Math 108A - Home Work # 3 $_{\rm Due:\ April\ 23,\ 2008}$

- 1. Exercises 8, 9, 12, 14 on p. 35-36 in LADR.
- 2. Let v_1, \ldots, v_m and u be vectors in a vector space V. Show that

$$u \in span(v_1, \dots, v_m) \Leftrightarrow span(v_1, \dots, v_m, u) = span(v_1, \dots, v_m).$$

- 3. (a) Prove that $\{v_1,\ldots,v_m\}$ is a linearly independent set of vectors if and only if any $u\in$ $span(v_1,\ldots,v_m)$ can be written uniquely as a linear combination $u=c_1v_1+\cdots+c_mv_m$ for scalars $c_1, \ldots, c_m \in F$.
 - (b) Prove that $\{v_1,\ldots,v_m\}$ is a linearly independent set of vectors if and only if

$$span(v_1, \ldots, v_m) = Fv_1 \oplus Fv_2 \oplus \cdots \oplus Fv_m.$$

(Note: by definition $span(v_1, \ldots, v_m) = Fv_1 + Fv_2 + \cdots + Fv_m$.)