Math 108B - Home Work # 6 Due: Wednesday, June 4, 2008

- 1. If A is an $n \times n$ upper-triangular matrix (i.e., $A_{ij} = 0$ for all i > j), show that det $A = \prod_{i=1}^{n} A_{ii}$. (You may use either the definition of determinant given in class, or else the standard definition for matrices.)
- 2. Let A be a nilpotent $n \times n$ matrix. Show that A is diagonalizable if and only if A = 0.
- 3. This question asks you to find some 3×3 matrices. Your answers will be nondiagonalizable, since they will each have only 2 linearly independent eigenvectors.

a) Give an example of a 3×3 matrix with only one eigenvalue (over \mathbb{C}), but with a 2dimensional eigenspace. What are the generalized-eigenspaces of \mathbb{C}^3 for your example?

b) Give an example of a 3×3 matrix with only two distinct eigenvalues (over \mathbb{C}), each of which has a 1-dimensional eigenspace. What are the generalized eigenspaces of \mathbb{C}^3 for your example?

4. LADR Exercises: p. 188-190: 3, 5, 10, 11