Math 108B - Home Work \# 4 Solutions

LADR Problems p. 125
24. Notice that $\varphi(p)=p(1 / 2)$ is a linear functional on $\mathcal{P}_{2}(\mathbb{R})$. Thus we follow the idea of the proof of 6.45 to find a polynomial $q \in \mathcal{P}_{2}(\mathbb{R})$ such that $\varphi(p)=\langle p, q\rangle=\int_{0}^{1} p(x) q(x) d x$ for all p. We need an orthonormal basis for $\mathcal{P}_{2}(\mathbb{R})$, which we have from homework 3: $e_{1}=$ $1, e_{2}=2 \sqrt{3} x-\sqrt{3}, e_{3}=6 \sqrt{5} x^{2}-6 \sqrt{5} x+\sqrt{5}$. Now, as in the proof of 6.45 , we see that

$$
\begin{aligned}
q & =\varphi\left(e_{1}\right) e_{1}+\varphi\left(e_{2}\right) e_{2}+\varphi\left(e_{3}\right) e_{3} \\
& =1 e_{1}+0 e_{2}+(-\sqrt{5} / 2) e_{3} \\
& =1-\left(15 x^{2}-15 x+5 / 2\right) \\
& =-15 x^{2}+15 x-3 / 2 .
\end{aligned}
$$

27. In this product, we regard F^{n} as an inner product space via the dot product. Let $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$. We have $T z \cdot w=\sum_{i=1}^{n-1} z_{i} \overline{w_{i+1}}=z \cdot\left(w_{2}, \ldots, w_{n}, 0\right)$. Thus $T^{*}\left(w_{1}, \ldots, w_{n}\right)=\left(w_{2}, \ldots, w_{n}, 0\right)$.
28. First assume that U is invariant under T. This means that $T u \in U$ for all $u \in U$. Let $v \in U^{\perp}$. If $u \in U,\left\langle u, T^{*} v\right\rangle=\langle T u, v\rangle=0$ since $T u \in U$. Thus $T^{*} v \in U^{\perp}$. The same argument proves the converse, since if we replace U with U^{\perp} we know that $\left(U^{\perp}\right)^{\perp}=U$, and if we replace T with T^{*}, we know that $\left(T^{*}\right)^{*}=T$.
p. 158
29. (a) To show that T is not self-adjoint it suffices to find polynomials $p(x), q(x) \in \mathcal{P}_{2}(\mathbb{R})$ such that $\langle T p, q\rangle \neq\langle p, T q\rangle$. We can choose $p(x)=1$ and $q(x)=x$, so $T p=0$ and $T q=q$. Thus $\langle T p, q\rangle=0$, while $\langle p, T q\rangle=\int_{0}^{1} x d x=1 / 2$.
(b) This is not a contradiction because the basis $\left\{1, x, x^{2}\right\}$ is not an orthonormal basis. In general, an operator T is self-adjoint if and only if its matrix in any orthonormal basis is conjugate-symmetric.
30. First assume that P is an orthogonal projection onto a subspace U of V. Let $v, w \in V$. Then $\langle P v, w\rangle=\langle P v,(w-P w)+P w\rangle=\langle P v, P w\rangle=\langle P v+(v-P v), P w\rangle=\langle v, P w\rangle$, where we have used the fact that $P v, P w \in U$ and $v-P v, w-P w \in U^{\perp}$. This shows that $P=P^{*}$.

Conversely, suppose $P=P^{2}$ and P is self-adjoint. By the spectral theorem, we can find an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of eigenvectors for P, and the matrix of P with respect to this basis will be diagonal. If the diagonal entries of this matrix are $d_{1}, \ldots, d_{n} \in F$, then the diagonal entries of the matrix for P^{2} will be $d_{1}^{2}, \ldots, d_{n}^{2}$. Since $P=P^{2}$, we know that $d_{i}=d_{i}^{2}$ for all i. Thus each d_{i} is either 0 or 1 . Now let U be the span of those eigenvectors
e_{i} for which $d_{i}=1$, ie. U is the eigenspace corresponding to the eigenvalue 1 of P. Thus if $u \in U$, we have $P u=u$. Furthermore, since U^{\perp} is the eigenspace of $0, v \in U^{\perp}$ implies $P v=0$. Thus $P=P_{U}$.
8. If T is self-adjoint, that means that $T u \cdot v=u \cdot T v$ for all $u, v \in \mathbb{R}^{3}$. For $u=(1,2,3)$ and $v=(2,5,7)$, we get $T u \cdot v=(0,0,0) \cdot(2,5,7)=0$, while $u \cdot T v=(1,2,3) \cdot(2,5,7)=33$. Thus T is not self-adjoint.
9. Suppose T is a normal operator on the complex inner product space V, and that all the eigenvalues of T are real. By the spectral theorem, there exists an orthonormal basis of V consisting of eigenvectors for T. If we write T with respect to this basis, its matrix will be diagonal with real entries (its eigenvalues) along the diagonal. Since such a matrix clearly equals its conjugate transpose, and it represents T in an orthonormal basis, T must be self-adjoint.

Conversely, suppose T is a self-adjoint operator on the complex inner product space V. By Prop. 7.1 every eigenvalue of T is real.

