Math 108B - Home Work \# 2
 Due: Wednesday, April 16, 2008

1. Let b_{1}, \ldots, b_{n} be positive real numbers. Check that the form

$$
\langle z, w\rangle=b_{1} z_{1} \bar{w}_{1}+\cdots b_{n} z_{n} \bar{w}_{n}
$$

defines an inner product on F^{n}, where $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$. (In particular, the dot product on \mathbb{C}^{n} is an inner product.)
2. Let V be an F-vector space with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, and let $B=\left(b_{i j}\right)$ be the $n \times n$ matrix with entries $b_{i j}=\left\langle v_{i}, v_{j}\right\rangle \in F$. Show that
(a) $b_{i i}>0$ for $1 \leq i \leq n$; and
(b) $B=\bar{B}^{t}$, i.e., $b_{i j}=\bar{b}_{j i}$ for all $1 \leq i, j \leq n$.
3. Give an example of a 2×2 matrix B satisfying (a) and (b) above that does not define an inner product on F^{2} with $\left\langle e_{i}, e_{j}\right\rangle=b_{i j}$ for $1 \leq i, j \leq 2$. $\left(\left\{e_{1}, e_{2}\right\}\right.$ is the standard basis for F^{2}.) Hint: Construct the matrix B so that there is a vector v whose norm would be negative with respect to the corresponding inner product.
4. Problems 4,5 and 6 on p. 122 of LADR.
5. (Bonus) Let x_{1}, \ldots, x_{n} be positive real numbers. Prove that

$$
\left(x_{1}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right) \geq n^{2} .
$$

(Hint: Use the Cauchy-Schwarz inequality.)

