Math 108B - Home Work # 2 Solutions

1. Let b_1, \ldots, b_n be positive real numbers. Check that the form

$$\langle z, w \rangle = b_1 z_1 \bar{w}_1 + \cdots + b_n z_n \bar{w}_n$$

defines an inner product on F^n , where $z = (z_1, \ldots, z_n)$ and $w = (w_1, \ldots, w_n)$. (In particular, the dot product on \mathbb{C}^n is an inner product.)

Solution. We must check that $\langle z, w \rangle$ is (1) linear in z; (2) positive definite; and (3) conjugate symmetric.

(1) Let $a, c \in F$ and $z, z', w \in F^n$. Then

$$\langle az + cz', w \rangle = \sum_{i=1}^{n} b_i (az_i + cz'_i) \overline{w}_i$$

$$= \sum_{i=1}^{n} ab_i z_i \overline{w}_i + \sum_{i=1}^{n} cb_i z'_i \overline{w}_i$$

$$= a \langle z, w \rangle + c \langle z', w \rangle.$$

(2) Let $z \in F^n$. Then

$$\langle z, z \rangle = \sum_{i=1}^{n} b_i z_i \overline{z}_i = \sum_{i=1}^{n} b_i |z_i|^2 \ge 0,$$

since all $b_i > 0$. Furthermore, equality holds if and only if $|z_i| = 0$ for all *i*. That is, if and only if, z = 0.

(3) Let $z, w \in F^n$. Then

$$\overline{\langle w, z \rangle} = \overline{\sum_{i=1}^{n} b_i w_i \overline{z}_i} = \sum_{i=1}^{n} b_i \overline{w}_i z_i = \langle z, w \rangle.$$

- 2. Let V be an F-vector space with basis $\{v_1, \ldots, v_n\}$, and let $B = (b_{ij})$ be the $n \times n$ matrix with entries $b_{ij} = \langle v_i, v_j \rangle \in F$. Show that
 - (a) $b_{ii} > 0$ for $1 \le i \le n$; and
 - (b) $B = \overline{B}^t$, i.e., $b_{ij} = \overline{b}_{ji}$ for all $1 \le i, j \le n$.

Solution. (a) By definition, $b_{ii} = \langle v_i, v_i \rangle > 0$ since the inner product is positive definite.

(b) By definition, $b_{ij} = \langle v_i, v_j \rangle = \overline{\langle v_j, v_i \rangle} = \overline{b}_{ji}$ by conjugate symmetry of the inner product.

3. Give an example of a 2×2 matrix B satisfying (a) and (b) above that does not define an inner product on F^2 with $\langle e_i, e_j \rangle = b_{ij}$ for $1 \le i, j \le 2$. ($\{e_1, e_2\}$ is the standard basis for F^2 .) Hint: Construct the matrix B so that there is a vector v whose norm would be negative with respect to the corresponding inner product.

Solution. Suppose $B = \begin{pmatrix} a & b \\ b & d \end{pmatrix}$ for a, d > 0 defines an inner product $\langle -, - \rangle$. If $(x, y) \in \mathbb{R}^2$, we would then have

$$\langle (x,y), (x,y) \rangle = x^2 \langle e_1, e_1 \rangle + 2xy \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_1, e_2 \rangle + y^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_2, e_2 \rangle = ax^2 + 2bxy + dy^2 \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_1 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_1, e_2 \rangle + bxy \langle e_2, e_2 \rangle = ax^2 \langle e_2, e_2 \rangle = a$$

We can obtain a contradiction by exhibiting some $a, b, d, x, y \in \mathbb{R}$ such that the above expression is negative or zero, since that will imply that this inner product is not actually positive definite. To get an example, let y = 1, and solve $ax^2 + 2bx + d = 0$ for x using the quadratic formula. We get $x = (-2b + \sqrt{4b^2 - 4ad})/2a$, and this is a real number as long as $4b^2 - 4ad \ge 0$. So for instance, we may take a = d = 1, b = 2and then (x, y) = (-1, 1) would have a negative inner-product with itself.

4. 4. If ||u|| = 3, ||u + v|| = 4, and ||u - v|| = 6, we can solve for ||v|| using the parallelogram identity.

$$||v||^{2} = (||u + v||^{2} + ||u - v||^{2} - 2||u||^{2})/2 = 17.$$

Thus $||v|| = \sqrt{17}$.

5. The norm ||(x, y)|| = |x| + |y| does not come from an inner product on \mathbb{R}^2 , since it does not satisfy the parallelogram identity. For example, let u = (1, 0) and v = (0, 1) then

$$||u+v||^{2} + ||u-v||^{2} = 2^{2} + 2^{2} = 8,$$

but

$$2(||u||^2 + ||v||^2) = 2(1^2 + 1^2) = 4.$$

6. Let $u, v \in V$, where V is an inner product space over \mathbb{R} . We have

$$||u+v||^2 = \langle u+v, u+v \rangle = ||u||^2 + 2\langle u, v \rangle + ||v||^2,$$

and

$$||u - v||^2 = \langle u - v, u - v \rangle = ||u||^2 - 2\langle u, v \rangle + ||v||^2.$$

Thus, we can solve for $\langle u, v \rangle$ by subtracting the second equation from the first to get

$$\langle u, v \rangle = \frac{||u+v||^2 - ||u-v||^2}{4}$$

5. (Bonus) Let x_1, \ldots, x_n be positive real numbers. Prove that

$$(x_1 + \dots + x_n) \left(\frac{1}{x_1} + \dots + \frac{1}{x_n}\right) \ge n^2.$$

(Hint: Use the Cauchy-Schwarz inequality.)

Solution. Since $x_i > 0$, we may write $x_i = a_i^2$ for real numbers $a_i > 0$. Then

$$(x_1 + \dots + x_n)(\frac{1}{x_1} + \dots + \frac{1}{x_n}) = (a_1^2 + \dots + a_n^2)(\frac{1}{a_1^2} + \dots + \frac{1}{a_n^2})$$

= $||(a_1, \dots, a_n)||^2 \cdot ||(a_1^{-1}, \dots, a_n^{-1})||^2$
 $\geq |(a_1, \dots, a_n) \cdot (a_1^{-1}, \dots, a_n^{-1})|^2$
= n^2 ,

where the inequality is by (the square of) the Cauchy-Schwarz inequality for the standard dot product in \mathbb{R}^n .