Math 108B - Home Work \# 6

Due: Wednesday, June 4, 2008

1. If A is an $n \times n$ upper-triangular matrix (i.e., $A_{i j}=0$ for all $i>j$), show that $\operatorname{det} A=\prod_{i=1}^{n} A_{i i}$. (You may use either the definition of determinant given in class, or else the standard definition for matrices.)
2. Let A be a nilpotent $n \times n$ matrix. Show that A is diagonalizable if and only if $A=0$.
3. This question asks you to find some 3×3 matrices. Your answers will be nondiagonalizable, since they will each have only 2 linearly independent eigenvectors.
a) Give an example of a 3×3 matrix with only one eigenvalue (over \mathbb{C}), but with a 2 dimensional eigenspace. What are the generalized-eigenspaces of \mathbb{C}^{3} for your example?
b) Give an example of a 3×3 matrix with only two distinct eigenvalues (over \mathbb{C}), each of which has a 1-dimensional eigenspace. What are the generalized eigenspaces of \mathbb{C}^{3} for your example?
4. LADR Exercises: p. 188-190: 3, 5, 10, 11
