Math 108B - Home Work # 2

Due: Wednesday, April 16, 2008

1. Let b_1, \ldots, b_n be positive real numbers. Check that the form

$$\langle z, w \rangle = b_1 z_1 \bar{w}_1 + \cdots + b_n z_n \bar{w}_n$$

defines an inner product on F^n , where $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$. (In particular, the dot product on \mathbb{C}^n is an inner product.)

- 2. Let V be an F-vector space with basis $\{v_1, \ldots, v_n\}$, and let $B = (b_{ij})$ be the $n \times n$ matrix with entries $b_{ij} = \langle v_i, v_j \rangle \in F$. Show that
 - (a) $b_{ii} > 0$ for $1 \le i \le n$; and
 - (b) $B = \overline{B}^t$, i.e., $b_{ij} = \overline{b}_{ji}$ for all $1 \le i, j \le n$.
- 3. Give an example of a 2×2 matrix *B* satisfying (a) and (b) above that does not define an inner product on F^2 with $\langle e_i, e_j \rangle = b_{ij}$ for $1 \le i, j \le 2$. ($\{e_1, e_2\}$ is the standard basis for F^2 .) Hint: Construct the matrix *B* so that there is a vector *v* whose norm would be negative with respect to the corresponding inner product.
- 4. Problems 4, 5 and 6 on p. 122 of LADR.
- 5. (Bonus) Let x_1, \ldots, x_n be positive real numbers. Prove that

$$(x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n}\right) \ge n^2.$$

(Hint: Use the Cauchy-Schwarz inequality.)