Math 108B - Home Work \# 2 Solutions

1. Let b_{1}, \ldots, b_{n} be positive real numbers. Check that the form

$$
\langle z, w\rangle=b_{1} z_{1} \bar{w}_{1}+\cdots b_{n} z_{n} \bar{w}_{n}
$$

defines an inner product on F^{n}, where $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$. (In particular, the dot product on \mathbb{C}^{n} is an inner product.)
Solution. We must check that $\langle z, w\rangle$ is (1) linear in z; (2) positive definite; and (3) conjugate symmetric.
(1) Let $a, c \in F$ and $z, z^{\prime}, w \in F^{n}$. Then

$$
\begin{aligned}
\left\langle a z+c z^{\prime}, w\right\rangle & =\sum_{i=1}^{n} b_{i}\left(a z_{i}+c z_{i}^{\prime}\right) \bar{w}_{i} \\
& =\sum_{i=1}^{n} a b_{i} z_{i} \bar{w}_{i}+\sum_{i=1}^{n} c b_{i} z_{i}^{\prime} \bar{w}_{i} \\
& =a\langle z, w\rangle+c\left\langle z^{\prime}, w\right\rangle .
\end{aligned}
$$

(2) Let $z \in F^{n}$. Then

$$
\langle z, z\rangle=\sum_{i=1}^{n} b_{i} z_{i} \bar{z}_{i}=\sum_{i=1}^{n} b_{i}\left|z_{i}\right|^{2} \geq 0,
$$

since all $b_{i}>0$. Furthermore, equality holds if and only if $\left|z_{i}\right|=0$ for all i. That is, if and only if, $z=0$.
(3) Let $z, w \in F^{n}$. Then

$$
\overline{\langle w, z\rangle}=\overline{\sum_{i=1}^{n} b_{i} w_{i} \bar{z}_{i}}=\sum_{i=1}^{n} b_{i} \bar{w}_{i} z_{i}=\langle z, w\rangle .
$$

2. Let V be an F-vector space with basis $\left\{v_{1}, \ldots, v_{n}\right\}$, and let $B=\left(b_{i j}\right)$ be the $n \times n$ matrix with entries $b_{i j}=\left\langle v_{i}, v_{j}\right\rangle \in F$. Show that
(a) $b_{i i}>0$ for $1 \leq i \leq n$; and
(b) $B=\bar{B}^{t}$, i.e., $b_{i j}=\bar{b}_{j i}$ for all $1 \leq i, j \leq n$.

Solution. (a) By definition, $b_{i i}=\left\langle v_{i}, v_{i}\right\rangle>0$ since the inner product is positive definite.
(b) By definition, $b_{i j}=\left\langle v_{i}, v_{j}\right\rangle=\overline{\left\langle v_{j}, v_{i}\right\rangle}=\bar{b}_{j i}$ by conjugate symmetry of the inner product.
3. Give an example of a 2×2 matrix B satisfying (a) and (b) above that does not define an inner product on F^{2} with $\left\langle e_{i}, e_{j}\right\rangle=b_{i j}$ for $1 \leq i, j \leq 2$. $\left(\left\{e_{1}, e_{2}\right\}\right.$ is the standard basis for F^{2}.) Hint: Construct the matrix B so that there is a vector v whose norm would be negative with respect to the corresponding inner product.
Solution. Suppose $B=\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ for $a, d>0$ defines an inner product $\langle-,-\rangle$. If $(x, y) \in \mathbb{R}^{2}$, we would then have

$$
\langle(x, y),(x, y)\rangle=x^{2}\left\langle e_{1}, e_{1}\right\rangle+2 x y\left\langle e_{1}, e_{2}\right\rangle+y^{2}\left\langle e_{2}, e_{2}\right\rangle=a x^{2}+2 b x y+d y^{2} .
$$

We can obtain a contradiction by exhibiting some $a, b, d, x, y \in \mathbb{R}$ such that the above expression is negative or zero, since that will imply that this inner product is not actually positive definite. To get an example, let $y=1$, and solve $a x^{2}+2 b x+d=0$ for x using the quadratic formula. We get $x=\left(-2 b+\sqrt{4 b^{2}-4 a d}\right) / 2 a$, and this is a real number as long as $4 b^{2}-4 a d \geq 0$. So for instance, we may take $a=d=1, b=2$ and then $(x, y)=(-1,1)$ would have a negative inner-product with itself.
4. 4. If $\|u\|=3,\|u+v\|=4$, and $\|u-v\|=6$, we can solve for $\|v\|$ using the parallelogram identity.

$$
\|v\|^{2}=\left(\|u+v\|^{2}+\|u-v\|^{2}-2\|u\|^{2}\right) / 2=17 .
$$

Thus $\|v\|=\sqrt{17}$.
5. The norm $\|(x, y)\|=|x|+|y|$ does not come from an inner product on \mathbb{R}^{2}, since it does not satisfy the parallelogram identity. For example, let $u=(1,0)$ and $v=(0,1)$ then

$$
\|u+v\|^{2}+\|u-v\|^{2}=2^{2}+2^{2}=8
$$

but

$$
2\left(\|u\|^{2}+\|v\|^{2}\right)=2\left(1^{2}+1^{2}\right)=4
$$

6. Let $u, v \in V$, where V is an inner product space over \mathbb{R}. We have

$$
\|u+v\|^{2}=\langle u+v, u+v\rangle=\|u\|^{2}+2\langle u, v\rangle+\|v\|^{2}
$$

and

$$
\|u-v\|^{2}=\langle u-v, u-v\rangle=\|u\|^{2}-2\langle u, v\rangle+\|v\|^{2} .
$$

Thus, we can solve for $\langle u, v\rangle$ by subtracting the second equation from the first to get

$$
\langle u, v\rangle=\frac{\|u+v\|^{2}-\|u-v\|^{2}}{4} .
$$

5. (Bonus) Let x_{1}, \ldots, x_{n} be positive real numbers. Prove that

$$
\left(x_{1}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right) \geq n^{2}
$$

(Hint: Use the Cauchy-Schwarz inequality.)
Solution. Since $x_{i}>0$, we may write $x_{i}=a_{i}^{2}$ for real numbers $a_{i}>0$. Then

$$
\begin{aligned}
\left(x_{1}+\cdots+x_{n}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right) & =\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)\left(\frac{1}{a_{1}^{2}}+\cdots+\frac{1}{a_{n}^{2}}\right) \\
& =\left\|\left(a_{1}, \ldots, a_{n}\right)\right\|^{2} \cdot\left\|\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)\right\|^{2} \\
& \geq\left|\left(a_{1}, \ldots, a_{n}\right) \cdot\left(a_{1}^{-1}, \ldots, a_{n}^{-1}\right)\right|^{2} \\
& =n^{2},
\end{aligned}
$$

where the inequality is by (the square of) the Cauchy-Schwarz inequality for the standard dot product in \mathbb{R}^{n}.

