure of tame extensions’. The main results of the paper remain unchanged.

The proof of [1, Theorem E] contains an error. The error occurs in the proof of [1,

Theorem 15.5] where the existence of a cohomology class b satisfying certain local properties

is claimed. Unfortunately the class b constructed there will in general be ramified at places

in T (because ΩF in general acts non-trivially on T ), and so will not satisfy conditions (i)

and (i) of [1, Theorem 15.5]. This in turn invalidates Step III of the proof of [1, Theorem

16.4]. We are most grateful to Brandon Alberts, Ila Varma, Jiyua Wang, and Melanie Wood

for pointing this out to us.

In what follows, we shall describe how the arguments of [1, Section 16] may be modified

(completely avoiding Step III of the proof of [1, Theorem 16.4]) in order to prove [1, Theorem

E]. This is accomplished by replacing the use of ‘Property R’ in [1, Definition 16.1] by a much

weaker condition (see Definition 1.1 below) which nevertheless suffices for our purposes.

1. Corrections

The following definition replaces [1, Definition 16.1] (where the definition of ‘Property R’

is given).

Definition 1.1. Let S be any finite (possibly empty) set of finite places of F , and let

F/F be a finite extension. We shall say that LC(OFG)S satisfies Property Sp(F/F ) if the

following holds. Suppose given any fully ramified x ∈ LC(OFG)S. For each finite place v

of F , suppose also given a homomorphism πv,x ∈ Hom(ΩFv , G) such that [πv,x] ∈ H1
t (Fv, G)

and λv(x) = Ψv([πv,x]). (Note that, in general, such a choice of πv,x is not in general unique.)

Then there exists Π ∈ Hom(ΩF , G) with [Π] ∈ H1
t (F,G) such that if we set

SΠ(x) := {v : Πv is ramified, and λ(x)v is unramified},

then:

(i) Π |Iv= πv,x |Iv for all v /∈ SΠ(x);
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(ii) Each place v ∈ SΠ(x) is totally split in F/F . �

Remark 1.2. Suppose that F/F is a finite extension, and that F|G| ⊆ F , where F|G|

denotes the ray class group of F modulo |G| · OF . Then if v is totally split in F/F , it

follows that qv ≡ 1 (mod |G|), and so Σv(G) = G. Similarly, if H ≤ G, then we also have

Σv(H) = H. �

Proposition 1.3. If G is abelian, then LC(OFG) satisfies Property Sp(F/F ) for any finite

extension F/F .

Proof. We shall in fact prove a stronger result. Suppose that G is abelian, and let x ∈
LC(OFG). (Note that we do not assume that x is fully ramified.) Then [1, Theorem 14.2]

implies that x is cohomological. As G is abelian, the maps Ψ and Ψv are injective (see [1,

Propositions 14.1 and 14.3]). Hence it follows that there is a unique [Π] ∈ H1
t (F,G) such

that x = Ψ([Π]), and a unique [πv,x] ∈ H1
t (Fv, G) such that λv(x) = Ψv([πv,x]). We therefore

see that

λv(x) = Ψv([Πv]) = Ψ([πv,x]),

and so Πv = πv,x. Hence SΠ(x) = ∅, and this implies that LC(OFG) satisfies Property

Sp(F/F ) for any finite extension F/F . �

The following result replaces [1, Theorem 16.4]. We shall follow [1] very closely in order

to help the reader make any desired comparisons.

Theorem 1.4. Let F/F be a finite, abelian extension with F|G| ⊆ F .

Suppose that there is an exact sequence

0→ B → G→ D → 0,

where B is an abelian minimal normal subgroup of G with l ·B = 0 for an odd prime l. Let

S be any finite set of finite places of F containing all places dividing |G|. Assume that the

following conditions hold:

(i) The set LC(OFD)S satisfies Property Sp(F ′/F ) for any abelian extension F ′/F satis-

fying F|D| ⊆ F ′ (so, in particular, LC(OFD)S satisfies Property Sp(F/F ));

(ii) The field F contains no non-trivial l-th roots of unity.

Then LC(OFG)S also satisfies Property Sp(F/F ).

Proof. We shall establish this result in several steps, one of which crucially involves Neukirch’s

Lifting Theorem (see [1, Theorem 15.1]).
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Suppose that x ∈ LC(OFG)S is fully ramified. For each finite place v of F , choose

πv,x ∈ Hom(ΩFv , G) such that [πv,x] ∈ H1
t (Fv, G) with

λv(x) = Ψv([πv,x]).

The choice of πv,x is not unique. However, if a(πv,x) is any normal integral basis generator

of Fπv,x/Fv, with Stickelberger factorisation (see [1, Definition 7.12])

rG(a(πv,x)) = u(a(πv,x)) · rG(anr(πv,x)) · rG(ϕ(πv,x)), (1.1)

then [1, Proposition 10.5(c)] implies that Det(rG(ϕ(πv,x))) is independent of the choice of

πv,x. Hence, if ϕ(πv,x) = ϕv,s, say, then it follows from [1, Proposition 10.5(b)] that the

subgroup 〈s〉 of G (up to conjugation) and the determinant Det(rG(ϕv,s)) of the resolvend

rG(ϕv,s) do not depend upon the choice of πv,x.

We write q : G→ D for the obvious quotient map, and we use the same symbol q for the

induced maps

K0(OFG,F
c)→ K0(OFD,F

c), H1(F,G)→ H1(F,D),

H1(Fv, G)→ H1(Fv, D).

Set

x := q(x), πv,x := q(πv,x).

Then x ∈ LC(OFD)S with

λv(x) = ΨD,v(πv,x)

for each finite place v of F , and x is fully ramified.

By hypothesis, LC(OFD)S satisfies Property Sp(F/F ), and so there exists ρ ∈ Hom(ΩF , D)

with [ρ] ∈ H1
t (F,D) unramified outside S, such that

(i) We have

ρ |Iv= πv,x |Iv (1.2)

for each finite place v /∈ Sρ(x).

(ii) Each place v ∈ Sρ(x) is totally split in F/F .

Hence, for each v at which x is ramified, ρ is also ramified, and we have that

Det(rD(ϕ(ρv))) = Det(rD(ϕ(πv,x))),

using the notation established in (1.1) above concerning Stickelberger factorisations. As x

is fully ramified, we see from the proof of [1, Theorem 13.6] that ρ is surjective, and so Fρ is

a field. We also see that, as x ∈ LC(OFD)S, the extension Fρ/F is unramified at all places
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dividing |D|. Furthermore, if v | l (so v ∈ S), then since πv,x is unramified, the same is true

of πv,x, and so Fρ/F is also unramified at v. Hence, as F ∩µl = {1} by hypothesis, it follows

that Fρ ∩ µl = {1} also.

For each finite place v of F , we are now going to use the fact that x ∈ LC(OFG)S to

construct a lift ρ̃v ∈ Hom(ΩFv , G) of ρv such that [ρ̃v] ∈ H1
t (Fv, G) with

ρ̃v |Iv= πv,x |Iv (1.3)

for all places v at which x is ramified.

Write

ρv = ρv,r · ρv,nr,

with [ρv,nr] ∈ H1
nr(Fv, D) (see [1, (7.7)]). Since ρv,nr is unramified, [1, Proposition 15.2]

implies that [ρv,nr] may be lifted to [ρ̃v,nr] ∈ H1
nr(Fv, G). Let a(ρ̃v,nr) be a normal integral

basis generator of Fρ̃v,nr/Fv.

(a) Suppose first that v /∈ Sρ(x). If ϕ(πv,x) = ϕv,s, then ϕ(πv,x) = ϕv,s, where s = q(s),

and so we have

ϕ(ρv) = ϕ(πv,x) = ϕv,s

(see (1.2)).

It follows that rG(a(ρ̃v,nr)) ·rG(ϕv,s) is the resolvend of a normal integral basis generator of

a tame Galois G-extension Fρ̃v/Fv such that q([ρ̃v]) = ρv (cf. [1, Corollary 7.8 and Theorem

7.9]). As ϕ(πv,x) = ϕv,s, we see from the construction of ρ̃ that

ρ̃v |Iv= πv,x |Iv= ϕ̃v,s,

where [ϕ̃v,s] ∈ H1
t (Iv, G) is defined in [1, Remark 7.11]. The map ρ̃v is our desired lift of ρv.

(b) Suppose now that v ∈ Sρ(x) with ϕ(ρv) = ϕv,s, say. Then v is totally split in F/F ,

and so Σv(G) = G (see Remark 1.2). Hence, if we choose any s ∈ G such that q(s) = s,

then, arguing just as in (a) above, we see that rG(a(ρ̃v,nr)) · rG(ϕv,s) is the resolvend of a

normal integral basis generator of a tame Galois G-extension Fρ̃v/Fv such that q([ρ̃v]) = ρv.

We have that

ρ̃v |Iv= ϕ̃v,s.
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We are now ready to apply the results contained in [1, Section 15]. Consider the following

diagram:

0 −−−→ B −−−→ G
q−−−→ D −−−→ 0xρ

ΩF

The group D acts on B via inner automorphisms, and we view B as being an ΩF -module

via ρ. Then B is a simple ΩF -module because B is a minimal normal subgroup of G and

ρ is surjective. The field of definition F (B) of B is contained in the field Fρ, and so in

particular F (B) contains no non-trivial l-th roots of unity. We are going to construct an

element Π ∈ HomD(ΩF , G) satisfying the following properties:

(i) Π |Iv= πv,x |Iv for each finite place v /∈ SΠ(x);

(ii) Each place v ∈ SΠ(x) is totally split in F/F .

This will be accomplished in the following two steps:

I. We begin by observing that our construction above of a lift ρ̃v of ρv for each finite v

shows that Jf (HomD(ΩF , G)) is non-empty. Let

S := {v : x is ramified at v} ∪ S ∪ Sρ(x).

[1, Theorem 15.1] implies that there exists Π1 ∈ HomD(ΩF , G) such that Π1,v = ρ̃v for all

v ∈ S.

Note also that Π1 may well be ramified outside S.

II. Recall that HomD(ΩF , G) (respectively HomD(ΩFv , G) for each finite v) is a principal

homogeneous space over H1(F,B) (respectively H1(Fv, B)). Let S1 denote the set of finite

places v /∈ S of F at which Π1 is ramified. For each v ∈ S1, choose yv ∈ H1(Fv, B) so that

yv · Π1,v ∈ HomD(ΩFv , G) is unramified.

[1, Theorem 15.3] implies that there exists an element z ∈ H1(F,B) such that

(z1) zv = yv for all v ∈ S1;

(z2) zv = 1 for all v ∈ S;

(z3) If v /∈ S ∪ S1, then zv is cyclic, and if zv is ramified, then v splits completely in the

abelian extension (F (B) · F)/F .

Set

Π := z · Π1 ∈ HomD(ΩF , G).

Then it follows from the construction of Π that

Π|Iv = πv,x |Iv
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for each finite place v of F at which x is ramified, and that each place v ∈ SΠ(x) is totally

split in F/F .

This completes the proof that that LC(OFG) satisfies Property Sp(F/F ). �

Theorem 1.4 (in conjunction with Proposition 1.3) yields an abundant supply of groups

G for which LC(OFG)S satisfies Property Sp(F/F ) for a suitable choice of S and F/F (and

therefore also for which Theorem 1.8 holds, under certain additional hypotheses). Here is

an example of this.

Theorem 1.5. Let G be of odd order, and let F/F be any finite abelian extension with

F|G| ⊆ F . Suppose that F contains no non-trivial |G|-th roots of unity. Let S be any finite

set of finite places of F containing all places dividing |G|. Then LC(OFG)S satisfies Property

Sp(F/F ).

Proof. We first note that Proposition 1.3 implies that the if G is abelian, then LC(OFG)S

satisfies Property Sp(F/F ) for any finite extension F/F .

Suppose now that G is an arbitrary finite group of odd order. As |G| is odd, a well known

theorem of Feit and Thompson (see [2]) implies that G is soluble. Hence G has an abelian

minimal normal subgroup B such that l ·B = 0 for some odd prime l (see e.g. [4, Theorem

5.24]), and there is an exact sequence

0→ B → G→ D → 0

with D soluble. We may therefore suppose by induction that LC(OFD)S satisfies Property

Sp(F/F ). The desired result now follows from Theorem 1.4. �

Remark 1.6. It follows from Proposition 1.3 that in Theorem 1.4, we may take D to be

a finite abelian group of arbitrary order (subject of course to the obvious constraint that

all other conditions of Theorem 1.4 are satisfied). This enables one to show that Property

Sp(F/F ) (for F/F as in Theorem 1.4) holds for many non-abelian groups of even order (e.g.

S3). However, if for example G is a non-abelian 2-group (e.g. H8), then because µ2 ⊆ F

for any number field F , we can no longer appeal to Neukirch’s Lifting Theorem, and our

proof of Theorem 1.4 fails. It appears very likely that new ideas are needed to establish

Property Sp(F/F ) in such cases (cf. also the remarks contained in the final paragraph of

[3, Introduction], where a similar difficulty is briefly discussed in the context of the inverse

Galois problem for finite groups). �

Proposition 1.7. Fix an ideal a of OF such that

(i) a is divisible by |G|n ·OF , where n ≥ 1 is an integer large enough for the homomorphism

Θt
a of [1, Proposition 11.6] to be defined;
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(ii) F (ζ|G|) ⊆ Fa, where Fa denotes the ray class field of F modulo a.

Let s ∈ G with s 6= e, and suppose that v is a finite place of F which is totally split in Fa/F .

(Note that Remark 1.2 implies that fv,s is defined.) Then there exists b(fv,s) ∈ LC(OFG)

with ∂0(b(fvs)) = 0 such that

λ(b(fv,s)) = αnr ·KΘt(fv,s),

where αnr ∈
∏

v Im(Ψv). (Hence, b(fv,s) is ramified only at v.)

If G is abelian, then in fact b(fv,s) ∈ Im(Ψ).

Proof. As v is totally split in Fa/F , the element fv,s maps to zero under the natural surjection

FS → Cl′a
+(Λ(OFG)) (see [1, Proposition 11.5]). Hence it follows that there exist αnr ∈∏

v Im(Ψv) and α∞ ∈ ∂1(K1(F cG)) such that

α∞ · αnr ·KΘt(fv,s) = 1

i.e.

α−1
∞ = αnr ·KΘt(fv,s). (1.4)

We now see that the class b(fv,s) ∈ K0(OFG,F
c) represented by the idele

((1)v, α∞)) ∈ J(K1(FG))×Det(F cG)

satisfies the required conditions. If in addition G is abelian, then Im(Ψ) = LC(OFG), and

so in fact b(fv,s) ∈ Im(Ψ), as asserted. �

Theorem 1.8. We retain the notation established in Proposition 1.7. Let F/F be a finite

extension with Fa ⊆ F .

Suppose that LC(OFG)S satisfies Property Sp(F/F ), and that (|Gab|, hF ) = 1. Assume

also either that F has no real places or that G admits no irreducible, symplectic characters.

Then R(OFG) is a subgroup of Cl(OFG). If c ∈ R(OFG), then there exist infinitely many

[π] ∈ H1
t (F,G) such that Fπ is a field and (Oπ) = c. The extensions Fπ/F may be chosen

to have ramification disjoint from S.

Proof. [1, Proposition 13.5] implies that

∂1(K1(F cG)) · LC(OFG) = ∂1(K1(F cG)) · LC(OFG)S.

Recall (see [1, Theorems 6.6 and 6.7]) that ∂1(K1(F cG)) · LC(OFG) is a subgroup of

K0(OFG,F
c) because it is the kernel of the homomorphism

K0(OFG,F
c)

λ−→ J(K0(OFG,F
c))→ J(K0(OFG,F

c))

λ[∂1(K1(F cG))] · Im Ψid
.
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Hence, to show that R(OFG) is a subgroup of Cl(OFG), it suffices to show that

∂0(Im(Ψ)) = ∂0(LC(OFG)S).

Suppose therefore that x ∈ LC(OFG)S. By multiplying x by sufficiently many elements

of the form b(fv,s), with v totally split in F/F and v /∈ S, if necessary (see Proposition 1.7),

we may suppose without loss of generality that x is fully ramified.

As LC(OFG)S satisfies Property Sp(F/F ), we may choose Π ∈ Hom(ΩF , G) with [Π] ∈
H1
t (F,G) such that:

(i) Π |Iv= πv,x |Iv for all finite places v /∈ SΠ(x).

(ii) Each place v ∈ SΠ(x) of F is totally split in F/F .

For each v ∈ SΠ(x), write

Π|Iv = ϕ̃v,sv

(see [1, Remark 7.11]).

Next, we consider

y := x−1 ·Ψ([Π]) ·
∏
v∈S1

b(fv,sv)−1.

We see at once that λv(y) ∈ Im(Ψnr
v ) for each finite place v of F . As (|Gab|, hF ) = 1 and

either F has no real places or G admits no irreducible symplectic characters, [1, Proposition

6.8(c)] implies that y = 0. Since ∂0(b(fv,sv)) = 0 for each v ∈ S1, it follows that

∂0(x) = ∂0(Ψ([Π])).

This implies that R(OFG) is a subgroup of Cl(OFG).

If c ∈ R(OFG), then [1, Proposition 13.5] implies that there are infinitely many x ∈
LC(OFGS such that x is fully ramified and ∂0(x) = c. The remaining assertions of the

Proposition follow at once via applying the immediately preceding argument to each such

element x. �

We can now prove [1, Theorem E].

Theorem 1.9. Let G be of odd order and suppose that (|G|, hF ) = 1, where hF denotes

the class number of F . Suppose also that F contains no non-trivial |G|-th roots of unity.

Then R(OFG) is a subgroup of Cl(OFG). If c ∈ R(OFG), then there exist infinitely many

[π] ∈ H1
t (F,G) such that Fπ is a field and (Oπ) = c. The extensions Fπ/F may be chosen

to have ramification disjoint from any finite set S of places of F .

Proof. Let F/F be any abelian extension such that Fa ⊂ F , where a is any ideal of OF

satisfying the conditions listed in Proposition 1.7. As |G| is odd, and F contains no |G|-th
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roots of unity, Theorem 1.5 implies that LC(OFG)S satisfies Property Sp(F/F ). The desired

result is now an immediate consequence of Theorem 1.8. �
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