
Math 108B - Home Work # 5 Solutions

1. LADR Problems, p. 159-160:

11. Let T be a normal operator on the complex inner-product space V . By the spectral
theorem there is an orthonormal basis {e1, . . . , en} of V consisting of eigenvectors for T .
If Tei = λiei for λi ∈ C, we can define an operator S ∈ L(V ) by setting S(ei) =

√
λiei

for all i, and extending S linearly (this means S(
∑n

i=1 ciei) =
∑n

i=1 ci

√
λiei for all

ci ∈ C). Then we have S2(ei) = S(
√

λiei) = λiei = Tei for all i, and hence S2 = T .

(Note: for a complex number λ,
√

λ is not well-defined. There are two square roots of
λ, and one is always −1 times the other, but in general neither is positive (since they
will be complex, not real). However, for this problem, it does not matter which square
root you choose. All we need is for the squares of the eigenvalues of S to equal the
eigenvalues of T .)

13. We will prove this by the same strategy as in 11. First find an orthonormal basis
{e1, . . . , en} for V with Tei = λiei for all i. This is possible by the spectral theorems
since T is self-adjoint. Now define S ∈ L(V ) by S(ei) = 3

√
λiei and extend it linearly

as in 11. (As in the note after 11, cubed roots of complex numbers are not unique, but
we can choose any cubed root of λi.) Now S3(ei) = λiei = T (ei) for all i, and hence
S3 = T .

15. ⇒: Assume that U has a basis {e1, . . . , en} of eigenvectors for T . We can define
an inner-product on U by the formula

〈a1e1 + · · ·+ anen, b1e1 + · · ·+ bnen〉 = a1b̄1 + · · ·+ anb̄n

for all ai, bj ∈ F . The proof that this defines an inner-product is essentially the
same as in Exercise 1 on Homework 2. Furthermore, notice that the basis {e1, . . . , en}
is orthonormal with respect to this inner product. Since the matrix for T in this
orthonormal basis is diagonal, and hence symmetric, T is a self-adjoint operator with
respect to this inner-product.

⇐: If U has an inner-product, for which T is a self-adjoint operator, then the spectral
theorem implies that U has an orthonormal basis of eigenvectors for T . In particular,
it has a basis of eigenvectors of T .

22. Since S ∈ L(R3), S has an eigenvalue λ ∈ R by Theorem 5.26. Since S is an
isometry, |λ| = 1, which implies that λ = ±1. If x ∈ R3 is an eigenvector for λ, then
S2x = S(λx) = λ2x = (±1)2x = x.
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2. Recall that if U is a subspace of the inner product space V , we defined the reflection
in U to be the linear map RU : V → V given by

RU = 2PU − IV ,

where PU is the orthogonal projection onto U and IV is the identity map. Show that
any self-adjoint isometry T : V → V is a reflection in some subspace U of V . (Hint:
U will turn out to be an eigenspace of T . So what are the possible eigenvalues of T?)

Solution. Assume that T ∈ L(V ) is a self-adjoint isometry. Since T is self-adjoint,
all eigenvalues of T are real, and since T is an isometry, all eigenvalues have absolute
value 1. Hence the only possible eigenvalues of T are +1 and −1. Also, by the spectral
theorem, V has an orthonormal basis {e1, . . . , en} of eigenvectors for T . We may order
the basis vectors so that Tei = ei for 1 ≤ i ≤ k and Tej = −ej for k + 1 ≤ j ≤ n for
some k with 0 ≤ k ≤ n (the eigenvalues +1 and −1 do not necessarily both occur: if
k = 0, we have T = −I and if k = n, we have T = I). We let U be the eigenspace
corresponding to the eigenvalue 1, that is

U = {v ∈ V | Tv = v} = span(e1, . . . , ek).

Since {e1, . . . , en} is an orthonormal basis, we also have

U⊥ = span(ek+1, . . . , en) = {v ∈ V | Tv = −v}.

We can now show that T = RU = 2PU − IV . Let v ∈ V and write v = u + w for u ∈ U
and w ∈ U⊥. Then T (u) = u and T (w) = −w, so T (v) = u − w. But, by definition,
PU(v) = u. Hence RU(v) = 2u− (u + w) = u− w = T (v). Hence T = RU .
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