
MATH 115A SOLUTION SET V
FEBRUARY 17, 2005

(1) Find the orders of the integers 2, 3 and 5:
(a) modulo 17;
(b) modulo 19;
(c) modulo 23.

Solution:

(a) Euler’s theorem implies that it suffices to consider exponents which are divisors of 16.
Working modulo 17 gives

22 ≡ 4, 24 ≡ 16, 28 ≡ 1,

32 ≡ 9, 34 ≡ 13, 38 ≡ 16, 316 ≡ 1,

52 ≡ 8, 54 ≡ 13, 58 ≡ 16, 516 ≡ 1.

Hence it follows that 2, 3, and 5 have orders 8, 16 and 16 respectively.

(b) Consider the divisors 2, 3, 6 and 9 of 18. Working modulo 19 gives

22 ≡ 4, 23 ≡ 8, 26 ≡ 7, 29 ≡ 18, 218 ≡ 1

32 ≡ 9, 33 ≡ 8, 36 ≡ 7, 39 ≡ 18, 318 ≡ 1

52 ≡ 6, 53 ≡ 11, 56 ≡ 7, 59 ≡ 1.

Hence it follows that 2, 3, and 5 have orders 18, 18 and 9 respectively.

(c) Using the exponents 2, 11 and 22, and working modulo 23 gives

22 ≡ 4, 211 ≡ 1

32 ≡ 9, 311 ≡ 1

52 ≡ 2, 511 ≡ 22, 522 ≡ 1.

Thus 2, 3, and 5 have orders 11, 11 and 22 respectively.

(2) Establish each of the following statements below:
(a) If a has order hk modulo n, then ah has order k modulo n.
(b) If a has order 2k modulo an odd prime p, then ak ≡ −1 mod p.

Solution:

(a) Assume that a has order hk (mod n), so that ahk ≡ 1 (mod n), but am 6≡ 1 (mod n)
for 0 < m < hk. Since (ah)k ≡ 1 (mod n), it follows that the element ah has order at most
k.

Now if the order of ah is r, with 0 < r < k, then

ahr = (ah)r

≡ 1 mod n,
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and this is impossible, since hr < hk. Hence it follows that ah has order k (mod n).

(b) Suppose that a has order 2k (mod p), where p is an odd prime. Then

a2k ≡ 1 (mod p) (1)

but am ≡ 1 (mod p) for 0 < m < p. Equation (1) implies that p | (a2k − 1), i.e. that
p | (ak − 1)(ak + 1). Therefore either ak ≡ 1 (mod p), or ak ≡ −1 (mod p). However
the former possibilty cannot occur, since a has order 2k (mod p). It therefore follows that
ak ≡ −1 (mod p), as claimed.

(3) Prove that φ(2n − 1) is a multiple of n for any n ≥ 1. [Hint: The integer 2 has order
n modulo 2n − 1.]

Solution:

Plainly we have that 2n ≡ 1 (mod 2n − 1). If 1 ≤ k < n, then 2k − 1 < 2n − 1. This
implies that 2k 6≡ 1 (mod 2n − 1), for otherwise we would have (2n − 1) | (2k − 1), which
is impossible. Hence it follows that the order of 2 (mod 2n − 1) is equal to n. By Euler’s
theorem, we have

2φ(2n−1) ≡ 1 (mod 2n − 1),

and so it follows that n | φ(2n − 1).

(4) Prove the following assertions:
(a) The odd prime divisors of the integer n2 + 1 are of the form 4k + 1. [Hint: If p is an

odd prime, then n2 ≡ −1 mod p implies that 4 | φ(p).]
(b) The odd prime divisors of the integer n4 + 1 are of the form 8k + 1.

Solution:

(a) Suppose that p is an odd prime divisor of n2 + 1, so that n2 ≡ −1 mod p. This
implies that n4 ≡ 1 mod p. Euler’s theorem tells us that 4φ(p) ≡ 1 mod p, i.e. that
4p−1 ≡ 1 mod p. Hence it follows that 4 | (p− 1), and so p = 4k + 1 for some k.

(b) If p is an odd prime divisor of n4 + 1, then n4 ≡ −1 mod p, and so n8 ≡ 1 mod p.
Hence, arguing just as in part (a), it follows that 8 | (p − 1), i.e. that p = 8k + 1 for some
k.

(5) Let r be a primitive root modulo p, where p is an odd prime. Prove the following:
(a) The congruence r(p−1)/2 ≡ −1 (mod p) holds.
(b) If r′ is any other primitive root modulo p, then rr′ is not a primitive root modulo p.

[Hint: From part (a), (rr′)(p−1)/2 ≡ 1 (mod p).]
(c) If the integer r′ is such that rr′ ≡ 1 (mod p), then r′ is also a primitive root modulo

p.

Solution:

(a) Since r is a primitive root modulo p, rp−1 ≡ 1 (mod p), and p − 1 is the smallest
integer with this property. We deduce that p | (rp−1− 1), i.e. p | [(r(p−1)/2− 1)(r(p−1)/2 +1)].
Hence either r(p−1)/2 ≡ 1 (mod p) or r(p−1)/2 ≡ −1 (mod p). The first possibilty contradicts
the fact that r is a primitive root modulo p. Therefore r(p−1)/2 ≡ −1 (mod p) as claimed.

(b) If r and r′ are primitive roots modulo an odd prime p, then by part (a),

(rr′)(p−1)/2 ≡ r(p−1)/2(r′)(p−1)/2 ≡ −1 · −1 ≡ 1 (mod p).
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Hence rr′ has order at most (p− 1)/2 modulo p, and so cannot be a primitive root modulo
p.

(c) By Fermat’s Little Theorem, we have (r′)p−1 ≡ 1 (mod p). If the order of r′ modulo
p were equal to k, with 1 ≤ k < p− 1, then we would have

1 ≡ 1k ≡ (rr′)k ≡ rk(r′)k ≡ rk · 1 ≡ rk (mod p),

which contradicts the fact that r is a primitive root modulo p. Therefore the order of r′

modulo p is equal to p− 1, and so r′ is a primitive root modulo p.

(6) For any prime p > 3, prove that the primitive roots modulo p occur in incongruent
pairs r, r′, where rr′ ≡ 1 (mod p). [Hint: If r is a primitive root modulo p, consider the
integer r′ = rp−2.]

Solution:

Let r be a primitive root modulo the prime p > 3, and set r′ = rp−2. Then rr′ = r ·rp−2 =
rp−1 ≡ 1 (mod p). Hence, by Problem 5(c) above, we have that r′ is a primitive root modulo
p. Also r is not congrunet to r′ modulo p, for otherwise we would have p = 3.

(7) Suppose that p is a prime. Use the fact that there exists a primitive root modulo p to
give a different proof of Wilson’s theorem. [Hint: Show that if r is a primitive root modulo
p, then (p− 1)! ≡ r1+2+···+(p−1) (mod p).]

Solution:

If r is a primitive root modulo p, then the integers 1, 2, . . . (p − 1) are congruent to
r, r2, . . . rp−1 in some order. Hence

(p− 1)! ≡ r · r2 · · · rp−1 (mod p)

≡ r1+2+···+(p−1) (mod p)

≡ rp(p−1)/2 (mod p)

≡ (−1)p (mod p)

≡ −1 (mod p),

and this proves Wilson’s theorem.


