
Math 108B - Home Work # 3 Solutions

1. LADR Problems. 10. We have ||1|| =
√∫ 1

0
12 dx = 1, so we can take e1 = 1. Now let

u2 = x− 〈x, e1〉e1 = x− 〈x, 1〉1 = x−
∫ 1

0

xdx = x− 1/2.

Since ||u2|| =
√∫ 1

0
(x− 1/2)2 dx =

√
1/12, we let e2 =

√
12x−

√
12/2. Now let

u3 = x2 − 〈x2, e1〉e1 − 〈x2, e2〉e2

= x2 −
∫ 1

0

x2 dx−
∫ 1

0

x2(
√

12x−
√

12/2) dx(
√

12x−
√

12/2)

= x2 − 1/3− 12(1/12)(x− 1/2)

= x2 − x + 1/6

Since ||u3|| =
√∫ 1

0
(x2 − x + 1/6)2 dx =

√∫ 1

0
(x4 − 2x3 + 4x2/3− x/3 + 1/36) dx =√

1/180, let e3 =
√

180u3 =
√

180(x2 − x + 1/6). Now {e1, e2, e3} is an orthonormal
basis.

14. According to corollary 6.27, we need to simply apply the Gram-Schmidt process
to any basis for P2(R) in which the differentiation operator already has an upper
triangular matrix. Since this is the case for the basis {1, x, x2}, it will also be true
for the orthonormal basis constructed in exercise 10. It is also easy to check directly
that differentiation has an upper triangular matrix with respect to the basis {e1, e2, e3}
found in 10.

15. By Theorem 6.29, V = U ⊕ U⊥. If {u1, . . . , um} is a basis for U and {v1, . . . , vn}
is a basis for U⊥ then it is easy to see that {u1, . . . , um, v1, . . . , vn} is a basis for V .
Hence dim V = m + n = dim U + dim U⊥. Alternatively, use Theorem 2.18.

21. We know that ||u − (1, 2, 3, 4)|| is minimized for u = PU(1, 2, 3, 4). In order
to calculate PU(1, 2, 3, 4), we first need to find an orthonormal basis for U . Let
e1 = (1, 1, 0, 0)/||(1, 1, 0, 0)|| = (1/

√
2, 1/

√
2, 0, 0). Let u2 = (1, 1, 1, 2) − (1, 1, 1, 2) ·

(1/
√

2, 1/
√

2, 0, 0)e1 = (1, 1, 1, 2)−
√

2e1 = (0, 0, 1, 2). Then e2 = u2/||u2|| = (0, 0, 1/
√

5, 2/
√

5).
Now PU(1, 2, 3, 4) = (1, 2, 3, 4) ·(1/

√
2, 1/

√
2, 0, 0)e1+(1, 2, 3, 4) ·(0, 0, 1/

√
5, 2/

√
5)e2 =

3e1/
√

2 + 11e2/
√

5 = (3/2, 3/2, 0, 0) + (0, 0, 11/5, 22/5) = (3/2, 3/2, 11/5, 22/5).

2. No, nothing changes. We get the same orthonormal basis for P2(C) in this case.

3. If U is a subset of an inner product space V (but not necessarily a subspace), we can
still define

U⊥ = {v ∈ V | 〈v, u〉 = 0 ∀u ∈ U}.
(a) Prove that U⊥ = span(U)⊥. (Recall, that span(U) is the subspace of V consisting
of all finite F -linear combinations of vectors in U .)
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Solution. Let v ∈ span(U)⊥. Then 〈u, v〉 = 0 for all u ∈ U since U ⊆ span(U).
Hence v ∈ U⊥. Conversely, suppose v ∈ U⊥. If u ∈ span(U), then u =

∑n
i=1 ciui for

scalars ci ∈ F and vectors ui ∈ U . Hence 〈u, v〉 = 〈
∑n

i=1 ciui, v〉 =
∑n

i=1 ci〈ui, v〉 = 0.
Thus v ∈ span(U)⊥.

(b) Use (a) to prove that (U⊥)⊥ = span(U).

Solution. Since span(U) is a subspace of V , we can apply Corollary 6.33 to get
span(U) = (span(U)⊥)⊥ = (U⊥)⊥, where the second equality follows from (a).

In particular, this exercise implies that if {u1, . . . , um} is a basis for the subspace U ,
then

U⊥ = {v ∈ V | 〈v, ui〉 = 0 ∀i }.
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