1. Let \(p \) be an odd prime, and let \(\zeta_p \) be a primitive \(p \)th root of unity. Set \(\Gamma = \text{Gal}(\mathbb{Q}(\zeta_p)/\mathbb{Q}) \), and let \(\chi : \Gamma \to \mathbb{C}^* \) be a character of order \(n > 1 \) (i.e. \(\chi \) is a group homomorphism, and \(n \) is the least integer such that \(\chi^n \) is the trivial homomorphism). We define the Gauss sum \(\tau(\chi, \zeta_p) \) by

\[
\tau(\chi, \zeta_p) = \sum_{\gamma \in \Gamma} \chi(\gamma) \zeta_p^{\gamma}.
\]

(i) Show that, for \(\gamma \in \Gamma \), we have

\[
\tau(\chi, \zeta_p^\gamma) = \chi(\gamma^{-1}) \tau(\chi, \zeta_p).
\]

(ii) Show that

\[
\tau(\chi, \zeta_p)\overline{\tau(\chi, \zeta_p)} = p.
\]

(Here \(\overline{z} \) denotes the complex conjugate of \(z \).)

(iii) Let \(\chi \) be the unique character of \(\Gamma \) of order 2. From (i) and (ii), deduce that

\[
\tau(\chi, \zeta_p) = \pm \sqrt{\left(\frac{-1}{p}\right)} p.
\]

2. Describe the factorisation of the ideals generated by 2, 3, 5 in \(\mathbb{Q}(\sqrt[3]{6}) \).

3. Let \(\theta \) satisfy \(\theta^3 - \theta - 1 = 0 \). Describe the factorisation of the ideals generated by 2, 3, 5, 23 in \(\mathbb{Q}(\theta) \).