
Math 108B - Take-Home Midterm 2 Solutions

1. Let V be a finite-dimensional vector space. We defined the dual space of V as the
vector space V ∗ = L(V, F ) of linear functionals on V . We write V ∗∗ for the dual space
of V ∗.

(a) For v ∈ V , define ϕv : V ∗ → F by ϕv(f) = f(v) for all f ∈ V ∗. Show that ϕv is
a linear map. (Thus ϕv ∈ V ∗∗.)

Solution. If a ∈ F and f ∈ V ∗, we have ϕv(af) = af(v) = a · f(v) = a · ϕv(f).
If f, g ∈ V ∗, then ϕv(f + g) = (f + g)(v) = f(v) + g(v) = ϕv(f) + ϕv(g). Hence
ϕv : V ∗ → F is a linear map.

(b) Show that the function T : V → V ∗∗, defined by T (v) = ϕv for all v ∈ V , is a
linear map.

Solution. First let a ∈ F and v ∈ V . Then T (av) = ϕav, which is defined by
ϕav(f) = f(av) for all f ∈ V ∗. Since f is linear, we have ϕav(f) = f(av) =
a · f(v) = a · ϕv(f). Thus T (av) = ϕav = aϕv = aT (v). Now let u, v ∈ V .
Then T (u + v) = ϕu+v, which is defined by ϕu+v(f) = f(u + v) = f(u) + f(v) =
ϕu(f) + ϕv(f) for all f ∈ V ∗. Thus T (u + v) = ϕu+v = ϕu + ϕv = T (u) + T (v),
and we have shown that T is a linear map.

(c) Show that T , as in (b), is an isomorphism. (Recall that, in class, we’ve already
shown that V and V ∗∗ are isomorphic, i.e., they have the same dimension.)

Solution. It suffices to show that T is injective, since we already know that V
and V ∗∗ have the same dimension. Thus suppose that T (v) = ϕv = 0 for some
v ∈ V . This means that ϕv(f) = f(v) = 0 for all f ∈ V ∗. However, if v 6= 0, we
can define a linear functional f ∈ V ∗ by completing {v} to a basis {v, w1, . . . , wn}
of V and setting f(v) = 1 and f(wi) = 0 for all i. Then clearly, f(v) 6= 0,
which would contradict ϕv = 0. Hence we must have v = 0. This shows that
null(T ) = {0} and hence T is injective.

2. We say that two inner-product spaces V and W are isometric if there exists an
invertible isometry T : V → W . Prove that two finite-dimensional inner-product
spaces V and W are isometric if and only if dim V = dim W . (Hint: this is similar to
Theorem 3.18 in LADR.)

Solution. The proof of Theorem 3.18 is based on defining a linear map T : V → W by
T (vi) = wi where {v1, . . . , vn} and {w1, . . . , wn} are bases for V and W , and checking
that this T is invertible. By our results on isometries, we know that T will be an
isometry if and only if T takes an orthonormal basis of V to an orthonormal basis of
W . Thus, the only modification we need to make to the proof of Theorem 3.18 is to
choose {v1, . . . , vn} and {w1, . . . , wn} to be orthonormal bases for V and W , which is
always possible by Corollary 6.24. Here are all the details:
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⇐: Assume dim V = dim W = n and let {v1, . . . , vn} and {w1, . . . , wn} to be orthonor-
mal bases for V and W , respectively. Define T : V → W to be the unique linear map
such that T (vi) = wi for all i. So T (c1v1 + · · · + cnvn) = c1w1 + · · · + cnwn for all
ci ∈ F . As in the proof of Theorem 3.18, we easily see that T is invertible: an inverse
S : W → V is defined to be the unique linear map such that S(wi) = vi for all i.
Furthermore, since {v1, . . . , vn} is an orthonormal basis and so is {Tv1, . . . , T vn}, we
know that T is an isometry (this is essentially part (e) of Theorem 7.36 in LADR, and
I believe we proved it in class). Therefore, V and W are isometric, by definition.

⇒: Assume that V and W are isometric. By definition, they are also isomorphic.
Hence dim V = dim W follows from Theorem 3.18 of LADR.

Note: As a consequence: if dim V = n then V is isometric to F n with the dot product.

3. Describe all normal n× n matrices over C that have only one eigenvalue.

Solution. Suppose A is a normal n × n matrix over C that has only one eigenvalue
λ. By the spectral theorem Cn has an orthonormal basis of eigenvectors for A. Equiv-
alently, there is an invertible change-of-basis matrix C such that C−1AC is a diagonal
matrix. Furthermore, the entries on the diagonal of C−1AC must be the eigenvalues
of A, i.e., λ, and thus C−1AC = λIn. Multiplying both sides by C on the left and C−1

on the right, we have A = C(λI)C−1 = λCC−1 = λI. Thus all normal n× n matrices
with only one eigenvalue are scalar multiples of the identity matrix (in any basis!).
Clearly the converse is also true: any scalar multiple of the identity matrix commutes
with all matrices, and is thus normal.

4. Suppose that T : V → V is normal. Prove that

null(T k) = null(T ) and range(T k) = range(T ) for all integers k ≥ 1.

Solution. Notice first that the set-inclusions null(T ) ⊆ null(T k) and range(T k) ⊆
range(T ) hold for any T . Thus we only need to show that dim null(T ) = dim null(T k)
and dim range(T ) = dim range(T k).

First assume that F = C. Thus, by the spectral theorem V has an orthonormal basis
{v1, . . . , vn} of eigenvectors of T . Let λi ∈ C be the eigenvalue going with vi, so that
Tvi = λivi for all i. Then T kvi = λk

i vi, and thus each vi is also an eigenvector for T k

with eigenvalue λk
i . In particular, the multiplicity of 0 as an eigenvalue of T equals

the multiplicity of 0 as an eigenvalue for T k (i.e., the number of different i such that
λi = 0 is the same as the number of different i such that λk

i = 0). Since null(T ) equals,
by definition, the eigenspace of the eigenvalue 0, we see that the multiplicity of 0 as
an eigenvalue for T (or for T k) equals dim null(T ) (or dim null(T k)). We now have
dim null(T ) = dim null(T k), and then by the rank-nullity theorem we have

dim range(T ) = dim V − dim null(T ) = dim V − dim null(T k) = dim range(T k).
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Now assume that F = R. Fix an orthonormal basis {e1, . . . , en} of V , and let A
be the matrix of T in this basis. Since T is normal, A is a normal matrix, meaning
that A commutes with its (conjugate) transpose: AAt = AtA. The trick is to now
consider the linear map S ∈ L(Cn) defined by the matrix A. Since A is the matrix
of S in the standard basis of Cn, which is an orthonormal basis with respect to the
dot product, and A commutes with its conjugate transpose, we know that S is also a
normal operator. Exactly as above, we see that dim null(S) = dim null(Sk), and both
are equal to the multiplicity of 0 as an eigenvalue of A (or of Ak). In particular, the
multiplicity of 0 as an eigenvalue of A equals the multiplicity of 0 as an eigenvalue of
Ak. Since A and Ak represent T and T k (and 0 ∈ R), 0 has the same multiplicity as an
eigenvalue of both T and T k. Hence dim null(T ) = dim null(T k), and the rest follows
as in the last sentence of the preceding paragraph and the first paragraph.

(Note: in this part of the proof, it is best to think of eigenvalues of A, and their
multiplicities, as corresponding to the roots, with multiplicities, of the characteristic
polynomial of A. From this perspective, it is clear that the multiplicity of the real
eigenvalue 0 is the same over R or C.)

Alternate Proof. (without using the spectral theorem)

Claim. If T is normal, then null(T ) = null(T 2).

Proof of the claim. Obviously, we have null(T ) ⊆ null(T 2). Thus let v ∈ null(T 2). By
Proposition 6.46, we know null(T ) = range(T ∗)⊥, and thus V = null(T )⊕ range(T ∗).
We can write v = u + w for unique u ∈ null(T ) and w ∈ range(T ∗). Then T (v) =
T (u) + T (w) = T (w), so to show v ∈ null(T ), it suffices to show that w ∈ null(T ).
First note that T ∗T (w) ∈ null(T ) since T (T ∗T (w)) = T (T ∗T (v)) = T ∗T 2(v) = 0,
where we have used that T is normal. Now, using null(T ) = range(T ∗)⊥, we get
〈T (w), T (w)〉 = 〈w, T ∗T (w)〉 = 0 since w ∈ range(T ∗) and T ∗T (w) ∈ null(T ). Thus,
T (w) = 0 as required.

Next, we can show that null(T ) = null(T k) for all k ≥ 2, as in the proof of Proposition
8.5 (I won’t repeat the argument here). Finally, we can use the rank-nullity theorem as
in the first proof to get dim range(T ) = dim V −dim null(T ) = dim V −dim null(T k) =
dim range(T k), and the equality range(T ) = range(T k) then follows from the trivial
inclusion range(T k) ⊆ range(T ).
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