MATH 115A SOLUTION SET V
 FEBRUARY 17, 2005

(1) Find the orders of the integers 2,3 and 5 :
(a) modulo 17 ;
(b) modulo 19;
(c) modulo 23 .

Solution:

(a) Euler's theorem implies that it suffices to consider exponents which are divisors of 16. Working modulo 17 gives

$$
\begin{aligned}
& 2^{2} \equiv 4, \quad 2^{4} \equiv 16, \quad 2^{8} \equiv 1, \\
& 3^{2} \equiv 9, \quad 3^{4} \equiv 13, \quad 3^{8} \equiv 16, \quad 3^{16} \equiv 1, \\
& 5^{2} \equiv 8, \quad 5^{4} \equiv 13, \quad 5^{8} \equiv 16, \quad 5^{16} \equiv 1 .
\end{aligned}
$$

Hence it follows that 2, 3, and 5 have orders 8,16 and 16 respectively.
(b) Consider the divisors $2,3,6$ and 9 of 18 . Working modulo 19 gives

$$
\begin{array}{llll}
2^{2} \equiv 4, & 2^{3} \equiv 8, & 2^{6} \equiv 7, & 2^{9} \equiv 18, \\
3^{2} \equiv 9, & 2^{18} \equiv 1 \\
3^{3} \equiv 8, & 3^{6} \equiv 7, & 3^{9} \equiv 18, & 3^{18} \equiv 1 \\
5^{2} \equiv 6, & 5^{3} \equiv 11, & 5^{6} \equiv 7, & 5^{9} \equiv 1
\end{array}
$$

Hence it follows that 2,3 , and 5 have orders 18,18 and 9 respectively.
(c) Using the exponents 2,11 and 22 , and working modulo 23 gives

$$
\begin{array}{ll}
2^{2} \equiv 4, & 2^{1} 1 \equiv 1 \\
3^{2} \equiv 9, & 3^{11} \equiv 1 \\
5^{2} \equiv 2, & 5^{11} \equiv 22,
\end{array} \quad 5^{22} \equiv 1 .
$$

Thus 2,3 , and 5 have orders 11,11 and 22 respectively.
(2) Establish each of the following statements below:
(a) If a has order $h k$ modulo n, then a^{h} has order k modulo n.
(b) If a has order $2 k$ modulo an odd prime p, then $a^{k} \equiv-1 \bmod p$.

Solution:

(a) Assume that a has order $h k(\bmod n)$, so that $a^{h k} \equiv 1(\bmod n)$, but $a^{m} \not \equiv 1(\bmod n)$ for $0<m<h k$. Since $\left(a^{h}\right)^{k} \equiv 1(\bmod n)$, it follows that the element a^{h} has order at most k.

Now if the order of a^{h} is r, with $0<r<k$, then

$$
\begin{aligned}
a^{h r} & =\left(a^{h}\right)^{r} \\
& \equiv 1 \quad \bmod n, \\
& 1
\end{aligned}
$$

and this is impossible, since $h r<h k$. Hence it follows that a^{h} has order $k(\bmod n)$.
(b) Suppose that a has order $2 k(\bmod p)$, where p is an odd prime. Then

$$
\begin{equation*}
a^{2 k} \equiv 1 \quad(\bmod p) \tag{1}
\end{equation*}
$$

but $a^{m} \equiv 1(\bmod p)$ for $0<m<p$. Equation (1) implies that $p \mid\left(a^{2 k}-1\right)$, i.e. that $p \mid\left(a^{k}-1\right)\left(a^{k}+1\right)$. Therefore either $a^{k} \equiv 1(\bmod p)$, or $a^{k} \equiv-1(\bmod p)$. However the former possibilty cannot occur, since a has order $2 k(\bmod p)$. It therefore follows that $a^{k} \equiv-1(\bmod p)$, as claimed.
(3) Prove that $\phi\left(2^{n}-1\right)$ is a multiple of n for any $n \geq 1$. [Hint: The integer 2 has order n modulo $2^{n}-1$.]

Solution:

Plainly we have that $2^{n} \equiv 1\left(\bmod 2^{n}-1\right)$. If $1 \leq k<n$, then $2^{k}-1<2^{n}-1$. This implies that $2^{k} \not \equiv 1\left(\bmod 2^{n}-1\right)$, for otherwise we would have $\left(2^{n}-1\right) \mid\left(2^{k}-1\right)$, which is impossible. Hence it follows that the order of $2\left(\bmod 2^{n}-1\right)$ is equal to n. By Euler's theorem, we have

$$
2^{\phi\left(2^{n}-1\right)} \equiv 1 \quad\left(\bmod 2^{n}-1\right)
$$

and so it follows that $n \mid \phi\left(2^{n}-1\right)$.
(4) Prove the following assertions:
(a) The odd prime divisors of the integer $n^{2}+1$ are of the form $4 k+1$. [Hint: If p is an odd prime, then $n^{2} \equiv-1 \bmod p$ implies that $4 \mid \phi(p)$.]
(b) The odd prime divisors of the integer $n^{4}+1$ are of the form $8 k+1$.

Solution:

(a) Suppose that p is an odd prime divisor of $n^{2}+1$, so that $n^{2} \equiv-1 \bmod p$. This implies that $n^{4} \equiv 1 \bmod p$. Euler's theorem tells us that $4^{\phi(p)} \equiv 1 \bmod p$, i.e. that $4^{p-1} \equiv 1 \bmod p$. Hence it follows that $4 \mid(p-1)$, and so $p=4 k+1$ for some k.
(b) If p is an odd prime divisor of $n^{4}+1$, then $n^{4} \equiv-1 \bmod p$, and so $n^{8} \equiv 1 \bmod p$. Hence, arguing just as in part (a), it follows that $8 \mid(p-1)$, i.e. that $p=8 k+1$ for some k.
(5) Let r be a primitive root modulo p, where p is an odd prime. Prove the following:
(a) The congruence $r^{(p-1) / 2} \equiv-1(\bmod p)$ holds.
(b) If r^{\prime} is any other primitive root modulo p, then $r r^{\prime}$ is not a primitive root modulo p. [Hint: From part (a), $\left(r r^{\prime}\right)^{(p-1) / 2} \equiv 1(\bmod p)$.]
(c) If the integer r^{\prime} is such that $r r^{\prime} \equiv 1(\bmod p)$, then r^{\prime} is also a primitive root modulo p.

Solution:

(a) Since r is a primitive root modulo $p, r^{p-1} \equiv 1(\bmod p)$, and $p-1$ is the smallest integer with this property. We deduce that $p \mid\left(r^{p-1}-1\right)$, i.e. $p \mid\left[\left(r^{(p-1) / 2}-1\right)\left(r^{(p-1) / 2}+1\right)\right]$. Hence either $r^{(p-1) / 2} \equiv 1(\bmod p)$ or $r^{(p-1) / 2} \equiv-1(\bmod p)$. The first possibilty contradicts the fact that r is a primitive root modulo p. Therefore $r^{(p-1) / 2} \equiv-1(\bmod p)$ as claimed.
(b) If r and r^{\prime} are primitive roots modulo an odd prime p, then by part (a),

$$
\left(r r^{\prime}\right)^{(p-1) / 2} \equiv r^{(p-1) / 2}\left(r^{\prime}\right)^{(p-1) / 2} \equiv-1 \cdot-1 \equiv 1 \quad(\bmod p) .
$$

Hence $r r^{\prime}$ has order at most $(p-1) / 2$ modulo p, and so cannot be a primitive root modulo p.
(c) By Fermat's Little Theorem, we have $\left(r^{\prime}\right)^{p-1} \equiv 1(\bmod p)$. If the order of r^{\prime} modulo p were equal to k, with $1 \leq k<p-1$, then we would have

$$
1 \equiv 1^{k} \equiv\left(r r^{\prime}\right)^{k} \equiv r^{k}\left(r^{\prime}\right)^{k} \equiv r^{k} \cdot 1 \equiv r^{k} \quad(\bmod p)
$$

which contradicts the fact that r is a primitive root modulo p. Therefore the order of r^{\prime} modulo p is equal to $p-1$, and so r^{\prime} is a primitive root modulo p.
(6) For any prime $p>3$, prove that the primitive roots modulo p occur in incongruent pairs r, r^{\prime}, where $r r^{\prime} \equiv 1(\bmod p)$. [Hint: If r is a primitive root modulo p, consider the integer $r^{\prime}=r^{p-2}$.]

Solution:

Let r be a primitive root modulo the prime $p>3$, and set $r^{\prime}=r^{p-2}$. Then $r r^{\prime}=r \cdot r^{p-2}=$ $r^{p-1} \equiv 1(\bmod p)$. Hence, by Problem 5(c) above, we have that r^{\prime} is a primitive root modulo p. Also r is not congrunet to r^{\prime} modulo p, for otherwise we would have $p=3$.
(7) Suppose that p is a prime. Use the fact that there exists a primitive root modulo p to give a different proof of Wilson's theorem. [Hint: Show that if r is a primitive root modulo p, then $(p-1)!\equiv r^{1+2+\cdots+(p-1)}(\bmod p)$.]

Solution:

If r is a primitive root modulo p, then the integers $1,2, \ldots(p-1)$ are congruent to $r, r^{2}, \ldots r^{p-1}$ in some order. Hence

$$
\begin{aligned}
(p-1)! & \equiv r \cdot r^{2} \cdots r^{p-1} \quad(\bmod p) \\
& \equiv r^{1+2+\cdots+(p-1)} \quad(\bmod p) \\
& \equiv r^{p(p-1) / 2} \quad(\bmod p) \\
& \equiv(-1)^{p} \quad(\bmod p) \\
& \equiv-1 \quad(\bmod p),
\end{aligned}
$$

and this proves Wilson's theorem.

