MATH 115A SOLUTION SET V
FEBRUARY 17, 2005

(1) Find the orders of the integers 2, 3 and 5:
(a) modulo 17;
(b) modulo 19;
(¢) modulo 23.

Solution:

(a) Euler’s theorem implies that it suffices to consider exponents which are divisors of 16.
Working modulo 17 gives

2=4 2'=16, 28=
32=9, 3'=13 3F=16 39=1
52=8, 5'=13, 5¥=16, 5%=1.
Hence it follows that 2, 3, and 5 have orders 8, 16 and 16 respectively.
(b) Consider the divisors 2, 3, 6 and 9 of 18. Working modulo 19 gives
2=4 22=8 2=7 2°=18, 2¥=1
32=9, 3=8 3=7 3 =18 3¥=1
=6, 5°=11, 55=7 5 =1
Hence it follows that 2, 3, and 5 have orders 18, 18 and 9 respectively.
(c) Using the exponents 2, 11 and 22, and working modulo 23 gives
2 =4 211=1
3?=9 3'=1
52=2, 51=22 52=1.
Thus 2, 3, and 5 have orders 11, 11 and 22 respectively.

(2) Establish each of the following statements below:

(a) If a has order hk modulo n, then a" has order & modulo n.

(b) If @ has order 2k modulo an odd prime p, then a* = —1 mod p.

Solution:

(a) Assume that a has order hk (mod n), so that a* =1 (mod n), but ™ # 1 (mod n)
for 0 < m < hk. Since (a")* =1 (mod n), it follows that the element a” has order at most
k.

Now if the order of a” is r, with 0 < r < k, then

ahr — (ah)r
=1 mod n,
1
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and this is impossible, since hr < hk. Hence it follows that a" has order k& (mod n).
(b) Suppose that a has order 2k (mod p), where p is an odd prime. Then

a®*=1 (mod p) (1)
but a™ = 1 (mod p) for 0 < m < p. Equation (1) implies that p | (a®* — 1), i.e. that
p | (@* — 1)(a* + 1). Therefore either a* = 1 (mod p), or a* = —1 (mod p). However

the former possibilty cannot occur, since a has order 2k (mod p). It therefore follows that
a* = —1 (mod p), as claimed.

(3) Prove that ¢(2" — 1) is a multiple of n for any n > 1. [Hint: The integer 2 has order
n modulo 2" — 1]

Solution:

Plainly we have that 2" = 1 (mod 2" — 1). If 1 < k < n, then 2 — 1 < 2" — 1. This
implies that 2¥ # 1 (mod 2" — 1), for otherwise we would have (2" — 1) | (28 — 1), which
is impossible. Hence it follows that the order of 2 (mod 2" — 1) is equal to n. By Euler’s
theorem, we have

22" =1 (mod 2" — 1),
and so it follows that n | (2" — 1).

(4) Prove the following assertions:

(a) The odd prime divisors of the integer n? + 1 are of the form 4k + 1. [Hint: If p is an
odd prime, then n? = —1 mod p implies that 4 | ¢(p).]

(b) The odd prime divisors of the integer n* + 1 are of the form 8k + 1.

Solution:

(a) Suppose that p is an odd prime divisor of n? + 1, so that n> = —1 mod p. This
implies that n* = 1 mod p. Euler’s theorem tells us that 4°® = 1 mod p, i.e. that
4P~1 =1 mod p. Hence it follows that 4 | (p — 1), and so p = 4k + 1 for some k.

(b) If p is an odd prime divisor of n* + 1, then n* = —1 mod p, and so n® =1 mod p.
Hence, arguing just as in part (a), it follows that 8 | (p — 1), i.e. that p = 8k + 1 for some

5) Let r be a primitive root modulo p, where p is an odd prime. Prove the following:
) The congruence r*~1/2 = —1 (mod p) holds.
) If 7" is any other primitive root modulo p, then 77’ is not a primitive root modulo p.
t: From part (a), (rr')?=5/2 = 1 (mod p).]
(c) If the integer 7’ is such that 7" = 1 (mod p), then ' is also a primitive root modulo

Solution:

(a) Since r is a primitive root modulo p, r»~! = 1 (mod p), and p — 1 is the smallest
integer with this property. We deduce that p | (r"~1 — 1), i.e. p | [(r®=Y/2 — 1)(rP=1/2 1 1)].
Hence either 7®~1/2 =1 (mod p) or r®~1/2 = —1 (mod p). The first possibilty contradicts
the fact that r is a primitive root modulo p. Therefore 7?~1/2 = —1 (mod p) as claimed.

(b) If r and 7’ are primitive roots modulo an odd prime p, then by part (a),

(r)P~D/2 = =D P-D2 = 1. 1 =1 (mod p).
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Hence 71’ has order at most (p — 1)/2 modulo p, and so cannot be a primitive root modulo
.

(c) By Fermat’s Little Theorem, we have (r')?~! = 1 (mod p). If the order of ' modulo
p were equal to k, with 1 < k < p — 1, then we would have

l=1"=@"Yr =k =r" 1=¢r" (mod p),

which contradicts the fact that r is a primitive root modulo p. Therefore the order of 7’
modulo p is equal to p — 1, and so 7’ is a primitive root modulo p.

(6) For any prime p > 3, prove that the primitive roots modulo p occur in incongruent
pairs r, ', where rr’ = 1 (mod p). [Hint: If r is a primitive root modulo p, consider the
integer 1’ = rP2 ]

Solution:

Let r be a primitive root modulo the prime p > 3, and set v’ = rP=2. Then rr’ = r-rP=2 =
rP~1 =1 (mod p). Hence, by Problem 5(c) above, we have that 7’ is a primitive root modulo
p. Also r is not congrunet to r’ modulo p, for otherwise we would have p = 3.

(7) Suppose that p is a prime. Use the fact that there exists a primitive root modulo p to
give a different proof of Wilson’s theorem. [Hint: Show that if r is a primitive root modulo
p, then (p — 1)! = p1+2H+F=1 (mod p).]

Solution:
If r is a primitive root modulo p, then the integers 1,2,...(p — 1) are congruent to
r,7%,...7P~! in some order. Hence
(p—D!=r-r*---r»1 (mod p)
= plt2t+(p-1) (HlOd p)

yp(p—1)/2 (mod p)
(1) (mod p)
—1  (mod p),

and this proves Wilson’s theorem.



