Math 108B - Home Work \# 1 Solutions

1. For T to have the matrix

$$
\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

with respect to a basis $\left\{u_{1}, u_{2}\right\}$ of \mathbb{R}^{2} and a basis $\left\{v_{1}, v_{2}, v_{3}\right\}$ for \mathbb{R}^{3}, means simply that $T u_{1}=v_{1}$ and $T u_{2}=v_{2}$. Hence $\left\{u_{1}, u_{2}\right\}$ can remain the standard basis, and then $v_{1}=(1,2,0)$ and $v_{2}=(-1,2,3)$ will be the columns of the given matrix for T. Since v_{1} and v_{2} are linearly independent, we can complete them to a basis. To do this we just need to find a third vector of \mathbb{R}^{3} that is not a linear combination of v_{1} and v_{2}. For instance, $v_{3}=e_{3}=(0,0,1)$ works.
2. We must multiply the given matrix on the right by the change of basis matrix C whose columns are the coordinates of the new basis w_{1}, w_{2} in the old basis $\left\{v_{1}, v_{2}\right\}$, and we must multiply it on the left by the change of basis matrix C^{-1} whose columns are the coordinates of v_{1}, v_{2} in the new basis $\left\{w_{1}, w_{2}\right\}$. To find C, note that $w_{1}=(1,2)=$ $\frac{3}{2}(1,1)+\frac{1}{2}(-1,1)=\frac{3}{2} v_{1}+\frac{1}{2} v_{2}$ and $w_{2}=(0,1)=((1,1)+(-1,1)) / 2=\frac{1}{2} v_{1}+\frac{1}{2} v_{2}$. Hence

$$
C=\left(\begin{array}{ll}
3 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

To get C^{-1}, note $v_{1}=(1,1)=(1,2)-(0,1)=w_{1}-w_{2}$ and $v_{2}=(-1,1)=-(1,2)+$ $3(0,1)=-w_{1}+3 w_{2}$. Hence

$$
C^{-1}=\left(\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right),
$$

and the matrix for T in the new basis is

$$
\begin{aligned}
C^{-1} A C & =\left(\begin{array}{rr}
1 & -1 \\
-1 & 3
\end{array}\right)\left(\begin{array}{rr}
4 & -1 \\
2 & 4
\end{array}\right)\left(\begin{array}{ll}
3 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right) \\
& =\left(\begin{array}{rr}
13 / 2 & 3 / 2 \\
-11 / 2 & 3 / 2
\end{array}\right)
\end{aligned}
$$

3. Let $T: V \rightarrow W$ be a linear transformation, and let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis for V. Show that T is invertible if and only if $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is a basis for W.
Solution. \Leftarrow : Suppose $\left\{T v_{1}, \ldots, T v_{n}\right\}$ is a basis for W, and write $w_{i}=T v_{i}$ for each i. Then we can define a linear transformation $L: W \rightarrow V$ by

$$
L\left(c_{1} w_{1}+\cdots+c_{n} w_{n}\right)=c_{1} v_{1}+\cdots c_{n} v_{n}, \quad \forall c_{1}, \ldots, c_{n} \in F .
$$

L is well-defined since the vectors w_{1}, \ldots, w_{n} are linearly independent, and since these vectors span W, L is defined for all vectors in W. Clearly $L T v_{i}=L w_{i}=v_{i}$ and $T L w_{i}=T v_{i}=w_{i}$ for every i. Using linearity of T and L it follows that $L T v=v$ and $T L w=w$ for all $v \in V$ and all $w \in W$. Thus L is the inverse of T and T is invertible.
\Rightarrow : Let $L=T^{-1}$. We first show that $T v_{1}, \ldots, T v_{n}$ span W. Let $w \in W$ and write $L w=c_{1} v_{1}+\cdots+c_{n} v_{n}$ in V. Applying T, we get

$$
w=T L w=c_{1} T v_{1}+\cdots+c_{n} T v_{n} .
$$

To show that $T v_{1}, \ldots, T v_{n}$ are linearly independent, suppose that $c_{1} T v_{1}+\cdots+c_{n} T v_{n}=$ 0 for scalars c_{i}. Applying L, we get

$$
0=L(0)=c_{1} L T v_{1}+\cdots+c_{n} L T v_{n}=c_{1} v_{1}+\cdots c_{n} v_{n}
$$

Since v_{1}, \ldots, v_{n} are linearly independent, we must have $c_{i}=0$ for all i.
4. The trace of an $n \times n$ matrix A is defined as the sum of all the entries on the main diagonal of A. That is,

$$
\operatorname{tr}(A)=\sum_{i=1}^{n} A_{i i}
$$

where $A_{i j}$ denotes the entry of A in the $i^{\text {th }}$ row and $j^{\text {th }}$ column.
(a) Show that for any two $n \times n$ matrices A and $B, \operatorname{tr}(A B)=\operatorname{tr}(B A)$.
(b) Use (a) to show that if X and Y are similar matrices then $\operatorname{tr}(X)=\operatorname{tr}(Y)$.

Solution. (a)

$$
\operatorname{tr}(A B)=\sum_{i=1}^{n}(A B)_{i i}=\sum_{i=1}^{n} \sum_{j=1}^{n} A_{i j} B_{j i}=\sum_{j=1}^{n} \sum_{i=1}^{n} B_{j i} A_{i j}=\sum_{j=1}^{n}(B A)_{j j}=\operatorname{tr}(B A) .
$$

(b) If X and Y are similar matrices, then $X=C^{-1} Y C$ for some invertible matrix C. Thus

$$
\operatorname{tr}(X)=\operatorname{tr}\left(C^{-1}(Y C)\right)=\operatorname{tr}\left((Y C) C^{-1}\right)=\operatorname{tr}(Y)
$$

5. Let V be an inner-product space, and let W be a subspace of V. Define the orthogonal complement of W by

$$
W^{\perp}=\{v \in V \mid\langle v, w\rangle=0 \forall w \in W\}
$$

Show that W^{\perp} is a subspace of V.

Solution. Clearly, $0 \in W^{\perp}$ since $\langle 0, w\rangle=0$ for any $w \in W$. If $v \in W^{\perp}$ and $a \in F$, then $a v \in W^{\perp}$ since $\langle a v, w\rangle=a\langle v, w\rangle=0$ for any $w \in W$. Finally, if $u, v \in W^{\perp}$, then $u+v \in W^{\perp}$ since $\langle u+v, w\rangle=\langle u, w\rangle+\langle v, w\rangle=0+0=0$ for any $w \in W$. Thus W^{\perp} is a subspace of V.

