Math 34B - Midterm Solutions

February 8, 2008

1. Integrate.
(a) $\int_{0}^{1}\left(3 \sqrt{x}+12 x^{2}-2\right) d x$

Solution.

$$
\begin{aligned}
\int_{0}^{1}\left(3 \sqrt{x}+12 x^{2}-2\right) d x & \left.=\left(\frac{3 x^{3 / 2}}{3 / 2}+4 x^{3}-2 x\right)\right]_{0}^{1} \\
& \left.=\left(2 x^{3 / 2}+4 x^{3}-2 x\right)\right]_{0}^{1} \\
& =(2+4-2)-0 \\
& =4
\end{aligned}
$$

(b) $\int 3 e^{-x / 2} d x$

Solution.

$$
\begin{aligned}
\int 3 e^{-x / 2} d x & =3 \frac{e^{-x / 2}}{-1 / 2}+C \\
& =-6 e^{-x / 2}+C
\end{aligned}
$$

2. Let $f(x)=4 \sin \left(\frac{\pi x}{2}\right)$.
(a) Find the amplitude, period and frequency of the sine wave given by $f(x)$.

Solution. Amplitude $=4$. Period $=\frac{2 \pi}{\pi / 2}=4$. Frequency $=1 / 4$.
(b) The graph of $y=f(x)$ is given below. Find the area of the shaded region.

Solution. The area of the shaded region is given by the integral of $f(x)$ over one half of a period, starting at 0 :

$$
\begin{aligned}
\int_{0}^{2} 4 \sin \left(\frac{\pi x}{2}\right) d x & \left.=\left(\frac{-4}{\pi / 2} \cos \left(\frac{\pi x}{2}\right)\right)\right]_{0}^{2} \\
& =\frac{-8}{\pi} \cos (\pi)-\frac{-8}{\pi} \cos (0) \\
& =\frac{8}{\pi}+\frac{8}{\pi} \\
& =\frac{16}{\pi}
\end{aligned}
$$

3. Let $f(x)=x e^{x}$.
(a) Find the first and second derivatives of $f(x)$.

Solution. By the product rule, $f^{\prime}(x)=(1) e^{x}+(x) e^{x}=(1+x) e^{x}$. Differentiating again, we have $f^{\prime \prime}(x)=(1) e^{x}+(1+x) e^{x}=(2+x) e^{x}$.
(b) Find all critical points of $f(x)$ and use the second derivative test to determine whether each is a relative minimum or relative maximum.
Solution. To find the critical points we set $f^{\prime}(x)=(1+x) e^{x}=0$. Since e^{x} is always positive, we may divide both sides of the equation by e^{x} to get $1+x=0$. Hence $x=-1$ is the only critical point.
Plugging in $x=-1$ to the second derivative, we have $f^{\prime \prime}(-1)=(2-1) e^{-1}=$ $e^{-1}=1 / e>0$. By the second derivative test, we conclude that $f(x)$ has a relative minimum at $x=-1$.
4. Business is booming at your lemonade stand. You are currently selling 30 cups of lemonade an hour at the price of $\$ 1$ a cup. However, due to inflation, the price for a cup of lemonade is currently increasing at the rate of 5 cents an hour, and your sales are currently decreasing at the rate of 3 cups per hour.
(a) What is your current hourly revenue from selling lemonade?

Solution. Let $H(t)$ be the (instantaneous) hourly revenue t hours from now. Let $C(t)$ be the rate (in cups/hour) at which lemonade is being sold at time t, and let $P(t)$ be the price of a cup of lemonade at time t. In general, we have the equation $H(t)=C(t) * P(t)$ for any value of t. The question asks for

$$
H(0)=C(0) * P(0)=\left(30 \frac{\text { cups }}{\text { hour }}\right)\left(1 \frac{\$}{\text { cup }}\right)=30 \frac{\$}{\text { hour }}
$$

(b) At what rate (in $\$ /$ hour) is your hourly revenue changing at this instant?

Solution. We must find $H^{\prime}(0)$, which equals $C^{\prime}(0) * P(0)+C(0) * P^{\prime}(0)$ by the product rule. We are given $C^{\prime}(0)=-3$ cups/hour and $P^{\prime}(0)=.05 \$ /$ hour. Thus

$$
H^{\prime}(0)=-3 * 1+30 * .05=-1.5 \$ / \text { hour }
$$

(c) Use (a) and (b) to estimate your hourly revenue in 2 hours. (Use a linear approximation.)
Solution. Your initial hourly revenue is $\$ 30$, and is decreasing at the rate of 1.5 \$/hour. So we can approximate that in 2 hours, it will have decreased by $(2$ hours $)(1.5 \$ /$ hour $)=\$ 3$ to $\$ 27$.
Notice that this is a linear approximation. We are essentially using the tangent line to $H(t)$ at $t=0$ to approximate $H(2)$. This tangent line has equation $y=H^{\prime}(0) t+H(0)=-1.5 t+30$ by (a) and (b). Now plug in $t=2$ to get $H(2) \approx-1.5(2)+30=27$.

