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Abstract. Let k be a finite field, and let X be a smooth, projective curve over k with structure sheaf
O. Let G be a finite group, and write Cl (O[G]) for the reduced Grothendieck group of the category
of O[G]-vector bundles. In this paper we describe explicitly the subgroup of Cl (O[G]) which is
generated by the classes arising from G-stable invertible sheaves on tame Galois covers of X which
have Galois group G.

Introduction. Let k be a finite field of characteristic p, and let G be a finite
abelian group. Suppose that f : Y �! X is a tamely ramified Galois covering
of smooth projective curves over k, with Galois group G. (We shall refer to
such coverings as “tame G-covers” of X). In this paper we study the structure of
G-stable line bundles on such curves Y .

In order to be more precise we let Cl (OX[G]), respectively Cl (k[G]), denote
the reduced Grothendieck group of OX[G]-vector bundles, respectively of finitely
generated k[G]-modules which are cohomologically trivial for G. Suppose that A
is a G-stable line bundle on Y . Then f�A is an OX[G]-vector bundle, and it gives
rise to a class ( f�A) 2 Cl (OX[G]). We shall say that an element of Cl (OX[G])
is realizable if it may be obtained in this manner for some choice of Y and A.

We shall combine techniques of [C], [M] and [Bu] to obtain an explicit
description of the subgroupRX(G) of Cl (OX[G]) which is generated by the subset
of realizable classes. In conjunction with a Riemann-Roch theorem, these results
are sufficient to describe explicitly those elements of Cl (k[G]) which arise as the
image of the vector bundles f�A under the refined Euler-Poincaré characteristic
map introduced by Chinburg in [Ch1], [Ch2] (see also [Ch,E]). Such a result
is of interest in the context of “relative Galois module structure in a geometric
setting” as indicated by Chinburg on p. 446 of [Ch2].

It is at the outset clear that there are differences between the case we consider
here and the analogous number field case. For example, if kc is an algebraic
closure of k then any connected, finite, étale Galois cover of X�k kc has a group
which is a quotient of the topological fundamental group of a Riemann surface
of genus equal to the genus of X (cf. [SGA1], exp. X). Since any tame cover of
X of p-power degree is necessarily étale it follows that not all abelian p-groups
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can occur as Galois groups of tame covers of X. By contrast, one knows that
any finite abelian group can be realized as the Galois group of a tamely ramified
extension of number fields. Perhaps more strikingly, we shall see that, in contrast
to all “realizability results” for number fields (cf. for example [M], [By], [Mo]),
the set of elements of Cl (OX[G]) which arise from the structure sheaves of tame
Galois G-covers Y �! X do not in general form a subgroup. (It is however true
that the subset of elements realized by structure sheaves of étale G-covers of X
is a subgroup of Cl (OX[G]).)

An outline of the contents of this paper is as follows. In x1, we describe
various preliminary results concerning Cl (OX[G]). For brevity we shall only
discuss the special cases which are relevant to the arguments of this paper (that
is, either p - #G or G is cyclic of p-power order). A more systematic treatment
of Grothendieck groups of vector bundles on certain types of ringed spaces over
finite fields can be found in [A,Bu].

Let R0
X(G) denote the subset of Pic (OX[G]) which is given by the classes

arising from structure sheaves of tame G-covers of X. In x2 we give an explicit
description of the subsets R0

X(G) and RX(G) in the case of étale covers of p-
power degree (see Theorem 2.5) and that of tame covers of degree prime to p
(see Theorem 2.9). These results are then used in x3 to describe the image in
Cl (k[G]) of the refined Euler characteristic map of Chinburg.

In x4 we explain briefly how realizable classes in characteristic p also give
rise to classes in Grothendieck groups of categories of modules over rings of
characteristic 0. Such classes arise naturally in connection with certain Adams-
Riemann-Roch type theorems (cf. [Bu,Ch], [Ch,E,P,T]).

In x5, we describe how the results of [M] may be used to prove Theo-
rem 2.9 (i) and (ii). Finally, in x6, we give a proof of Theorem 2.9 (iii) and (iv),
using arguments along the lines of those contained in [Bu].

Acknowledgments. The authors are very grateful to both T. Chinburg and
H. W. Lenstra for illuminating discussions and correspondence concerning this
work.

1. Reduced Grothendieck groups of vector bundles. In this section we
record some basic properties of the Grothendieck groups we shall use to classify
the structure of vector bundles. For brevity, we shall only deal with the special
cases which are needed for the results of this paper. A more systematic treatment
of Grothendieck groups of bundles on certain types of ringed spaces over finite
fields can be found in [A,Bu].

We shall throughout writeOX for the structure sheaf of X, KX for the function
field of X, and kX for the field of constants of X. When there is no danger of
confusion these will be abbreviated to O, K, and k respectively.

We first give some general remarks on the classifying groups to be used
here. To do this we let O[G] denote the ringed space on X given by U 7!
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O(U)[G] for each open subset U of X. We let V(O[G]) denote the category of
vector bundles (that is, locally-free modules) over O[G], and we write K0(O[G])
and Cl (O[G]) for the Grothendieck group and reduced Grothendieck group of
V(O[G]) respectively.

Note that if U is any nonempty affine open subset of X then the section func-
tor Γ(U,�) is exact on V(O[G]) and so induces a homomorphism from K0(O[G]),
respectively Cl (O[G]), to the Grothendieck group K0(O(U)[G]), respectively re-
duced Grothendieck group Cl (O(U)[G]), of the category of locally-freeO(U)[G]-
modules. In this way the class in K0(O[G]), respectively Cl (O[G]), of a bundle L
uniquely determines the class in K0(O(U)[G]), respectively Cl (O(U)[G]), of the
space of sections L(U) for each nonempty affine open subset U of X. However,
not even the stable k[G]-isomorphism class of the global sections of a bundle is
in general determined by its class in K0(O[G]). Moreover, if V is a bundle, then
knowledge of the class of V(U) in K0(O(U)[G]) for each open affine subset U
of X is in general not sufficient even to determine the class of V in Cl (O[G]).

For any ringed spaceA we write detA for the determinant (that is, top exterior
power) functor on the category of A-vector bundles.

PROPOSITION 1.1. The functor detO[G] induces an isomorphism between
Cl (O[G]) and Pic (O[G]).

Proof. We let fO[G]: X(O[G]) ! X denote the affine spectrum of O[G] (cf.
[EGA1], Chapter 1, x9). For each natural number n the direct image functor fO[G],�

is exact from the category of bundles on X(O[G]) which are of constant rank n to
the category of O[G]-bundles on X which are of rank n. This functor has an (ex-
act) two-sided inverse and so induces isomorphisms Cl (X(O[G])) �

! Cl (O[G])
and Pic (X(O[G])) �

! Pic (O[G]). Taken together these isomorphisms reduce the
proof of Proposition 1.1 to showing that detOX(O[G])

induces an isomorphism be-
tween Cl (X(O[G])) and Pic (X(O[G])). Moreover, since each connected com-
ponent of X(O[G]) is a noetherian curve which possesses ample line bundles,
this follows directly form ([F,L], Chapter V, Corollary 3.10 and appendix, and
Chapter III, Theorem 1.7).

COROLLARY 1.2. If L is an invertible O[G]-module then the following condi-
tions are equivalent:

(i) L has trivial class in Cl (O[G]).

(ii) L is a free O[G]-module.

(iii) L is a stably free O[G]-module.

Proof. Since detO[G] L �= L the implication from (i) to (ii) is a consequence
of Proposition 1.1, whilst those from (ii) to (iii) and (iii) to (i) are obvious.

For the purposes of this paper it will suffice for us to have explicit descriptions
of Pic (O[G]) for the cases that G is a cyclic p-group or has order coprime to p,
and so we shall only discuss these special cases.
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To deal with the case that G is cyclic of p-power order we use the Witt vector
cohomology groups of Serre. For each positive integer i we thus let Wi denote
the sheaf of Witt vectors of length i on X as introduced in [S1]. If G has order
pN then for each positive integer i we let ri denote the least positive integer such
that pri � pN=i.

Let T be an indeterminate. For each k-algebra A the group A[G]� can be
identified with the group of units of the ring R(A) := A[T]=(TpN

). We fix such
an identification by choosing a generator g of G and letting the class t of T in
R(A) correspond to the element g�1 2 A[G]. We write E(�) for the Artin-Hasse
exponential function on Witt vectors, and recall that each element � of R(A)� can
be written uniquely as a product

� = �0 �
Y

1�i�pN
(i, p) = 1

E(�it
i),

where here �0 2 A�, and each �i 2 Wri(A) ([S2], Chapitre V, Proposition 9). By
applying this decomposition with A = O(U) for each open subset U of X one
obtains an isomorphism of sheaves of groups on X

O[G]� �
! O� �

Y
1�i�pN
(i, p) = 1

Wri .(1.1)

We let W(O[G]) denote the direct sum

Pic (O)�
M

1�i�pN
(i, p) = 1

H1(XZar,Wri).

In conjunction with the canonical identification Pic (O[G]) �= H1(XZar,O[G]�)
one obtains from (1.1) an isomorphism (dependent upon the choice of generating
element g)

�g: Pic (O[G]) �
! W(O[G]).(1.2)

We now turn to consider the case that p - #G. In order to describe realizable
classes in this case it is convenient to first reinterpret Pic (O[G]) in terms of the
class group introduced by Chapman in [C]. To do this we fix an algebraic closure
kc of k and a separable algebraic closure Kc of K which contains kc. We let Ωk

and ΩK denote the Galois groups of kc=k and Kc=K respectively. We let K0 denote
the field K
k kc which is a Galois extension of K (in Kc) of group Ωk. For each
group G we set Ĝ = Hom (G, (kc)�), and we let RG denote the ring of kc-valued
characters of G. For each group G which has order coprime to p the Chapman
class group Ch Cl (O[G]) is as an abstract group equal to HomΩK (RG, Pic (K0)),
and is such that each O[G]-bundle V gives a natural class [V] 2 Ch Cl (O[G]).
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We shall only need to describe [V] explicitly for the case of a line bundle V .
In this case the stalk Vx is freely generated over OX[G] by an element vx, say,
for each x 2 X. We write X0 for the set of closed points of X. Since each point
x 2 X0 is a specialization of the unique generic point � of X there is a natural
map from each Vx to the generic stalk V�. In this way each stalk Vx can be
regarded as an Ox[G]-lattice in the free K[G]-module V� , so that vx = �x � v�
for a unique �x 2 K[G]. For each integer s we let Ms(K0) denote the ring of
s � s matrices with coefficients in K0, and let GLs(K0) denote the unit group of
Ms(K0). We extend each representation �: G �! GLs(K0) of G to a K0-algebra
homomorphism �̃: K0[G] �! Ms(K0), and define

D(V)� :=
X

w

Valw ( det (�̃(�x(w)))w

where here w runs through the places of K0, Valw (�) denotes the valuation of K0

corresponding to w, and x(w) 2 X corresponds to the prime divisor of K which lies
beneath w. It is not difficult to see that each D(V)� belongs to Div (K0). Further-
more, writing [D(V�] for the image of D(V)� in Pic (K0), [D(V)�] is independent
of the choice of each �x(w) and is such that the map [V] 2 Hom (RG, Pic (K0))
defined by sending each character � to the class [D(V)�] actually belongs to
HomΩK (RG, Pic (K0)) (cf. [C], Lemmas 1 and 2 and Proposition 1).

PROPOSITION 1.3. (Chapman, [C]) Let G be a finite abelian group which has
order coprime to p. Then the map

�O[G]: Pic (O[G]) �
! HomΩK (RG, Pic (K0))

which is induced by sending each line bundle L to the element [L] defined above
is an isomorphism.

Proof. This result is not stated explicitly in [C] and so we shall quickly sketch
a proof. For each K-algebra A we let JK(A) denote the associated group of ideles.

For each O[G]-line bundle L we choose an element (`x)x2X0 2
Q

x2X0
K[G]�

as above. The (`x)x2X0 2 JK(K[G]), and the association L 7! (�x)x2X0 induces a
well-defined group isomorphism

Pic (O[G]) �=
JK(K[G])

(K[G])�
Q

x2X0
(Ox[G])�

.

Let B be a k-algebra. Since p - #G we may identify (B 
k kc)[G] with the
B
k kc-algebra of functions from Ĝ to B
k kc with pointwise operations; so we
have (B 
k kc)[G] = Map (Ĝ, B 
k kc) where, if � 2 (B 
k kc)[G] and � 2 Ĝ
then �(�) := �(�) for each � 2 Ĝ. The group of units (B
k kc)[G]� may thus be
identified with Hom (Z[Ĝ], (B 
k kc)�), and so by taking fixed points under the
action of ΩK one obtains an identification B[G]� �= HomΩK (Z[Ĝ], (B 
k kc)�).
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By applying this isomorphism with B equal to K and Ox for each x 2 X0 one
obtains an isomorphism

Jk(K[G])
(K[G])�

Q
x2X0

(Ox[G])�
�=

HomΩK (RG,
Q

x2X0
(K0

x)�)

HomΩK (RG, (K0)�) HomΩK (RG,
Q

x2X0
(Ox 
k kc)�)

.

There is a natural morphism from this quotient to the group HomΩK (RG, Pic (K0))
and, by using the fact that Pic (X) has Galois descent as a functor on Spec (k)et,
one can show that this morphsim is bijective (cf. [C], Theorem 1).

This “Hom-description” of Pic (O[G]) is well adapted to explicit computation
of arithmetical classes (cf. x5 and x6). It is also amendable to studying functorial
behavior under extension or restriction of scalars. In this direction it is convenient
to record the following result:

LEMMA 1.4. Let G be a finite abelian group which has order coprime to p.
The for each subgroup J of G there is a natural morphism indG

J : Pic (O[J]) !
Pic (O[G]) which is induced by the functor 
O[J]O[G]. If we also let indG

J denote
the homomorphism

HomΩK (RJ , Pic (K0)) ! HomΩK (RG, Pic (K0))

which is induced by the restriction map on characters RG ! RJ, then the following
diagram commutes

Pic (O[J])
�O[J]

���! HomΩK (RJ , Pic (K0))

indG
J

??y ??yindG
J

Pic (O[G])
�O[G]

���! HomΩK (RG, Pic (K0)).

Proof. Just as for ([F], Theorem 12).

2. Realizable bundle classes. Throughout this section G is a finite abelian
group. We write <0

X(G) for the subset of Pic (O[G]) given by the classes of
structure sheaves in all tame Galois G-covers of X, and we let RX(G) denote the
subgroup of Pic (O[G]) which is generated by the classes of arbitrary G-stable
invertible sheaves arising from tame Galois G-covers of X. Our aim in this section
is to explicitly describe the subsets <0

X(G) and <X(G).
We let P, respectively H, denote the maximal subgroup of G which has order

a power of p, respectively order coprime to p. For any tame G-cover f : Y �! X
we let f p: Y(p) ! X, respectively f 0: Y(p0) ! X, denote the subcover which
corresponds by Galois theory to the subgroup P, respectively H, of G (so that
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KY(p) = KP
Y and KY(p0) = KH

Y ). Since f is tame the morphism f 0 is necessarily
étale. We first record an easy reduction step.

LEMMA 2.1. For any G-stable invertible sheaf A on Y, the O[G]-bundle f�A
is isomorphic to a bundle f p

�A0 
O f 0�OY(p0) for some G=P-stable invertible OY(p)-
sheaf A0 on Y(p). Moreover, if P is the direct product of cyclic groups Pi, i =
1, 2, : : : , s, and f 0i : Y(p0)i ! X is the subcover of f 0 corresponding to the subgroupQ

1�j�s, j 6=i Pj of P, then theO[P]-bundle f 0�OY(p0) is isomorphic to the tensor product
f 01,�OY(p0)1 
O f 02,�OY(p0)2 
O � � � 
O f 0s,�OY(p0)s .

Proof. Let U be any affine open subset of X. The induced morphism Y !
Y(p) is étale and hence the G-stable ideal f�A(U) of f�OY(U) is of the form
A0(U)f�OY(U) for some G=P-stable ideal A0(U) of f p

�OY(p)(U). In addition, since
KY(p) and KY(p0) are linearly disjoint and of coprime ramification over K there is a
natural isomorphism f�OY(U) �= f p

�OY( p)(U)
O(U) f 0�OY(p0)(U) (cf. the argument
of ([L2], xII.3, Proposition 17)), and so one has

f�A(U) �= A0(U)
O(U) f 0�OY(p0)(U).(2.1)

It is clear that the O[G=P]-sheaf U 7! A0(U) is equal to f p
�A0 for some G=P-

stable invertible OY(p)-sheaf A0 and that the isomorphisms (2.1) glue to give an
isomorphism f�A �= f p

�A0 
O f 0�OY(p0).
A similar argument will prove the second assertion.

This result implies that when one analyzes the contribution from the étale
cover f 0: Y(p0) ! X to the realizable classes in Cl (O[G]) it is sufficient to
consider only the structure sheaf OY(p0).

We next note that the module structure of the space of global sections of the
structure sheaf is always easy to determine.

PROPOSITION 2.2. Let f : Y ! X be a Galois G-cover of X. If G0 is the subgroup
of G which corresponds by Galois theory to the maximal constant field extension of
K in KY then OY(Y) is k[G]-isomorphic to k[G=G0]. In particular, if f is tame then
f�OY has trivial class in Cl (O[G]) if and only if KY is a constant field extension
of K.

Proof. The maximal constant field extension of K in KY is KkY with kY equal
to the constant field OY(Y) of Y . The first assertion thus follows by the normal
basis theorem. If now f arises by base changing X through a (constant) field
extension k0 of k then f�OY(U) = O(U)k0 for each affine open subset U of X.
One checks easily that any explicit isomorphism k0 �= k[G] extends to give an
isomorphism of O[G]-modules between f�OY and O[G]. Finally, we recall that
if f�OY has trivial class in Cl (O[G]) then it is a free O[G]-module of rank 1 (cf.
Corollary 1.2). By taking sections over X it follows that kY is isomorphic to k[G]
and hence that KY must be a constant field extension of K.
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2.1. Étale covers of p-power degree. In this subsection we shall describe
the subset of Pic (O[P]) which arises from the classes of structure sheaves in
étale Galois P-covers of X.

From Proposition 2.2 the module structure of the space of global sections
of the structure sheaf of an étale P-cover is explicitly known. We note now that
the P-structure of the restriction of the structure sheaf to each proper affine open
subset of X is also easily described.

LEMMA 2.3. For each nonempty affine open subset U of X the restriction of
f 0�OY(p0) to U is a free rank one O jU [P]-module.

Proof. Here we set O0 = f 0�OY(p0). By Noether’s theorem (cf. the proof of
[F], Chapter I, Theorem 3) one know that O0 is an invertible O[P]-module, and
that the “trace element”

P
g2P g induces a surjective morphism of O[P]-modules

O0 ! O. For any nonempty affine open subset U of X we write I(U, P) for
the augmentation ideal of O(U)[P]. Since O(U)[P] is I(U, P)-adically complete
one has a natural isomorphism K0(O(U)[P]) �

! K0(O(U)) (cf. [Ba], p. 449,
Proposition 1.3(0)) and so O0(U) = O(U)[P]y for any element y 2 O0(U) for
which

P
g2P gy 2 O(U)�.

Rather than referring to [Ba] to obtain such a description of O0(U) one can
also proceed more directly in this case as follows: for each x 2 U there exists
yx 2 O0

x which freely generates the stalk O0
x over Ox[P]. Moreover, there exists

y 2 O0(U) such that
P

g2P gy 2 O(U)�. For each x 2 U we choose �x 2 Ox[P]
such that y = �xyx. With �: K[P] ! K denoting the augmentation map one hasP

g2P gy = �(�x)
P

g2P gyx so that in particular �(�x) 2 O�
x . But Ox[P] is a local

ring with maximal ideal given by those elements whose image under � lies in the
maximal ideal of Ox. Thus one has �x 2 Ox[P]� so that Ox[P]y = Ox[P]�xyx =
Ox[P]yx = O0

x for each x 2 U. Since clearly O(U0)[P]y � O0(U0) for each affine
open subset U0 � U it follows thatO0(U0) is a free O(U0)[P]-module with basis y.
Any such element y thus induces an isomorphism of O jU [P]-modules between
O0 jU and O jU [P].

To proceed further we now specialize to the case that P is a cyclic group
of order pN (as indeed we may by Lemma 2.1). We first recall that in this case
Artin-Schreier theory gives a description of the group �1(X, P) of isomorphism
classes of P-torsors over X (or equivalently, of étale Galois P-covers of X) in
terms of Witt vector cohomology groups.

If A is any abelian group with an endomorphism � then we shall write
A�=1 and A��1 for the subgroup fa 2 A: �a = ag and the quotient of A by
f�a� a: a 2 Ag respectively.

PROPOSITION 2.4. (Serre, [S1], Proposition 13; [Mi], Chapter 3, Proposi-
tion 4.12) Choose a generator g of P, and so identify P with Z=pN . Then there
are natural homomorphisms �g and �g (dependent upon the choice of g) and a
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short exact sequence of abelian groups

0 ! WN(k)F�1
�g
�! �1(X, P)

�g
�! H1(XZar,WN)F=1 ! 0.

(Here F is the map induced by the Frobenius endomorphism t 7! tp of k.)

In this case one knows also that the map

 P: �1(X, P) ! Pic (O[P])

which is induced by sending a P-torsor f : Y ! X to the class of the bundle f�OY

is a homomorphism (cf. [W], Theorem 5). The kernel of  P can be described in
terms of symmetric Hochschild cohomology (cf. ibid., p. 182) but it is for our
purposes more convenient to relate this kernel directly to the short exact sequence
of Proposition 2.4. In the statement of the next result we shall use the notation
of Proposition 2.4.

THEOREM 2.5. The kernel of  P coincides with the image of �g. In particular,
the set <0

X(P) is a subgroup of Pic (O[P]) which is isomorphic to H1(XZar,WN)F=1.

Noting that <0
X(P) = Image ( P) it is at once clear that if ker ( P) = Image (�g)

then the second assertion of Theorem 2.5 follows from Proposition 2.4. To prove
Theorem 2.5 it therefore suffices to show that ker ( P) = Image (�g), and to prove
this equality we shall simply describe both sides explicitly.

LEMMA 2.6. Let f : Y ! X be an étale Galois P-cover of X. Then  P(Y) = 0
if and only if there exists a subgroup Q of P such that the generic fibre of Y is the
Galois P-algebra

Q
g2P=Q KQ where here KQ is the constant field extension of K of

group Q (with respect to some identification of Gal (KQ=K) with Q).

Proof. The generic fibre Y� of Y is a Galois P-algebra over K so that there
is a subgroup Q of P, and an unramified Galois field extension L of K of group
(isomorphic to) Q, such that Y� �=

Q
g2P=Q L. If now L corresponds to the étale

Q-cover f 0: Z ! X then f�OY
�=
Q

g2P=Q f 0�OZ and so, upon taking sections over

X, one obtains a k[P]-module isomorphism between kY and indP
Q kZ . Now, as a

consequence of Proposition 2.2, one knows that

 P(Y) = 0 , kY
�= k[P] , kZ

�= k[Q]

and this last isomorphism is valid if and only if Z is the Q-cover of X.

We must now be more precise concerning the map �g used in Proposi-
tion 2.4. We let X0, X1, : : : , XN�1 be N independent indeterminates. For each
vector � 2 WN(k) we let (X0, X1, : : : , XN�1;�) denote the ideal of the polyno-
mial ring k[X0, X1, : : : , XN�1] which is generated by those relations between the
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indeterminates which are equivalent to the equality

F(X0, X1, : : : , XN�1)� (X0, X1, : : : , XN�1) = �(2.2)

in WN(k[X0, X1, : : : , XN�1]).

We define an action of P on the k-algebra

k(�) := k[X0, X1, : : : , XN�1]=(X0, X1, : : : , XN�1;�)

by specifying that the action of the chosen generator g should be that induced by
the automorphism of WN(k[X0, X1, : : : , XN�1]) given by

(X0, X1, : : : , XN�1) 7! (X0, X1, : : : , XN�1) + 1(2.3)

in WN(k[X0, X1, : : : , XN�1]).

With respect to this action the natural morphism

Xg(�) := Spec (k(�))�Spec (k) X ! X

is a P-torsor over X, and the homomorphism �g is induced by setting

�g(�) := (Xg(�)) 2 �1(X, P).

Before starting the next result we recall that the group WN(k)F�1 is cyclic of
order pN . For each integer i with 0 � i � N we let P(i) denote the subgroup of
P of order pN�i.

LEMMA 2.7. Let � 2 WN(k) be a lift of a generator of the group WN(k)F�1, and
fix an integer i with 0 � i � N. Then as j varies over the set of integers which are
coprime to p the class �g(pij�) varies over the set of elements of �1(X, P) which
arise from the P-torsor associated to the constant P(i)-cover Xi of X with respect to
the different possible identifications of Gal (Xi=X) with P(i).

Proof. We write V for the “Verschiebung” operator on Witt vectors. Thus, for
any vector a = (a0, a1, : : : , aN�1) 2 WN(k) one has Va = (0, a0, a1, : : : , aN�2) 2
WN(k). Using the identity V � F = F � V = p (cf. [S1], Chapter II, x6) one
can show that since � is a lift of a generator of WN(k)F�1 there exists a vector
� = (b0, b1, : : : , bN�i�1) 2 WN�i(k) with b0 2 kn(F � 1)k and which is such
that pi� = Vi� 2 WN(k). We recall that since b0 2 kn(F � 1)k, the algebra k(�)
identifies with the unique field extension ki of k which has group P(i) (cf. [L1],
Chapter 8, Exercises 42–47).

We now consider the algebra k(pi�). If i = 0 then � = � so that k(�) = k(�)
trivially. If i � 1 then from (2.2) (with � replaced by pi�) we deduce that

F(X0, X1, : : : , Xi�1)� (X0, X1, : : : , Xi�1) = 0 in Wi(k[X0, X1, : : : , Xi�1]).
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It follows that the image of the vector (X0, X1, : : : , Xi�1) in Wi(k(pi�)) in fact
lies in Wi(Fp) � Wi(k(pi�)). For each 
 2 Wi(Fp) we let k(pi�)
 denote the
k-algebra obtained from k(pi�) by setting (X0, X1, : : : , Xi�1) = 
; then there is
a direct product decomposition k(pi�) =

Q

2Wi(Fp ) k(pi�)
 . With respect to the

given action (2.3) the action of gs induces an isomorphism of k-algebras between
k(pi�)
 and k(pi�)
+s. It follows that each k-algebra k(pi�)
 admits an action of

P(i) = hgpi
i, and is in fact isomorphic to k(pi�)0 as a Galois k[P(i)]-algebra. Now

the relations defining k(pi�)0 are equivalent to

F(0, : : : , 0, Xi, Xi+1, : : : , XN�1)� (0, : : : , 0, Xi, Xi+1, : : : , XN�1)

= pi� in WN(k[X0, X1, : : : , XN�1]),

that is, to

Vi(F(Xi, Xi+1, : : : , XN�1)� (Xi, Xi+1, : : : , XN�1)� �)

= 0 in WN(k[X0, X1, : : : , XN�1]),

and since Vi is injective this is equivalent to

F(Xi, Xi+1, : : : , XN�1)� (Xi, Xi+1, : : : , XN�1) = � in WN�i(k[Xi, : : : , XN�1]).

Each Galois k[P(i)]-algebra k(pi�)
 is therefore isomorphic to k(�).
At this stage we have shown that for each integer i with 0 � i � N the

algebra k(pi�) is isomorphic to the Galois P-algebra over k which has splitting
field the unique extension ki of k of group P(i) (with respect to some identification
of Gal (ki=k) with P(i)). To conclude the proof of Lemma 2.7 we now merely note
that if j is coprime to p then the map

(X0, X1, : : : , XN�1) 7! j(X0, X1, : : :XN1) in WN(k[X0, X1, : : : , XN�1])

induces an isomorphism of Galois k[P]-algebras from k(pi�) to the algebra which
as a k-algebra is equal to k(pij�), but has a P-action obtained by composing the
action (2.3) with the automorphism g 7! gj of P.

The equality Image (�g) = ker ( P) is an immediate consequence of Lem-
mas 2.6 and 2.7, and so we have now completed the proof of Theorem 2.5.

Taken together with the isomorphism (1.2) (with G = P) the results of Propo-
sition 2.4 and Theorem 2.5 give a commutative diagram in which both the row
and column involving �1(X, P) are exact (and in which the map �g is defined by
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the requirement that the diagram should commute):

Pic (O[P])
�

���! H1(XZar,O[P]�)
�g

���! W(O[P])

 P

x?? x??�g

0 ���! WN(k)F�1

�g
���! �1(X, P)

�g
���! H1(XZar,WN)F=1 ���! 0.

�g

x??
WN(k)F�1x??

0

Since �g is an isomorphism it is clear from this diagram that <0
X(P) (= Image ( P))

is in general much smaller than Pic (O[P]). By using the description of the map
�g given in ([Mi], p. 127) (after identifying P with Z=pN via the chosen generator
g) it is in fact not too difficult to describe the map �g explicitly. However, it would
seem to be more difficult to describe the composite map �g��g in terms of natural
operations on Witt vectors. (Partial results in this direction are discussed in [A,
Bu]).

2.2. Tame covers of degree prime to p. We now turn to consider the
Galois H-cover f p: Y(p) ! X. In this section we shall state realizability results
analogous to those of [M] and [Bu]. To do this we shall need some further
notation (and we follow that of [M]).

Recalling that Ĥ := Hom (H, (kc)�), we define a homomorphism det: RH ! Ĥ
by setting

det

0
@X
�2Ĥ

a��

1
A =

Y
�2Ĥ

�a� (a� 2 Z).

With AĤ denoting the kernel of det there is a natural restriction map

RagH: HomΩK (RH , Pic (K0)) ! HomΩK (AĤ, Pic (K0)).

We let H(�1) denote the group H which is endowed with a structure as ΩK-
module via the inverse cyclotomic character. We choose a root of unity � in kc of
order equal to the exponent of H. Following McCulloh [M] we shall in x5 define
a natural ΩK-equivariant “Stickelberger type” map ΘH,�: AĤ ! Z[H(�1)], the
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transpose of which gives rise to a map

Θt
H,�: HomΩK (Z[H(�1)], Pic (K0)) ! HomΩK (AĤ, Pic (K0)).

For each ΩK-orbit T of H(�1) we let KT denote the (constant) field extension
of K which corresponds by Galois theory to the pointwise stabilizer of T in ΩK .
We fix an isomorphism

HomΩK (Z[H(�1)], Pic (K0)) �=
M

T2ΩKnH(�1)

Pic (KT).

(The precise choice of this isomorphism doesn’t matter in what follows.) We
define a “prime element” of

L
T2ΩKnH(�1) Pic (KT) to be any element which is

nonzero in precisely one component, that corresponding to T0 2 ΩKnH(�1) say,
and in this component is the class of a prime divisor of KT0 which is of relative
degree one in KT0=K. We let FX,H denote the subset of

L
T2ΩKnH(�1) Pic (KT)

which consists of arbitrary finite sums of prime elements which lie over distinct
prime divisors of K.

If Y is a smooth projective curve with constant field l then for each point
y 2 Y0 we let ly denote the residue field of the stalk OY ,y and we let dy denote the
positive integer defined by #ly = #ldy . The degree of a divisor D =

P
y2Y0

nyy 2
Div (L) is defined to be degL (D) :=

P
y2Y0

nydy, and we call #ldegL (D) the “norm”
of the divisor D.

For any strictly positive integer N and function field L we let DivN (L) denote
the subgroup of Div (L) given by those divisors whose norm is congruent to
1 modulo N, and we write PicN (L) for the image of DivN (L) in Pic (L). We
let PicN (O[H]) denote the subgroup of Pic (O[H]) consisting of those elements
whose image under the isomorphism �O[H] (cf. Proposition 1.3) can be represented
by homomorphisms which are valued entirely above PicN (K). We let C(H) denote
the set of cyclic subgroups of H.

In addition to the above notation we let <0
X,0(H), respectively <0

X(H), denote
the subset of Pic (O[H]) given by the classes of structure sheaves in all étale,
respectively tame, Galois H-covers of X. We write <X,0(H), respectively <X(H),
for the subgroup of Pic (O[H]) which is generated by the classes of arbitrary H-
stable invertible sheaves arising from étale, respectively tame, Galois H-covers
of X. In x5 and x6 we shall prove the following theorem.

THEOREM 2.8.

(i) <0
X,0(H) = kernel(RagH).

(ii) <0
X(H) = Rag�1

H (Θt
H,�(FX,H)).

(iii) <X,0(H) = <0
X,0(H) + indH

f1g Pic (O).

(iv) <X(H) = h<0
X(H)i +

P
C2C(H) indH

C Pic#C (O[C]).
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Remarks 2.10. (i) We shall see in x5 that the subgroup Θt
H,�(FX,H) which

occurs in statement (ii) is independent of the choice of �.
(ii) The above description of <0

X(H) is a geometric analogue of McCulloh’s
description of the realizable classes arising from relative abelian extensions of
number fields (cf. [M]). The geometric interest of such analogues is pointed out
by Chinburg in ([Ch2], Introduction). The description of <X(H) is an analogue
of the main result of [Bu].

(iii) It follows from this description that <0
X,0(H) is always a subgroup (this

can also be seen via the approach of x2.1), whilst <0
X(H) is in general not a

subgroup (cf. Remark 5.7).

3. Realizable Euler characteristic classes. Let now X be any scheme
which is proper and of finite type over a Noetherian ring A. In [Ch1] Chin-
burg has shown how to attach to each OX[G]-vector bundle V a natural Euler
characteristic class �RΓG(V) in the Grothendieck group CT(A[G]) of the category
of finite generated A[G]-modules which are cohomologically trivial for G (see
also [Ch2], [Ch,E]). In particular, if the order of G is coprime to the residue char-
acteristic of each P 2 Spec (A) then �RΓG(V) coincides with the usual Lefschetz
trace LX,G(V) :=

P
i�0 (�1)i (Hi(X,V)) 2 CT(A[G]) = G0(A[G]). More generally,

use of the Cech hypercohomology complex of V (with respect to any open affine
cover of X) gives one an algorithm for computing �RΓG(V). For example, if X
is a smooth projective curve over a finite field A = k, and L is a G-stable Weil
divisor on a tame Galois G-cover f : Y ! X then Chinburg has in this way given
the following more explicit description of �RΓG( f�L) (cf. [Ch1], Theorem 2.18).

Choose any nonempty affine open subset U of X. Then there exists an element
� 2 KY such that O(U)[G]� has finite index in f�L(U), and for each x 2 XnU
the stalk of f�L at x has finite index in Ox[G]�. Writing gY for the genus of Y
then for each such choice of element � one has an equality

�RΓG( f�L) = (1� gY)(k[G]) +
�

f�L(U)
O(U)[G]�

�
�

X
x2XnU

�
Ox[G]�

f�Lx

�
,(3.1)

in CT(k[G]) = K0(k[G]).
In general, the map V 7! �RΓG(V) induces a homomorphism �RΓG:

K0(O[G]) ! CT(A[G]) (cf. [Ch2], Remark 2.7). Moreover, from ([Ch2], Re-
mark 2.8) one knows that �RΓG(O[G]) = �(O)(A[G]) (where �(O) denotes the
Euler characteristic of O) and hence one has a stable Euler characteristic ho-
momorphism �̃RΓG: Cl (O[G]) ! CT(A[G])=(A[G]). (Similarly, if the order of
G is coprime to the residue characteristic of each } 2 Spec (A), then we write
L̃X,G: Cl (O[G]) ! CT(A[G])=(A[G]) for the stable Lefschetz trace homomor-
phism.) In this section we use the results of x2 to describe explicitly the subgroup
�̃RΓG(<X(G)) � Cl (k[G]) of realizable Euler characteristic classes associated to
a smooth projective curve X which has finite constant field k.
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Identifying H with the quotient G=P there is an isomorphism �G
H: Cl(k[H]) !

Cl (k[G]) which is induced by inflating modules from H to G and then taking
projective envelopes over G (cf. [S3], III, x1.4). On the other hand, given any
étale Galois P-cover e: W ! X of X one can construct a natural homomorphism
�e:<X(H) ! <X(G) in the following way. If f : Y ! X is any Galois H-cover
of X, L is a H-stable invertible OY-sheaf, and h: Z ! X is the tame G-cover
of X which has function field equal to the compositum of KW and KY , then
Lemma 2.1 implies that f�L 
O e�OW is O[G]-isomorphic to h�M for some
G-stable invertible OZ-sheaf M. The assignment ( f�L) 7! ( f�L 
O e�OW) thus
gives rise to a well-defined homomorphism �e from <X(H) to <X(G).

For any commutative ring A we let SA denote the set of isomorphism classes
of finitely generated simple A-modules.

LEMMA 3.1. For each étale Galois P-cover e: W ! X of X the following
diagram commutes:

<X(G)
�̃RΓG
���! Cl (k[G])

�e

x?? x??'G
H

<X(H)
L̄X,H
���! Cl (k[H]).

Proof. Let f : Y ! X be a Galois H-cover of X, and let h: Z ! X be the
corresponding tame Galois G-cover of X, described above. We let O1 and O2

denote the structure sheaves of Y and W respectively. For each H-stable invertible
O1-sheaf L1 we wish to prove the following equality in Cl (k[G]):

�̃RΓG( f�L1 
O e�O2) = 'G
H � L̃X,H( f�L1).(3.2)

To do this we choose a closed point x0 2 X and let U denote the affine open
set Xnfx0g. By Lemma 2.2 we may choose �2 2 e�O2(U) such that e�O2(U) =
O(U)[P]�2. Note in particular that

P
g2P g�2 2 O(U)� = k�. Choosing an element

�2 2 K which has a pole of sufficiently high order at x0 and has no poles on U
we can ensure that �2�2 2 e�O2(U) and e�O2,x0 � Ox0[P]�2�2. We also choose
a free generator �02 of the stalk e�O2,x0 over Ox0[P], and let 
2 2 Oxo[P] be
defined by �02 = �2�2�2. Note that since both

P
g2P g�2 and

P
g2P g�02 are units

at x0 the augmentation �(�2) of �2 has the same x0-valuation as does ��1
2 .

Choosing now an element �1 2 f�L1(U) such that both O(U)[H]�1 has finite
index in f�L1(U) and f�L1,x0 has finite index in Ox0[H]�1, we shall compute the
Euler characteristic �̃RΓG( f�L1 
O e�O2) via the formula (3.1) with respect to
the element �1
K �2�2 2 K�

Z . In this way, one checks that �̃RΓG( f�L1
O e�O2)



1136 A. AGBOOLA AND D. BURNS

is equal to

 
f�L1(U)
O(U) e�O2(U)

O(U)[H]�1 
O(U) O(U)[P]�2�2

!
�

 
Ox0[H]�1 
Ox0

Ox0[P]�2�2

f�L1,x0 
Ox0
e�O2,x0

!
(3.3)

=

 
f�L1(U)
O(U) O(U)[P]�2

O(U)[H]�1�2 
O(U) O(U)[P]�2

!
�

 
Ox0[H]�1 
Ox0

Ox0[P]�2�2

f�L1,x0 
Ox0
Ox0[P]�2�2�2

!

=

 
f�L1(U)
O(U) O(U)[P]

O(U)[H]�1�2 
O(U) O(U)[P]

!
�

 
Ox0[H]�1 
Ox0

Ox0[P]

f�L1,x0 
Ox0
Ox0[P]�2

!

=
�

f�L1(U)
O(U)[H]�1�2


k k[P]
�
�

 
Ox0 [H]�1 
Ox0

Ox0[P]

f�L1,x0 
Ox0
Ox0[P]�2

!
.

Recalling that L̃X,H(�) = �̃RΓH(�) we can again apply (3.1) (this time with G
replaced by H, and the element � taken to be �2�1) in order to compute the
right-hand side of (3.2). In this way one sees that the equality (3.2) follows from
(3.3) if one has in Cl (k[G]) an equality

 
Ox0[H]�1 
Ox0

Ox0[P]

f�L1,x0 
Ox0
Ox0[P]�2

!
=
�
Ox0[H]�1�2

f�L1,x0


k k[P]
�

.(3.4)

Note that (3.4) would in turn follow if we could show that the left-hand side
class of (3.4) considered as a function of �2 2 Ox0[P] depended only upon its
augmentation �(�2). Indeed, if this is the case then we may in (3.4) replace �2

by ��1
2 and in this case the equality of (3.4) is straightforward to verify.

We now write O for Ox0 , and Λ, respectively Λ1, for the group ring O[G], re-
spectivelyO[P]. For each element � 2 O[H]� we consider the function c�: Λ�

1 !
Cl (k[G]) obtained by defining c�(�1) for each �1 2 Λ�

1 to be the class of the
k[G]-module C�(�1) := (Λ=Λ(� 
 �1)). Our proof of (3.2) is completed by the
next result.

SUB-LEMMA 3.2. For each choice of� 2 O[H]� the function c� factors through
the augmentation homomorphism �: Λ�

1 ! O�.

Proof. For each M 2 Sk[G] we let PM denote its projective envelope. For
each such M we define an integer c�,M(�1) by the isomorphism C�(�1) �=
�M2Sk[G]

c�,M(�1)PM. The key point in proving this sub-lemma is to compute each
of the integers c�,M(�1) by taking into account the fact that each M is the inflation
from H = G=P to G of a simple k[H]-module M0. To do this we let Jac (k[G]) de-
note the Jacobson radical of k[G]. The quotient k[G]= Jac (k[G]) identifies with the
semisimple ring �M2Sk[G]

kM where here kM is the finite field extension of k of car-
dinality # HomG (M, M). The module M corresponds to a character �M: G ! k�M
the restriction to P of which is trivial. Note that C�(�1)= Jac (k[G])C�(�1) �=
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�M2Sk[G]
c�,M(�1)M. But, setting Λ̃ := Λ= Jac (k[G])Λ, one has

C�(�1)= Jac (kG)C�(�1) �= Λ̃=Λ̃(�
�1) �=
M

M2Sk[G]

(O
k kM=�M(�
�1)O
k kM),

and so since �M(�
 �1) = �M0(�)�(�1) the result is clear.

From Lemmas 2.1 and 3.1 one has

�̃RΓG(<X(G)) = �̃RΓG

 X
e: W!X

�e<X(H)

!
= 'G

HL̃X,H(<X(H))

(with the sum taken over all étale P-covers e: W ! X of X) and so we are reduced
to considering realizability issues for Galois H-covers of X. In this semisimple
setting we must give a Hom-description of the reduced Lefschetz trace. This is
possible as a consequence of the Riemann-Roch theorem for line bundles on X.
To be more specific we need a little more notation.

We fix an algebraic closure Q c
p of Q p . For any finite field k of characteristic

p we let W(k) denote the Witt ring of k (that is, the unique absolutely unramified
characteristic 0 local ring with residue field k (so that W(k) � Q c

p)), and we
write K(k) for the field of fractions of W(k). For any finite group I we set
Iy = Hom (I, Q c�

p ), and we let RI,p denote the ring of Q c
p-valued characters of I.

For any field extension F of K(k) in Q c
p we set ΩF = Gal (Q c

p=F). For any choice
of uniformizing parameter �F of F there is a natural injection

Dk,F,I,�F : K0(K[I]) ,! HomΩF (RI,p, Q c
p)(3.5)

which is defined in the following way: if P̄ is a projective k[I]-module then there is
a projective W(k)[I]-module P which is unique up to isomorphism and is such that
P
W(k)k �= P̄. If P
W(k)Q

c
p has character

P
�2Iy m�� then Dk,F,I,�F (�) = ��m�

F . In
the case k = Fp and F = Q p the injection DFp ,Qp ,I,p was introduced by Chinburg in
order to relate de Rham structure invariants to invariants of functional equations
of L-functions (cf. [Ch2], x4). Letting H̃omΩF (RI,p, Q c�

p ) denote the quotient of
HomΩF (RI,p, Q c�

p ) by the subgroup generated by Dk,F,I,�F (k[I]) there is induced
a natural injection

D̃k,F,I,�F : Cl (k[I]) ,! H̃omΩF (RI,p, Q c�
p ).(3.6)

We first note that the homomorphism 'G
H is easily described in terms of these

Hom-descriptions.
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LEMMA 3.3. For each choice of F and �F as above the following square com-
mutes:

Cl (k[H])
D̃k,F,H,�F
�����! H̃omΩF (RH,p, Q c�

p )

'G
H

??y resG
H

??y
Cl (k[G])

D̃k,F,G,�F
�����! H̃omΩF (RG,p, Q c�

p ).

Proof. The homomorphism 'G
H sends the class of a projective k[H]-module

M̄ to the class of the projective k[G]-module k[P]
k M̄. In addition, if M is any
projective W(k)[H]-module satisfying M
W(k)k �= M̄ then MG := W(k)[P]
W(k)M
is a projective W(k)[G]-module satisfying MG
W(k) k �= k[P]
k M̄. We now write
h�,�iG and h�,�iH for the standard pairings on the character rings RG,p and
RH,p respectively. Applying Frobenius reciprocity we obtain for each character
 2 RG,p the equalities

h�MG , iG = hindG
H �M, iG = h�M, resG

H  iH ,

and this in turn implies the commutativity of the above square.

We shall now give a Hom-description of the Lefschetz trace L̃X,H . To do this
we first note that, since p - #H, the groups Iy and Î ( = Hom (I, (kc)�)) correspond
bijectively. For each element � 2 Iy we write �̂ for the corresponding element
of Î, and we let K(�) denote the field extension of K obtained by adjoining the
values of �̂. We define a homomorphism

DX,H: HomΩK (RH , Pic (K0)) ! H̃omΩK(k)
(RH,p, Q c�

p )(3.7)

by setting DX,H(h)(�) = �
degK(�) h(�̃)
K(k) for each h 2 HomΩK (RH, Pic (K0)) and

� 2 Iy.

PROPOSITION 3.4. Set F = K(k). Then the following square commutes:

Pic (O[H])
L̃X,H
���! Cl (k[H])

�O[H]

??y D̃k,F,H,�F

??y
HomΩK (RH , Pic (K0))

DX,H
���! H̃omΩF (RH,p, Q c�

p ).

Proof. We write �(L) for the Euler characteristic of a locally-free O-sheaf L,
and for each k[H]-module M we write M� for the dual module Homk (M, k). For
each invertible O[H]-module L and each simple module V 2 Sk[H] we let LV
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denote the O-sheaf H0(H,L 
k V). This sheaf is locally-free of rank dimk (V),
and from the argument of ([E,L], Lemma 2.2) one has

LX,H(L) =
X

V2Sk[H]

(�(LV�)= dimk (V))[V] 2 G0(k[H]).

For each character � 2 Iy it follows that

D̃k,F,H,�F L̃X,H(L)(�) = D̃k,G,H,�F L̃X,H(L 
O[H] F
�1)(�)(3.8)

= �
(�(FV� )��(LV� ))= dimk (V)
F ,

where here F is any free rank one O[H]-module and �̂ occurs in the character
of the simple k[H]-module V . We now fix a character � 2 Iy, and let V be
the corresponding simple k[H]-module (as in (3.8)). We let k0 denote the field
extension of k which is generated by the values of �̂. Thus we have Kk0 = K(�).
We set X0 = X �k k0, O0 = OX0 , and for any O-sheaf M we let M0 denote the
corresponding O0-sheaf M
k k0 obtained by base-extension.

For any locally-free O-sheaf M the Riemann-Roch theorem (cf. [H], Chap-
ter 4, x1 or [We], Chapter VI) gives an equality

�(MV�) = degK (MV�) + rankO (MV�(1� gX))(3.9)

where here gX is the genus of X, and hence one has

�(FV�)� �(LV�) = degK (FV�)� degK (LV�)(3.10)

= degK(�) (F 0
V�)� degK(�) (L0V�).

For each character � 2 Î which occurs in V we let V� denote the correspond-
ing representation of H over k0, and we let e� denote the primitive idempotent
(#H)�1P

h2H �(h�1)h of k0[H]. We may suppose that F and L have the same
generic stalk. We let `0 2 F(X) be a generator of F over O[H], and for each
x 2 X0 we let `x be generator of the stalk Lx over Ox[H]. Since `0 is a generator
of the generic stalk of L over K[H] there exists for each x 2 X0 a unique element
�x 2 K[H]� such that `x = �x`0. Computing the stalk at a point x0 2 X00 which
lies over x 2 X0 one has

L0V�,x0 =
M
�jV

H0(H, (L0 
k V��)x0)

=
M
�jV

H0(H, (Lx 
k k0)x0 
k0 V��)
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=
M
�jV

e�(Ox[H]
k k0)x0`x

=
M
�jV

�(�x)e�(`0)O0
x0 ,

and similarly

F 0
V�,x0 =

M
�jV

e�(`0)O0
x0 .(3.11)

From (3.10–11) it follows that

�(FV�)� �(LV�) = �
X

x02X00

X
�jV

degK(�) Valx0 (�(�x))x0

= �
X
�jV

degK(�)

0
@X

x02X00

Valx0 (�(�x))x0

1
A

= � dimk (V) degK(�) (�O[H](L(�̂)),

with the last equality following form the ΩK-equivariance of degK(�), the explicit

description of �O[H] on the class of L (cf. Proposition 1.3), and the fact that �̂
is a constituent of V . Putting together this expression with that of (3.8) and the
definition (3.7) of the homomorphism DX,H one can now check directly that the
square in Proposition 3.4 commutes.

Remark 3.5. Note that the map DX,H of (3.7) factors through the homomor-
phism

RagH: HomΩK (RH , Pic (K0)) ! HomΩK (AĤ, Pic (K0)),

as used in Theorem 2.9. Indeed, since HomΩk (�, Pic (K0)) is contravariant left
exact one has a natural identification of ker ( RagH) with HomΩK (Ĥ, Pic (K0)).
The claim now follows since HomΩK (Ĥ, Pic (K0)) = HomΩK (Ĥ, Pic (K0)tors) =
HomΩK (Ĥ, Pic0 (K0)).

The degrees of those divisor classes which occur in the descriptions of The-
orem 2.9 are straightforward to compute and so via Lemma 3.1, Lemma 3.3 and
Proposition 3.4 this result gives an explicit description of the realizable subsets
�̃RΓG(<0

X(g)), �̃RΓG(<X(G)) etc., of Cl (k[G]). We shall for brevity leave the
derivation of such explicit results to the reader. However, we note in passing
that it may well be interesting to compare the results obtainable in this way
with previous results of Ellingsrud and Lonsted [E,L] and Nakajama [N1], [N2]
and [N3].



GALOIS STRUCTURE OF EQUIVARIANT LINE BUNDLES 1141

Let us now fix a finite field k of characteristic p and a finite abelian group G.
It seems natural to define the “realizable subsets” <0

k(G) and <k(G) of Cl (k[G])
by setting

<0
k(G) :=

X
X

reskX[G]
k[G] �̃RΓG(<0

X(G)),

and

<k(G) :=
X

X

reskX [G]
k[G] �̃RΓG(<X(G)),

where here the sums are taken over all smooth projective curves X such that
kX � k, and reskx[G]

k[G] : Cl (kx[G]) ! Cl (k[G]) is the homomorphism induced by
restriction of scalars. (This point of view is for example naturally suggested by
the results in [Bu, Ch] and [Bu].) To give explicit “Hom-descriptions” of <0

k(G)
and <k(G) by using the above results it is clearly sufficient for us to interpret
restriction of scalars in terms of Hom-descriptions.

LEMMA 3.6. Let k0 be a subfield of k. Let F be a subfield of Q c
p which contains

W(k), and let F0 be any subfield of F which contains W(k0). We let

NF=F0 : H̃omΩF (RH,p, Q c�
p ) ! H̃omΩF0

(RH,p, Q c�
p )

be the homomorphism defined by NF=F0 h̃(�) :=
Q
�2Ω0F=ΩF

h̃(��)�
�1

. If F=F0

is unramified, respectively totally ramified, and �F0 = �F, respectively �F0 =
NormF=F0�F, then the following square commutes:

Cl (k[H])
D̃k,F,H,�F
�����! H̃omΩF (RH,p, Q c�

p )

resk
k0

??y ??yNF=F0

Cl (k0[H])
D̃k0 ,F0H,�F0
������! H̃omΩF0

(RH,p, Q c�
p ).

Proof. We write res for both of the functors resW(k)[H]
W(k0)[H] and resk[H]

k0[H]. We let T
be a transversal to ΩF and ΩF0 . Let M̄ be a projective k[H]-module, with M a
projective W(k)[H]-module satisfying M 
W(k) k �= M̄.

If F=F0 is unramified then res (M) is a projective W(k0)[H]-module for which
res (M) 
W(k0) k0 �= res (M̄). Now res (M) 
W(k0) Q

c
p
�= �t2TM 
W(k),t Q

c
p , and so

for each � 2 RH,p one has

D̃k0,F0,H,�F0
� res (M̄)(�) = �

�hP
W(k0)Q
c
p ,�i

F0

= �
�
P

t2T hP
W(k),tQ
c
p ,�i

F
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= �
�
P

t2T hP
W(k)Q
c
p ,�ti

F

= NF=F0 � Dk,F,H,�F (M̄)(�),

which is as is required.
We now assume that F=F0 is totally ramified. In this case, if M0 is a projective

W(k0)[H]-module which satisfies M0 
W(k0) k0 �= res (M̄) then M0
0 := M0 
W(k0)

W(k) is a projective W(k)[H]-module which is such that M0
0 
W(k) k �= M̄. From

Nakayama’s lemma it follows that M0
0 and M are isomorphic W(k)[H]-modules.

It follows in particular that �P
W(k)Q
c
p

= �P0
W(k0)Q
c
p

and so this character is fixed
under the action of ΩF0 . For each character  2 RH,p one therefore has

NF=F0 � Dk,F,H,�F (M̄)( ) =
Y
t2T

�
�
�hP
W(k)Q

c
p , ti

F

�t�1

= (NormF=F0(�F))�hP
W(k)Q
c
p , i

= Dk0,F0,H,�F0
(M̄)( ),

as is required.

Note that since any field extension F=F0 contains an intermediate field F0 such
that F=F0 is totally ramified and F0=F is unramified this last result is sufficient
to deal with arbitrary restriction of scalars.

4. Characteristic zero realizable classes. In this section we shall outline
how invertible sheaves on tame Galois G-covers of X also naturally give rise
to classes in Grothendieck groups of certain categories of modules over rings of
characteristic 0. Aside from any intrinsic interest such classes may have, they also
arise in the context of obtaining explicit analogues of known Adams-Riemann-
Roch formulas. We shall however confine ourselves here to a brief discussion of
this aspect of the theory, and defer a more detailed treatment to elsewhere.

For any Dedekind domain R we let K0T(R[G]) denote the Grothendieck group
of the category of finite locally-freely-presented R[G]-modules. We let A denote
the ring of algebraic integers in a number field K, and for each } 2 Spec (A)0 we
let k(}) denote the residue field of the completion of A at }. There is a canonical
isomorphism

K0T(A[G]) �=
a

}2Spec (A)0

K0T(A}[G]).(4.1)

Furthermore, for each } 2 Spec (A)0, and any choice of uniformizing parameter
�} of A}, the natural surjection

HomΩK}
(RG,p, Q c�

p ) !! K0T(A}[G])
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(cf. [F], II2.3) annihilates the subgroup generated by Dk(}),K} ,G,�}(k(})[G]) (cf.
Remark 3.5). In conjunction with the injection D̃k(}),K} ,G,�} of (3.6) the isomor-
phism (4.1) therefore gives a natural homomorphism

�A,},k,G: Cl (k[G]) ! K0T(A[G]),

where here } 2 Spec (A)0 and k is finite field such that W(k) � A}. We define
the “geometrically realizable” subset of K0T(A[G]) to be

<Tgeom,0
A (G) :=

X
}

X
k

�A,},k,G(<0
k(G)),

and

<Tgeom
A (G) :=

X
}

X
k

�A,},k,G(<k(G)),

where here the sums are taken over all primes } 2 Spec (A)0 and all
finite fields k such that W(k) � A}. The images <geom,0

A (G), respectively
<geom

A (G) of <Tgeom,0
A (G), respectively <Tgeom

A (G), under the natural surjection
K0T(A[G]) !! Cl (A[G]) are then natural geometric counterparts to the subsets
<A,0(G), respectively <A(G), of “arithmetically realizable” classes of Cl (A[G])
as considered in [M] and [Bu].

Examples 4.1. (i) A celebrated theorem of M. Taylor ([T]) implies that
<Z,0(G) = f0g, and a geometric analogue of Chinburg ([Ch2], Theorem 6.13)
that <geom,0

Z (G) = f0g.
(ii) If G is an elementary abelian group of l-power order then one knows that

<Z(G) =
P

C2C (G) indG
C Cl (Z[C]) (cf. [Bu], Theorem 1 and Remark 1.2(ii)). On

the other hand, one can use the results of x2 and x3 to show that <geom
Z (G) �P

C2C(G) indG
C Cl (Z[C]) and is in addition annihilated by l� 1.

A more careful analysis of the material of x2 and x3 would allow one to de-
scribe explicitly the subsets <Tgeom,0

A (G), <Tgeom
A (G), <geom

A (G) and <geom,0
A (G)

in terms of the appropriate Hom-descriptions. It may well be interesting to sys-
tematically compare results obtainable in this way with the results in [M] and
[Bu] concerning the classes <A,0(G) and <A(G). However, for brevity, we shall
forego any such explicit analysis here.

We comment finally upon the connection between our results and certain
types of Adams-Riemann-Roch theorems. An explicit analogue of the equivariant
Adams-Riemann-Roch theorem is known for the subgroup of K0T(A[G]) which
is generated by classes arising from (differences of) G-stable invertible sheaves
in tame Galois G-extensions of K (cf. [Ch,E,P,T], Theorem 3.6). The techniques
of [Bu,Ch] on the other hand afford an explicit interpretation of the Cassou-
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Noguès-Taylor-Adams operators on the subgroups <Tgeom
A (G) of K0T(A[G]) and

<A(G) of Cl (A[G]). Since explicit interpretations of the Cassou-Noguès-Taylor-
Adams operators on all elements of either K0T(A[G]) or Cl (A[G]) still seem to
be difficult to obtain (see for example [K]) it is of some interest to know just
how big the subgroups <k(G), <Tgeom

A (G), <A(G), etc., can be.

5. Classes arising from structure sheaves. In this section we describe
how the results of [M] may be adapted to give a proof of Theorem 2.9 (i) and
(ii). We shall follow [M] very closely and so we refer to this paper for the details
of most of the proofs, rather than repeating them word for word here.

We recall that X is a smooth projective curve with constant field k = kX , and
function field K = KX . Galois K[H]-algebras (or, alternatively, Galois H-covers
of X) are classified by continuous homomorphisms

h: ΩK ! H.

Corresponding to each such homomorphism h we have a Galois H-extension Kh

of K given by

Kh := MapΩK
(hH, Kc)

where here hH is the left ΩK-set consisting of the set H with ΩK acting by left
multiplication via h, and Kh is the algebra of Kc-valued functions on H which
preserve the action of ΩK . So, for a 2 Kh, we have a(h(!)s) = a(s)! for each
s 2 H and ! 2 Ω. It is clear that the Galois H-extensions Kh of K all lie in the
Kc-algebra Map (H, Kc).

Set Kh = (Kc)ker (h), the fixed field of ker (h). Then Kh is isomorphic as a
K-algebra to a product of [H: h(ΩK)] copies of Kh; this isomorphism depends
upon a choice of coset representatives for h(ΩK)nH.

We shall now describe the “resolvend map”

r̃H: Map (H, Kc) ! Kc[H].

This is defined by associating to each element a 2 Map (H, Kc) its “resolvend”

r̃H(a) :=
X
s2H

a(s)s�1.

This map r̃H is an isomorphism of Kc-vector spaces (but not of algebras since it
does not preserve multiplication). For a 2 Map (H, Kc) we have

a 2 Kh , r̃H(a)! = r̃H(a)h(!) for all ! 2 ΩK .

(Here ΩK acts on Kc[H] via its natural action on the coefficients.)
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We say that an element a 2 Kh generates a normal basis of Kh=K if Kh =
K[H]a. The use of resolvends enables one to give the following criterion for
a 2 Kh to be a normal basis generator of Kh=K.

PROPOSITION 5.1. For a 2 Kh we have

Kh = K[H]a , r̃H(a) 2 (Kc[H])�.

Proof. Exactly as in Proposition 1.8 of [M].

We shall now consider the group Hom (ΩK , H). We begin by considering the
following exact sequence of ΩK-modules (here ΩK acts trivially on H)

1 ! H ! (Kc[H])� ! (Kc[H])�=H ! 1.(5.1)

It may be shown that taking ΩK-cohomology of (5.1) yields the exact sequence

1 ! H ! (K[H])� !H(K[H]) ! Hom (ΩK , H) ! 1(5.2)

where here H(K[H]) = ((Kc[H])�=H)ΩK (cf. [M], 1.19).
Setting

H(K[H]) := f� 2 (Kc[H])� j �!�1 2 H for all ! 2 ΩKg

we have H(K[H]) = H(K[H])=H. Note also that

H(K[H]) = fr̃H(a) j K[H]a = Kh for some h 2 Hom (ΩK , H)g.

We recall (from the proof of Proposition 1.3) that there is a natural identifi-
cation (K[H])� = HomΩK (Z[Ĥ], (Kc)�).

Now consider the exact sequence

0 ! AĤ ! Z[Ĥ] det
! Ĥ ! 1(5.3)

where here det: Z[Ĥ] ! Ĥ is defined by

det

0
@X
�2Ĥ

a��

1
A =

Y
�2Ĥ

�a� (a� 2 Z),

and AĤ denotes the kernel of det. Applying the functor Hom (�, (Kc)�) to (5.3)
yields the exact sequence

1 ! Hom (Ĥ, (Kc)�) ! Hom (Z[Ĥ], (Kc)�) ! Hom (AĤ, (Kc)�) ! 1.(5.4)
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We identify the terms of the sequence (5.4) with the corresponding terms of the
sequence (5.1) as follows:

8><
>:

Hom (Ĥ, (Kc)�) $ H
Hom (Z[Ĥ], (Kc)�) $ (Kc[H])�

Hom (AĤ, (Kc)�) $ (Kc[H])�=H

9>=
>; .(5.5)

These identifications allow us to give an alternative description of the middle
portion (K[H])� !H(K[H]) for the sequence (5.2): we have

HomΩK (Z[Ĥ], (Kc)�)
ragH
���! HomΩK (AĤ, (Kc)�) = HomΩK (AĤ, (K0)�),

where here the map ragH denotes restriction to AĤ (that is, restriction to augmen-
tation).

Suppose that a 2 Kh generates a normal basis of Kh=K. Its resolvend r̃H(a)
is a homomorphism from Z[Ĥ] to (Kc)�. We let rH(a): AĤ ! (Kc)� denote the
restriction of r̃H(a) to AĤ , and we call rH(a) the reduced resolvend of a. Thus,
rH(a) may be identified with the coset of r̃H(a) in (Kc[H])�=H, and we have

H(K[H]) = frH(a) j K[H]a = Kh for some h 2 Hom (ΩK , H)g.

We shall now discuss tame H-extensions of K. For each closed point x 2 X0

we choose and fix an algebraic closure Kc
x of the completion Kx of K at x, and

an embedding ix: Kc ! Kc
x of Kc into Kc

x , and we let ĩx: ΩKx ! ΩK denote
the corresponding embedding of absolute Galois groups. (We shall regard ix and
ĩx as inclusions and so shall suppress them from the notation when there is no
danger of confusion.)

If h 2 Hom (ΩK , H) we set hx := h � ix 2 Hom (ΩK , H). Then

(Kx)hx = Kh 
K Kx

and we have Kh � (Kx)hx . We let Ohx , respectivelyOc
x, denote the integral closure

of Ox in (Kx)hx , respectively Kc
x .

We write Ωt
K , respectively Ωt

Kx
, for the Galois group of the maximal tame

extension Kt=K, respectively Kt
x=Kx, of K, respectively Kx. Then ĩx restricts to

ĩx: Ωt
Kx
! Ωt

K , and a Galois H-extension Kh=K is tame if and only if the
homomorphism h: ΩK ! H factors through the quotient map ΩK ! Ωt

K , or
equivalently, if and only if Kh � Kt. So, if we regard Hom (Ωt

K , H) as a subset
of Hom (ΩK , H) then Kh=K is tame if and only if h 2 Hom (Ωt

K , H). In this case,
we shall also say that h “is tame” (a similar discussion holds with K replaced by
Kx). Hence, h is tame if and only if hx is tame for all x 2 X0.

We let Ht(K[H]) (:= Ht(K[H])=H)) denote the pre-image of Hom (Ωt
K , H)

under the connecting homomorphism c: H(K[H]) ! Hom (ΩK , H) (with similar
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notation for Kx). Similarly, we let Ωnr
x denote the Galois group of the maximal

unramified extension Knr
x =Kx in Kc

x , and we write Hnr(Kx[H]) (:= Hnr(Kx[H])=H)
for the pre-image of Hom (Ωnr

x , H) under c.
We shall now describe integral versions of (5.1) and the constructions that

arise therefrom. For each x 2 X0 we consider the exact sequence

1 ! H ! (Oc
x[H])� ! (Oc

x[H])�=H ! 1.

It may be shown that taking ΩKx-cohomology of this sequence yields an exact
sequence

1 ! H ! (Ox[H])� ! H(Ox[H]) ! Hom (Ωnr
Kx , H) ! 1

(cf. [M], 2.12). Here

H(Ox[H]) = ((Oc
x[H])�=H)ΩKx = H(Ox[H])=H,(5.6)

where

H(Ox[H]) = (Oc
x[H])� \ H(Kx[H]).

Hence we have

H(Ox[H]) = frH(ax) j Ox[H].ax = (Ox)hx for some hx 2 Hom (Ωnr
Kx , H)g

and

Hnr(Kx[H]) = H(Ox[H]). ragH ((Kx[H])�),

or equivalently

Hnr(Kx[H]) = H(Ox[H]).(Kx[H])�.

We also observe that since the characteristic of k does not divide #H it follows
from (5.6) and (5.5) that

H(Ox[H]) = Hom (AĤ, (Oc
x)�)ΩKx for all x 2 X0(5.7)

(cf. [M], Theorem 2.14).
We now take an H-cover f : Y ! X of X, and we let h: ΩK ! H be the

corresponding continuous homomorphism. Set Oh := f�OY ; then Oh is a rank
one locally free O[H]-module. Let � denote the generic point of X; then we have
that (Oh)� �= Kh. For each x 2 X the stalk (Oh)x is freely generated over Ox[H]
by an element ax, say. (We refer to ax as a normal integral basis of (Oh)x over
Ox.) Furthermore, each (Oh)x may be regarded as an Ox[H]-lattice in the free
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Kh-module Kh (cf. the discussion immediately preceding Proposition 1.3), and so
ax = cxa� for a unique cx 2 (Kx[H])�. Then (cx)x2X0 2 JK(K[H]) and it follows
from the proof of Proposition 1.3 that (cx)x2X0 is representative of the class of
the O[H]-module Oh in Pic (O[H]).

The equation ax = cxa� may be expressed in terms of resolvends. We have

r̃h(ax) = cx.r̃H(a�)

in H(Kx[H]), and this implies that

rH(ax) = ragH (cx)rH(a�)

in H(Kx[H]), that is

ragH (cx) = rH(a�)rH(ax)�1.

Next, we observe that if ragH (c0x) = ragH (cx) for all x 2 X then c0x = cxsx with
sx 2 H for all x. Thus (sx)x 2

Q
x2X (Ox[H])� and so (c0x)x determines the same

class in Pic (O[H]) as does (cx)x. Hence in fact (ragH(cx))x determines the class
of Oh in Pic (O[H]).

Now ragH (cx) is not arbitrary, but has in fact a nice local decomposition.
This decomposition involves the Stickelberger map which we shall now define.

We fix a root of unity � in kc of order equal to the exponent of H. For � 2 Ĥ
and s 2 H we let h�, si� denote the unique rational number lying between 0 and
1 for which �(s) = �exp (H).h�,si� , and we extend this to give a Q -bilinear map

h , i�: Q [Ĥ]� Q [H] ! Q .

The Stickelberger map (relative to �)

ΘH,�: Q [Ĥ] ! Q [H]

is then defined by

ΘH,�(�) =
X
s2H

h�, si�s, for each � 2 Q [Ĥ].

For any ! 2 Ωk on has

ΘH,�! = ΘH,� � !
�1.(5.8)

The Stickelberger module is then defined to be

Sh := ΘH,�(Z[Ĥ]) \ Z[H],
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and is independent of the choice of � as a consequence of (5.8). We define
H(� 1) to be the group H endowed with an ΩK-module structure via the inverse
cyclotomic character.

The following result is proved exactly as in [M] (see Propositions 4.3 and
4.5 (ibid.)), and so we shall not repeat the proof here.

PROPOSITION 5.2. (i) For each � 2 Z[Ĥ] we have ΘH,�(�) 2 Z[H] if and only
if � 2 AĤ. In particular therefore, ΘH,� defines by restriction a homomorphism
ΘH,�: AĤ ! Z[H] and one has SH = ΘH,�(AĤ).

(ii) The linear transformation ΘH,�: Q [Ĥ] ! Q [H](� 1) preserves the action
of ΩK.

Proposition 5.2 implies that the transpose map

Θt
H,�: Hom (Z[H]( � 1), (Kc)�) ! Hom (AĤ, (Kc)�)

is an ΩK-homomorphism, where ΩK acts on homomorphisms by f !(�) = f (�!
�1

)!

(for each ! 2 ΩK), and Θt
H,�( f ) = f � ΘH,�. Hence we also have the homomor-

phism (which we also denote by Θt
H,�) given by

Θt
H,�: HomΩK (Z[H]( � 1), (Kc)�) ! HomΩK (AĤ(Kc)�) = H(K[H]).

For each ΩK-orbit t of H( � 1) we let K(t) denote the constant field extension
of K which corresponds by Galois theory to the pointwise stabilizer of t in ΩK .
Then we have an isomorphism

MapΩK
(H(� 1), Kc) �=

Y
t2H(�1)=ΩK

K(t).

For each x 2 X0 we also let Λx denote MapΩKx
(H(�1),Oc

x), and we let KΛ
denote MapΩK

(H(�1), Kc). Then the transpose Θt
H,� may be expressed as a map

Θt
H,�: (KΛ)� !H(K[H]).

If for each x 2 X0 we let KxΛ denote MapΩKx
(H(�1), Kc

x) then there are
corresponding local homomorphisms Θt

H,�: (KxΛ)� ! H(Kx[H]).
We now turn to describe the natural decomposition of the resolvends of local

normal integral basis generators which we referred to above. For each x 2 X0

this involves the determination of a distinguished set of coset representatives for
Ht(Kx[H])=Hnr(Kx[H]) of the form Θt

H,�( fx) for suitable elements fx of (KxΛ)�.
We shall for the moment fix a point x 2 X0. We let �(= �x) denote a fixed

generator of the maximal ideal mx of Ox, and we let qx denote the order of the
residue field Ox=mx. The field Knr

x is obtained by adjoining all roots of unity to
Kx. The group Ωnr

x := Gal (Knr
x =Kx) is procyclic and is generated by the Frobenius

automorphism �(= �x) of Knr
x =Kx which is given by �(�) = �qx for each root of

unity �. The field Kt
x is obtained by adjoining to Knr

x the values �1=n for all
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integers n coprime to p. The group Gal (Kt
x=Knr

x ) is also procyclic, and we fix
a generator � of it. We fix a coherent set of radicals f�1=ng for all integers n
coprime to p such that (�1=mn)n = �1=m. Then this gives a collection f�ng of
roots of unity defined by

�(�1=n) = �n�
1=n.

We let � also denote the unique lifting of � from Ωnr
x to Ωt

x which fixes the
distinguished elements �1=n for each n coprime to p. Then Ωt

x is generated by �
and � and we have ������1 = �q. (This last equality can be seen by comparing
the effects of both sides on the elements �1=n and �n.) The abeliniazation (Ωt

x)ab

of Ωt
x is given by

(Ωt
x)ab = h�̄i � h�̄i,

where here we write �̄ and �̄ for the obvious images of � and �. Note that �̄ is
of order q�1 whilst h�̄i is procyclic. We remark that since H is abelian we have

Hom (Ωt
x, H) = Hom ((Ωt

x)ab, H),

and this is why we are interested in the group (Ωt
x)ab.

There is a natural homomorphism h 7! h(�) from Hom (Ωt
x, H) to H which is

given by “evaluating at �.” The kernel of this homomorphism is Hom (Ωnr
x , H).

We let H(q�1) denote the subgroup of H consisting of elements of order dividing
q� 1. Since h(�) can take any value in H(q�1) we have the following sequence
of isomorphisms

Ht(Kx[H])=Hnr(Kx[H]) �= Hom (Ωt
x, H)=Hom (Ωnr

x , H) �= H(q�1).

We shall now describe a section of the induced homomorphism Ht(Kx[H]) !
H(q�1); this section depends upon the choice of distinguished prime element �x.
For each s 2 H(q�1) we define

fx,s 2 (KxΛ)� = HomΩK (Z[H(�1)], (Kc
x)�)

by setting (for each t 2 H)

fx,s(t) :=

(
�x, if t = s 6= 1
1, otherwise.

PROPOSITION 5.3. Suppose that s 2 H(q�1) has order e, and let hx 2 Hom (Ωt
x, H)

be defined by hx(�x) = s and h(�x) = 1. The Khx
x = Kx(�1=e

x ) and Θt
H,�( fx,s) = rH(bx)

where bx generates a normal integral basis of (Ox)hx overOx. In particular we have
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Θt
H,�( fx,s) 2 Ht(Kx[H]), and Θt

H,�( fx,s) is sent to s under the map Ht(Kx[H]) !
H(q�1).

Proof. The proof of this result is identical to that of Proposition 5.4 of [M].

As section to the homomorphism Ht(Kx[H]) ! H(q�1) we shall take the map
s 7! Θt

H,�( fx,s).
The local decomposition theorem below reflects the fact that any tame exten-

sion of Kx with ramification index e is contained in the compositum of Kx(�1=e)
and an unramified extension. It is proved in exactly the same manner as Theo-
rem 5.6 of [M].

THEOREM 5.4. (Local decomposition theorem) Suppose that hx 2 Hom (Ωt
x, H).

If ax is a normal integral basis generator of (Ox)hx over Ox then we have

rH(ax) = Θt
H,�( fx,s)ux,

where here hx(�x) = s 2 H(q�1) and ux 2 H(Ox[H]).
Conversely, let s 2 H(q�1) and ux 2 H(Ox[H]), and let hx be the image of

Θt
H,�( fx,s)ux under the connecting homomorphism Ht(Kx[H]) ! Hom (Ωt

x, H).
Then hx(�x) = s, and (Ox)hx has a normal integral basis generator ax over Ox for
which rH(ax) = Θt

H,�( fx,s)ux.

We can now turn to consider realizable classes.
We let JK(KΛ) denote the restricted direct product of the (KxΛ)� with re-

spect to the subgroups Λ�
x for x 2 X0. We let H(A (K[G])), Ht(A (K[G])) and

Hnr(A (K[G])) respectively be the restricted direct products of the groupsH(Kx[H]),
Ht(Kx[H]) and Hnr(Kx[H]) with respect to the subgroups H(Ox[H]). Then we
may define maps

Θt
H,�: JK(KΛ) !H(A (K[H]))

ragH: JK(K[H]) !H(A (K[H]))

componentwise in the obvious manner. It is easy to check that these maps are
well defined. Furthermore, since the characteristic p of K does not divide #H we
have (cf. (5.7))

Θt
H,�(Λ�

x ) � HomΩK (AĤ, (Oc
x)�) = H(Ox[H]).

We define the unit idele groups

U(Λ) :=
Y

x2X0

(Λx)�, U(O[H]) :=
Y

x2X0

(Ox[H])�, H(A (O[H])) :=
Y

x2X0

H(Ox[H])
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so that both

Θt
H,�(U(Λ)) � H(A (O[H])), and ragH (U(O[H])) � H(A (O[H])).

We let

�: (KΛ)� ! JK(KΛ), �: H(K[H]) !H(A (K[H]))

denote the principal idele maps given by the natural diagonal embeddings. Then
we have

�(Ht(K[H])) = �(H(K[H])) \Ht(A (K[H])),

and

�(Hnr(K[H])) = �(H(K[H])) \Hnr(A (K[H])).

For each x 2 X0 we let Fx( � (KxΛ)�) be the set of all fx,s for s 2 H(q�1). As
q� 1 is the order of the group of roots of unity in Kx we have that s 2 H(q�1) if
and only if Kx(s) = Kx, and so Fx = ffx,s j Kx(s) = Kxg.

We let FX,H � JK(KΛ) be the subset of ideles f for which fx 2 Fx for
all x 2 X0. It is easy to see that if f 2 FX,H then fx = 1 for all but finitely
many x 2 X0. We refer to the nontrivial elements of Fx � FX,H as the “prime
F-elements” lying over x. It follows that elements of FX,H are finite products
of prime F-elements lying over distinct x 2 X0. From Proposition 5.3 we have
Θt

H,�( f ) 2 Ht(A (K[H])) for all f 2 FX,H .
We let

�: JK(K[H]) !
JK(K[H])

(K[H])�U(O[H])
�= Pic (O[H])

denote the natural quotient map (cf. Proposition 1.3). The following theorem gives
the decomposition of a tame global resolvend. It is proved in exactly the same
manner as Theorem 6.7 of [M] (and thus depends crucially upon Theorem 5.4).

THEOREM 5.5. (Global Decomposition Theorem) Let h 2 Hom (ΩK , H), and
let�h: Yh ! X denote the corresponding Galois cover of X. Suppose that K[H].b =
Kh. Then h is tame if and only if there are elements c 2 JK(K[H]), f 2 FX,H and
u 2 H(A (O[H])) such that

�(rH(b)) = ( ragH (c))�1Θt
H,�( f ).u .

Furthermore, if this is the case then �(c) is the class of �h, �OYh in Pic (O[H]) and
f is unique. More precisely, we have f = ( fx)x where, for each x 2 X0, fx = fx,s with
s = hx(�x). In particular, therefore, fx 6= 1 if and only if hx is ramified, and so f = 1
if and only if h is unramified.
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We can now give the following characterization of realizable classes in
Pic (O[H]).

THEOREM 5.6. Suppose that c 2 JK(K[H]). Then

(i) �(c) 2 <0
X,0(H) if and only if ragH (c) 2 �(H(K[H])).H(A (O[H]));

(ii) �(c) 2 <0
X(H) if and only if ragH (c) 2 �(H(K[H]))

.H(A (O[H]))Θt
H,�(FX,H).

Proof. Suppose now that h 2 Hom (Ωt
K , H), and let �h: Yh ! X denote the

corresponding Galois H-cover of X. Suppose further that �(c) is equal to the class
of �h, �OYh in Pic (O[H]). Let K[H].b = Kh. Then it follows from Theorem 5.5
that there exist elements c0 2 JK(K[H]), f 2 FX,H , and u 2 H(A (O[H])) for
which

�(c) = �(c0)

and

�(rH(b)) = ( ragH (c0))�1Θt
H,�( f ).u,

(with f = 1 if and only if h is unramified). Hence we have

ragH (c0) 2 �(H(K[H])).H(A (O[H]))

if h is unramified, and more generally

ragH (c0) 2 �(H(K[H]))H(A (O[H]))Θt
H,�(FX,H).

Now c�1c0 2 (K[H])�U(O[H]) and so it follows that

ragH (c�1c0) 2 �(H(K[H]))H(A (O[H])).

This proves the “only if” parts of (i) and (ii).
Suppose conversely that ragH (c) 2 �(H(K[H]))H(A (O[H]))Θt

H,�(FX,H). Then
we have that

ragH (c) = �(rH(b1))�1u1Θt
H,�( f1)

where K[H].b1 = Kh for some h 2 Hom (ΩK , H), u1 2 H(A (O[H])) and f1 2
FX,H .

If f = 1 then Theorem 5.5 implies that h is unramified and that �(c) is the
class of OYh . This completes the proof of (i). The “if” part of (ii) is on the other
hand an immediate consequence of Theorem 5.5.
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We note that, in the statement of Theorem 5.6 (ii), the subgroup Θt
H,�(FX,H)

is actually independent of the choice of � (as a consequence of (5.8)).
We shall now derive the assertions of Theorem 2.9 (i) and (ii) as a conse-

quence of Theorem 5.6. To do this we observe that the homomorphism

ragH: JK(K[H]) !H(A (K[H]))

induces upon restriction to augmentation a homomorphism

RagH: Pic (O[H]) �= HomΩK (RH , Pic (K0)) �=
JK(K[H])

(K[H])�U(O[H])

!
H(A (K[H]))

�(H(K[H])).H(A (O[H]))
�= HomΩK (AĤ, Pic K0)),

whilst the map Θt
H,�: JK(KΛ) !H(A (K[H])) induces a map

Θt
H,�: HomΩK (Z[H](�1), Pic (K0)) ! HomΩK (AĤ, Pic (K0)).

The result of Theorem 2.9 (i) and (ii) is thus simply the translation of Theorem 5.6
via these homomorphisms into the Hom-description of Proposition 1.3.

Remark 5.7. Note that if f 2 FX,H and c 2 Rag�1
H (Θ1

H,�( f )) then deg (c(�)) �
0 for all characters � 2 Ĥ. Furthermore, deg (c(�)) = 0 for all characters � if and
only if f = 1, that is, if and only if the corresponding Galois cover of X is étale.
Hence, in general, <0

X(H) is not a subgroup of Pic (O[H]) (cf. Remark 2.10 (iii)).

6. Classes arising from general invertible sheaves. In this section we
shall prove parts (iii) and (iv) of Theorem 2.9, the notation of which we shall
continue to use. The argument given here is modelled on that of [Bu].

We shall first show that

<X(H) � h<0
X(H)i +

X
C2C(H)

indH
C Pic#C (O[C]),(6.1)

and that

<X,0(H) � <0
X,0(H) + indH

f1g Pic (O).(6.2)

These inclusions will be seen to be a consequence of the functorial behavior of
Chapman’s Hom-description (cf. Proposition 1.3 and Lemma 1.4) together with
some standard properties of tame local extensions.

We suppose then that the class c 2 Pic (O[H]) is realizable, corresponding to
a Galois H-cover f : Y ! X of X, an identification of Gal (Y=X) with H (which
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we henceforth suppress) and a H-stable invertible OY-sheaf A. Since

c = ( f�A) = ( f�OY ) + (( f�A)� ( f�OY)) 2 Pic (O[H])

and obviously ( f�OY) 2 <0
X(H), respectively ( f�OY ) 2 <0

X,0(H) if f is étale, we
shall only need to show that the class c0 := ( f�A)� ( f�OY) satisfies

c0 2
X

C2C(H)

indH
C Pic#C (O[C]),(6.3)

respectively

c0 2 indH
f1g Pic (O)(6.4)

if f is étale. We shall prove these using the Galois resolvent techniques discussed
by Chapman in [C].

For each field F � Kc and each character � 2 Ĥ we let F� denote the field
extension of F generated by adjoining the values of �. For each point x 2 X we
choose a freeOX[H]-generator a1,x, respectively a2,x, for the stalkAx, respectively
OY ,x. For each x 2 X, each � 2 Ĥ, and both i = 1 and i = 2, we define a Galois
resolvent

(ai,x j �) :=
X
h2H

h(ai,x)�(h�1) 2 Kc�.

The quotient (a1,x j �)=(a2,x j �) belongs to K�. Furthermore, as a simple con-
sequence of the considerations of ([C], pp. 21–23) one knows that under the
isomorphism �O[H] of Proposition 1.3 the class c0 corresponds to the function
g 2 HomΩK (RH, Div (K0)) which is defined at each character � 2 Ĥ by

g(�) :=
X
v0

Valv0

 
(a1,v(v0) j �)
(a2,v(v0) j �)

!
v 0 2 Div (K�),(6.5)

where here v 0 runs over the prime divisors of K�, Valv0 denotes the valuation of
K� corresponding to v 0, and v(v 0) is the prime divisor of K lying beneath v 0. We
write Supp(OY ,A) for the set of prime divisors of K at which the stalks of f�OY

and f�A differ. For each v 2 Supp(OY ,A) we let gv 2 HomΩK (RH, Div (K0)) be
defined at each character � 2 Ĥ by

gv (�) :=
X
v0jv

Valv0
�

(a1,v j �)
(a2,v j �)

�
v 0 2 Div (K�),

where here the summation is taken over all prime divisors v 0 of K� which lie
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above v. It is clear that

g =
X

v2Supp (OY ,A)

gv .(6.6)

For each v 2 Supp (OY ,A) we let I(v) denote the inertial subgroup of v in H.

LEMMA 6.1. For each prime divisor v 2 Supp (OY ,A) one has gv = g̃v � resH
I(v)

for a function g̃v 2 HomΩK (RI(v), Div (K0)) which is supported entirely above v.

Before proving this lemma we note that it is sufficient to prove the desired
inclusions (6.3) and (6.4). To see this we note firstly that since v is tamely ram-
ified in KY=K the inertial subgroup I(v) is cyclic. In addition, since H is abelian
the tameness of v in KY=K also implies that the norm of v is congruent to 1 mod-
ulo #I(v) and so Lemma 6.1 implies that g̃v represents a class in Pic#I(v) (O[I(v)]).
Finally we use the equality gv = g̃v � resH

I(v) of Lemma 6.1 in conjunction with
Lemma 1.4 to deduce that gv represents a class in indH

I(v) Pic#I(v) (O[I(v)]). The
inclusions (6.3) and (6.4) are therefore an immediate consequence of the decom-
position (6.6).

Proof of Lemma 6.1. It is sufficient for us to show that for each prime divisor
v 0 of K� over v the valuation Valv0 ((a1,v j �)=(a2,v j �)) depends, as a function of
�, only upon the restricted character resH

I(v) �. Indeed, if this is the case then we
can define a function g̃v 2 HomΩK (RI(v), Div (K0)) by setting for each � 2 I(v)^

g̃v (�) := gv(�) if � 2 Ĥ and resH
I(v) � = �,

and then obviously gv = g̃v � resH
I(v).

To proceed, set N = KY and let E denote the compositum NK�. Fix an embed-
ding j: E ,! Kc

v such that j jK� corresponds to v 0, and let w be the prime divisor
of N which corresponds to the restriction j jN . We let Nw,0 denote the maximal
unramified extension of Kv in Nw, and we identify the groups Gal (Nw=Nw,0) and
I(v) via the embedding j jN . With O0 denoting the valuation ring of Nw,0 one
knows that the stalks Aw and OY ,w are free O0[I(v)]-modules. Furthermore, from
the arguments of Theorem 19 and Theorem 25 (ii) of [F] (cf. also [Bu], (2.6–7))
one knows that for any choice of free O0[I(v)]-generators c1,w, respectively c2,w,
of Aw, respectively OY ,w, there is a unit � of the valuation ring of the closure of
jE in Kc

v such that

j
�

(a1,v j �)
(a2,v j �)

�
=

(c1,w j resH
I(v)( j � �))

(c2,w j resH
I(v)( j � �))

�.(6.7)

By taking v 0-valuations of this equation we see that the v 0-valuation of (a1,v j
�)=(a2,v j �) depends as a function of � only upon the restricted character resH

I(v) �.
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Having proved (6.1) and (6.2) our proof of parts (iii) and (iv) of Theorem 2.9
will be complete if we can prove that

h<0
X(H)i +

X
C2C(H)

indH
C Pic#C (O[C]) � <X(H),(6.8)

and

<0
X,0(H) + indH

f1g Pic (O) � <X,0(H).(6.9)

We shall deal firstly with the inclusion (6.8). To prove this it is obviously
sufficient to show that indH

C Pic#C (O[C]) � <X(H) for any cyclic subgroup C of
H. To this end we henceforth fix a cyclic subgroup C of H and set n = #C. For
each character � 2 Ĉ we let C� denote its kernel and set n� = #C�. The field
K� is thus a (constant) field extension of K of degree n=n�. We let D(C) denote
the set of equivalence classes of Ĉ under the relation of ΩK-conjugacy. Since K�
depends only upon the element D = D� of D(C) to which � belongs we shall
also denote it by KD. One has

HomΩK (RC, Picn (K0)) �=
M

D2D(C)

HomΩK (Z[D], Picn (KD)),

and so we shall need to show that

X
D2D(C)

indH
C HomΩK (Z[D], Picn (KD)) � �O[H]<X(H).(6.10)

The first step in verifying this inclusion is for us to observe that each group
Picn (KD) is generated by the classes of prime divisors.

LEMMA 6.2. For each class D 2 D(C), and for each strictly positive integer N,
the group PicN (KD) is generated by the classes of prime divisors.

Proof. For this argument we let P PicN (KD) denote the subgroup of PicN (KD)
which is generated by the classes of those prime divisors which belong to
DivN (KD). If p j N then PicN (KD) = 0 and so the lemma is obviously true in this
case. We therefore suppose that p - N. In this case, one knows (for example, as
a consequence of the Weil estimate for the number of points on a variety over
a finite field) that there exist prime divisors on KD which have norm congruent
to 1 modulo N, and hence the subgroups PicN (KD) and P PicN (KD) are both of
finite index in Pic (KD). If H is the Hilbert class field of KD the from global class
field theory it follows that there are fields L1 and L2, corresponding to the groups
PicN (KD) and P PicN (KD) respectively, which are such that KD � L1 � L2 � H.
The prime divisors of KD which split completely in L1=KD are precisely those
which have class in PicN (KD), and so coincide with those prime divisors of KD
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which split completely in L2=KD. Using this fact the Tchebatarev theorem implies
that L1 = L2, and from this it follows that P PicN (KD) = PicN (KD).

The set of subgroups of C corresponds bijectively to the set of positive
divisors of n (as C is cyclic) and so is linearly ordered. Since the group <X(H)
consists of arbitrary finite linear combinations of realizable elements, this means
that (6.10) can be obtained as a consequence of Lemma 6.2 taken in conjunction
with the following result.

PROPOSITION 6.3. Let �0 2 Ĉ, with �0 2 D0 say, and choose a prime divisor
} of KD0 which has norm congruent to 1 modulo n. Then �O[H]<X(H) contains
an element of the form indH

C g for some function g 2 HomΩK (RC, Picn (K0)) which
satisfies the following property: for each character � 2 Ĉ for which n� � n�0 one
has

g(�) =

(
}, if � = �0

0, if D� 6= D0.

To prove this proposition we shall simply construct Galois H-covers of X
which possess H-stable invertible sheaves which give rise to classes represented
by the kind of function described in the above statement.

We now fix a character �0 and a prime divisor } as in the statement of
Proposition 6.3, and we let p denote the prime divisor of K lying beneath }. We
choose a maximal cyclic subgroup C0 of H which contains C, and a subgroup J
of H for which H = C0 � J (such a subgroup J must exist). Since p has norm
congruent to 1 modulo n the Grunwald-Wang theorem (cf. [Ar,T], Chapter 10,
x2) allows us to choose a cyclic extension F of K of degree #C0 in which the
inertial and decomposition subgroups of p coincide, and are of order n. By again
using the Grunwald-Wang theorem we may choose a Galois extension F1 of K
which is disjoint from F=K, has group isomorphic to J, and in which p splits
completely. We fix an identification of Gal (F1=K) with J. We let N denote the
compositum FF1, and next specify an identification of Gal (F=K) with C0, and
hence of

Gal (N=K) �= Gal (N=F1)� Gal (N=F) �= Gal (F=K)� Gal (F1=K)

with H. For this we let M denote the subfield of F which corresponds to the
kernel of any element of D0, with L the maximal extension of K in F in which p
is unramified. Thus L � M and Gal (F=L) �= C. We write K0 for the completion
of K at p, choose and fix an embedding j0: Kc ,! Kc

0 which corresponds on KD0

to }, and we write M0 for the completion of M at the place corresponding to j0.
The completion of L at the place corresponding to j0 is K0 and so we can identify
Gal (M=L) and Gal (M0=K0) via the embedding j0 jM.

To proceed further we must now recall some basic facts concerning
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the arithmetic of M0=K0. We recall first that since M0=K0 is totally and
tamely ramified each element of Gal (M0=K0)^ is valued in K�

0 . In addition,
if for each character � 2 Gal (M0=K0)^ we write e� for the idempotent
# Gal (M0=K0)�1P

g2Gal (M0=K0) �(g�1)g of OK[ Gal (M0=K0)] and we let Val0
denote the standard valuation on M0, then the group Gal (M0=K0)^ possesses
a cononical generator �M0=K0

which is such that for each x 2 M0 and � 2
Gal (M0=K0)^ for which e�x 6= 0 has

Val0 (e�x) � Val0 (x), with equality here if and only if � = �Val0 (x)
M0=K0

(6.11)

(cf. Proposition 1 of [Be]). Now any isomorphism between Gal (F=K) and C0

induces an isomorphism between Gal (F=L) and C, and so allows us to regard
�0 as an element of Gal (M=L)^ = Gal (M0=K0)^. We choose an isomorphism
between Gal (F=K) and C0 which is such that, upon regarding �0 as a character
of Gal (M0=K0) via this isomorphism, one has j0 � �0 = �M0=K0

(it is not difficult
to see that such a choice of isomorphism must exist).

For each intermediate field N0 of N=K we write fN0 : Y(N0) ! X for the
corresponding cover of curves, and we let P(N0) denote the invertible OY(N0)-
sheaf which corresponds to the divisor of N0 obtained by summing over all prime
divisors lying over p.

We set f = fN , and for each integer m, and each point x of X, we choose a
free Ox[H]-generator am,x of stalk f�(P(N)m)x. For each pair of integers m and n
we define a function gm,n on Ĥ by setting

gm,n(�) :=
X
v0jp

Valv0

 
(an,p j �)
(am,p j �)

!
v 0 2 Div (K�),

where here the sum is over all prime divisors v 0 of K� lying over p. Note in
particular that under the Hom-description used above (cf. (6.5)) the function gm,n

represents the image under �O[H] of the class

c(m, n) := ( f�P(N)n)� ( f�P(N)m) 2 Pic (O[H]).

We let f 0: Y(F) ! Y(L) be the morphism of curves induced by fF. For each point
y of Y(L), and each integer m, we choose a free OY(L),y[C]-generator bm,y of the
stalk f 0�(P(F)m)y. We define a function g�m,n on Ĉ by setting

g�m,n(�) :=
X
s0jp

Vals0

 
(bm,s(s0) j �)
(bn,s(s0) j �)

!
s0 2 Div (L�),

where here s0 runs over the prime divisors of L� lying above p and s(s0) is the
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prime divisor of L which lies below s0. The fact that p is chosen to split in the
extension F1L=K is now reflected in the following result.

LEMMA 6.4. For each character � 2 Ĥ one has

gm,n(�) = g�m,n( resH
C �) 2 Div (L�).

Proof. We choose an embedding j: NK� ,! Kc
p, and let w, v 0, t, s0 and

s denote the prime divisors of N, K�, F, L�, and L which correspond to the
respective restrictions of j.

The maximal unramified extension of Kp in Nw is Kp itself, and so the
argument leading to (6.7) here implies that the coefficient of v 0 in the divisor
gm,n(�) 2 Div (K�) is equal to the v 0-valuation

Valv0

 
(cn,w j resH

Ip)( j � �))

(cm,w j resH
Ip)( j � �))

!
(6.12)

where here cm,w and cn,w are free Op[I(p)]-generators of the stalks (P(N)m)w and
(P(N)n)w respectively.

Under our chosen identification of H with Gal (N=K) we have C = I(p) �
Gal (N=K). In addition, since p splits completely in F1L=K there are identifi-
cations Nw = Ft, (P(N)m)w = (P(F)m)t for each integer m, and Ls = Kp. Just
as above, we can deduce that the coefficient of s0 in the divisor g�m,n( resH

C �) 2
Div (L�) is equal to the s0-valuation

Vals0

 
(cn,w j resH

I(p) ( j � �))

(cm,w j resH
I(p) ( j � �))

!
.(6.13)

Since L�,s0 = K�,v0 this last expression is equal to (6.12), and the claimed equality
of divisors now follows immediately from this.

From Lemma 1.4 (with G = H and J = C) and Lemma 6.4 it follows that

c(m, n) = indH
C ĉ(m, n)

with ĉ(m, n) 2 Pic (O[C]) the class whose image under �O[C] corresponds to the
function g�m,n. We shall thus obtain a proof of Proposition 6.3 by choosing integers
m and n according to the following lemma.

LEMMA 6.5. For each character � 2 Ĉ for which n� � n�0 one has

g�1,n�0 +1(�) =

(
}, if � = �0

0, if � 2 D0.
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Proof. We shall use the same notation as in the proof of Lemma 6.4. In
addition, for each � 2 C we let C� denote the kernel of �, and we set F� = FC� ,
n� = #C� with n0 = n�0 , and �� =

P
c2C� c 2 Z[C�]. We let Val� (�) denote the

standard valuation on F�, and we write �̄ for the element of (C=C�)^ induced
by �.

For each integer m one has

(cm,w j j � �) = (n�)�1ej��̄(��cm,w),

and as a consequence of (6.11) one knows that the valuation of this element
depends only upon the character j � �̄ and the valuation Val� (��cm,w). Now if
n� > n0 then Val� (��c1,w) = Val� (��cn0+1,w) = 1 and this quickly implies that
g�1,n0+1(�) = 0. One needs slightly more of an argument to deal with characters �
for which n� = n0. Indeed, in this case Val� (��c1,w) = 1 whilst Val� (��cn0+1,w) =
2. By using (6.11) one computes in this case that

Val� (ej��̄(��cn0+1,w)) =

(
Val� (ej��̄(��c1,w)), if j � �̄ 6= �M0=K0

Val� (ej��̄(��c1,w)) + n=n�, if j � �̄ = �M0=K0
,

and this in turn implies that

Vals0
�

(cn0+1,w j j � �)
(c1,w j j � �)

�
=

(
0, if j � �̄ 6= �M0=K0

,
1, if j � �̄ = �M0=K0

.

This equality is enough to imply the stated result since, given our chosen iden-
tification of C with Gal (F=L), one has j0 � �̄0 = �M0=K0

for an embedding
j0: NK�0 ,! Kc

p which corresponds on K�0 to the prime divisor }.

We must finally check that (6.9) is true. To do this we choose for each class
c 2 Pic (O) a divisor d 2 Div (K) which has class c. We let f : Y ! X denote
the trivial H-torsor over X, and write DY for the (H-stable) invertible OY-sheaf
which corresponds to the divisor d. It is straightforward to check that the class
of ( f�DY ) � ( f�OY) in Pic (O[H]) is equal to indH

f1g c, and since f is étale this
proves (6.9).
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