Math 34B Spring Quarter Midterm Examination May 4, 2006

NAME:	Answer	Key	(z).	 revue	 - P - N 1 1 1	 m · · · · · · m ·	
TA & DIS	CUSSION SEC	CTION:		 	 	 	

You have 70 minutes in which to complete this examination. Attempt all of the questions. Note that you will not be awarded full credit on a question unless your answer is clearly, carefully and neatly stated.

UP TO 5 BONUS POINTS (ADDED DIRECTLY TO YOUR SCORE ON THE EXAMINATION) WILL BE AWARDED FOR NEATLY AND CARE-FULLY PRESENTED WORK!

Problem	Maximum Score	Score
1	9	
2	9	
3	9	
4	9	
5	6	
NEATNESS BONUS	5	
Total	42	

- (1) Find the derivatives with respect to x of the following functions:
- (i) $f(x) = 4\sin(2x) + 2x + 6$

$$f'(x) = 2.4 \cos(2x) + 2$$

= 8 Cos(2x) + 2

(ii)
$$f(x) = e^{2x} \sin(4x)$$

$$f(x) = \frac{d}{dx} (e^{2x}) \sin(4x) + e^{2x} \frac{d}{dx} (\sin(4x))$$

$$= 2e^{2x} \sin(4x) + 4e^{2x} \cos(4x)$$

$$= 2e^{2x} (\sin(4x) + 2\cos(4x)).$$

(iii)
$$y = (f(x))^2$$

$$y = f(x) \cdot f(x)$$
.
 $\frac{dy}{dx} = f'(x) \cdot f(x) + f(x) \cdot f'(x)$
 $= 2 f(x) f'(x)$.

(2) Find the following integrals:

(i)
$$\int 6e^{2t} dt$$

$$\int 6e^{2t}dt = 3e^{2t} + C$$

(ii)
$$\int_{2}^{4} x^{2} dx$$

$$\int_{2}^{4} x^{2} dx = \left[\frac{x^{3}}{3} \right]_{2}^{4}$$

$$= \frac{4^{3}}{3} - \frac{2^{3}}{3}$$

$$= \frac{56}{3}$$

(iii)
$$\int_{1}^{\pi} 2 dx$$

$$\int_{1}^{\pi} 2 dx = \left[2 \times \right]_{1}^{\pi}$$

$$= 2\pi - 2.$$

- (3) Consider the function $f(t) = 4\cos(2t+2)$, where t denotes time measured in seconds.
- (a) What is the period of f(t)?

The period of flt) is To seconds.

(b) What is the frequency of f(t)?

The frequency of flt) is I Herx.

(c) What is the amplitude of f(t)?

The amplitude of flt) is equal to 4.

- (4) The height above the ground in metres of a rocket t seconds after being launched is $h(t) = 10t + 2t^2$.
 - (a) What is the velocity of the rocket after t seconds?

= 10+4t m/s

(b) How many seconds after the launch is the velocity of the rocket equal to $50 m/s^2$?

The velocity of the rocket is
$$50 \text{ m/s}$$
 when $10 + 4t = 50$
1. $4t = 50 - 10$
 $= 40$
 $= 10 \text{ Seconds}$.

Hence the velocity of the rocket is equal to 50 m/s after 10 seconds.

(c) What is the acceleration of the rocket t seconds after being launched?

$$a(t) = \frac{dv}{dt}$$

$$= \frac{d}{dt} (10 + 4t)$$

$$= 4 \quad m|_{S^2}.$$

- (5) The radius of a circular oil slick is increasing at a rate of 1 metre per second. At time t=0, the area of the slick is equal to $4\pi m^2$.
 - (a) Find the radius of the slick after t seconds

Let $\tau(t)$ = radius of oil slick after t seconds.

Then
$$\frac{dr}{dt} = 1$$
, and so $r(t) = \int_{-1}^{\infty} 1 \cdot dt = t + C$.

When t=0, the radius of the slick is 2m (Since its area is $4\pi m^2$). So

$$2 = 0 + C$$
,
and therefore $C = 0$.
 $r(t) = t + 2$ metres.

(b) Find the rate at which the area of the slick is increasing after t seconds.

Let A(t) = area of the slick after t reconds. Then $A(t) = \pi r(t)^2$ $= \pi (t+2)^2$

$$\frac{dA}{dt} = 2\pi (t+2) m^2/s.$$

Hence the Slick is nucreasing at a rate of $2\pi(t+2)$ m²/s after t seconds.