1. Compute \(\int_C yz \, dx + 2x \, dy - y \, dz \) where \(C \) is the straight line path from \((1, 2, 1)\) to \((-1, 3, 0)\).

Solution. The straight line path between the two points has parametric equations \((x, y, z) = (-2t + 1, t + 2, -t + 1)\). Thus, using the definition of line integrals, the integral becomes

\[
\int_0^1 (t + 2)(1 - t)(-2) + 2(1 - 2t) - (t + 2)(-1) \, dt = \int_0^1 2t^2 - t \, dt
\]

\[
= 2\left(\frac{t^3}{3} - \frac{t^2}{2}\right)\bigg|_0^1 = 1/6.
\]

2. Find the surface area of the surface \(S \), which is parametrized by

\[
\phi(u, v) = \begin{cases}
 x(u, v) = u - v \\
 y(u, v) = u + v \\
 z(u, v) = uv
\end{cases}
\]

for all \((u, v)\) with \(u^2 + v^2 \leq 1\).

Solution. We use the formula \(S.A. = \int\int\sqrt{EG - F^2} \, du \, dv \). Here, \(E = x_u^2 + y_u^2 + z_u^2 = 2 + v^2 \), \(F = x_u x_v + y_u y_v + z_u z_v = 1 - 1 + vu = uv \), and \(G = x_v^2 + y_v^2 + z_v^2 = 2 + u^2 \). Thus \(EG - F^2 = 4 + 2(u^2 + v^2) \), and

\[
S.A. = \int\int_{u^2+v^2 \leq 1} \sqrt{4 + 2(u^2 + v^2)} \, du \, dv
\]

\[
= \int_0^{2\pi} \int_0^1 \sqrt{4 + 2r^2} \, r \, dr \, d\theta
\]

\[
= \frac{1}{4} \int_0^{2\pi} \frac{2}{3} \left(4 + 2r^2\right)^{3/2} \bigg|_0^1 \, d\theta
\]

\[
= \frac{\pi}{3} (6^{3/2} - 4^{3/2}) = \frac{\pi}{3} (6\sqrt{6} - 8)
\]

3. Let \(S \) be the top half of the unit sphere (i.e., \(S \) is given by \(x^2 + y^2 + z^2 = 1 \) and \(z \geq 0 \)), oriented by the outer normal. Integrate

\[
\int\int_S x \, dy \, dz + y \, dz \, dx + z^2 \, dx \, dy.
\]

Solution. \(S \) has parametrization \(x = \cos \theta \sin \phi, \ y = \sin \theta \sin \phi \) and \(z = \cos \phi \) for \(0 \leq \theta \leq 2\pi \) and \(0 \leq \phi \leq \pi/2 \). Notice that this parametrization induces the inner normal on the sphere, and so we need to multiply the integral by \(-1\) when we write it in terms of the parameters \(\theta \) and \(\phi \).
We now compute the Jacobians we need (these are also the components of the normal vector).

\[
\begin{align*}
\frac{dy}{dz} &= \begin{vmatrix} \cos \theta \sin \phi & \sin \theta \cos \phi \\ 0 & -\sin \phi \end{vmatrix} = -\cos \theta \sin^2 \phi \, \frac{d\theta}{d\phi} - \sin \theta \frac{d\phi}{d\phi} \\
dz{dx} &= \begin{vmatrix} 0 & -\sin \phi \\ -\sin \theta \sin \phi & \cos \theta \cos \phi \end{vmatrix} = -\sin \theta \sin^2 \phi \, \frac{d\theta}{d\phi} - \sin \phi \frac{d\phi}{d\phi} \\
dx{dy} &= \begin{vmatrix} -\sin \theta \sin \phi & \cos \theta \cos \phi \\ \cos \theta \sin \phi & \sin \theta \cos \phi \end{vmatrix} = -\sin \phi \cos \phi \, \frac{d\theta}{d\phi} - \sin \phi \frac{d\phi}{d\phi}.
\end{align*}
\]

Thus

\[
\begin{align*}
\int \int_S x \, dy \, dz + \cdots &= -\int_0^{\pi/2} \int_0^{2\pi} -\cos^2 \theta \sin^3 \phi - \sin^2 \theta \sin^3 \phi - \sin \phi \cos^3 \phi \, d\theta \, d\phi \\
&= 2\pi \int_0^{\pi/2} (\sin^2 \phi + \cos^3 \phi) \sin \phi \, d\phi \\
&= 2\pi \int_0^{\pi/2} (1 - \cos^2 \phi + \cos^3 \phi) \sin \phi \, d\phi \\
&= -2\pi (\cos \phi - \frac{1}{3} \cos^3 \phi + \frac{1}{4} \cos^4 \phi) \bigg|_{\pi/2}^0 = \frac{11\pi}{6}.
\end{align*}
\]

4. Let \(S \) be the surface given by \(z = xy^2 - 3x^2 \) with upper normal \(\mathbf{n} \), over the square with vertices \((\pm 1, \pm 1)\) in the \(xy \)-plane. If \(\mathbf{w} = (z + 3x^2)\mathbf{i} + yz\mathbf{j} + y^2\mathbf{k} \), calculate

\[
\int \int_S \mathbf{w} \cdot \mathbf{n} \, d\sigma.
\]

Solution.

\[
\begin{align*}
\int \int_S \mathbf{w} \cdot \mathbf{n} \, d\sigma &= \int_{-1}^{1} \int_{-1}^{1} (-w_z \frac{\partial z}{\partial x} - w_y \frac{\partial z}{\partial y} + w_z) \, dx \, dy \\
&= \int_{-1}^{1} \int_{-1}^{1} -(xy^2 - 3x^2 + 3x^2)(y^2 - 6x) - y(xy^2 - 3x^2)(2xy) + y^2 \, dx \, dy \\
&= \int_{-1}^{1} \int_{-1}^{1} 6x^2y^2 - xy^4 - 2x^2y^4 + 6x^3y^2 + y^2 \, dx \, dy \\
&= \int_{-1}^{1} 6y^2 - 4y^4/3 \, dy = \frac{52}{15}.
\end{align*}
\]
5. Let S be the unit sphere, $x^2 + y^2 + z^2 = 1$, oriented outward, and let \mathbf{F} be the vector field $\mathbf{F}(x, y, z) = xy^2 \mathbf{i} - xz^2 \mathbf{j} + x^2z \mathbf{k}$. Use the Divergence Theorem to compute
\[\int \int_S \mathbf{F} \cdot \mathbf{n} \, d\sigma. \]

Solution.
\[
\int \int_S \mathbf{F} \cdot \mathbf{n} \, d\sigma = \int \int \int_R \text{div}(\mathbf{F}) \, dxdydz
\]
\[
= \int \int \int_R y^2 + x^2 \, dxdydz
\]
\[
= \int_0^\pi \int_0^{2\pi} \int_0^1 (\rho^2 \sin^2 \phi) \rho^2 \sin \phi \, d\rho d\phi d\theta
\]
\[
= \int_0^\pi \int_0^{2\pi} \frac{1}{3} \sin^3 \phi \, d\phi d\theta
\]
\[
= \int_0^\pi \int_0^{2\pi} \frac{2\pi}{5} (1 - \cos^2 \phi) \sin \phi \, d\phi d\theta
\]
\[
= \int_0^\pi \int_0^{2\pi} \frac{2\pi}{5} (\phi - \frac{1}{3} \cos^3 \phi) \, d\phi d\theta
\]
\[
= \int_0^\pi \frac{2\pi}{5} (\pi + 1/3 - 0 - 1/3) = -\frac{2\pi^2}{5} - \frac{4\pi}{15}
\]

6. Let S be the cone $x^2 = y^2 + z^2$, $0 \leq x \leq 2$, oriented inward (so the normal vectors point toward the x-axis). Use Stokes’ Theorem to calculate
\[\int \int_S (\nabla \times \mathbf{F}) \cdot \mathbf{n} \, d\sigma, \]
where $\mathbf{F}(x, y, z) = x^2 \mathbf{i} - z \mathbf{j} + (y^2 - z) \mathbf{k}$.

Solution. Recall $\nabla \times \mathbf{F} = \text{curl}(\mathbf{F})$, so by Stokes’ Theorem, the surface integral reduces to the line integral $\oint_C \mathbf{F}_T \, ds$ where C is the boundary of S. Now S is a cone with vertex at the origin, and so its boundary is a circle lying in the plane $x = 2$. By the right-hand rule, since the normal should be roughly in the direction of the x-axis, the circle C should be traversed in the counterclockwise direction of the yz-plane. Thus C has parametric equations $(x, y, z) = (2, \cos t, \sin t)$ for $0 \leq t \leq 2\pi$, and
\[
\int_C \mathbf{F}_T \, ds = \int_C x^2 \, dx - z \, dy + (y^2 - z) \, dz
\]
\[
= \int_0^{2\pi} 4(0) - \sin t(-\sin t) + (\cos^2 t - \sin t) \cos t \, dt
\]
\[
= \int_0^{2\pi} \sin^2 t + (\cos^2 t - \sin t) \cos t \, dt
\]
\[
= \int_0^{2\pi} \frac{1}{2} (1 - \cos(2t)) + (1 - \sin t - \sin^2 t) \cos t \, dt
\]
\[
= \frac{1}{2} (t - \frac{1}{2} \sin(2t)) + \sin t - \frac{1}{2} \sin^2 t - \frac{1}{3} \sin^3 t \big|_0^{2\pi} = \pi.
\]
7. Let C be the curve given by $x = \sin t$, $y = \cos t$, $z = \cos(2t)$ for $0 \leq t \leq 2\pi$. Use Stokes’ Theorem to evaluate

$$\oint_C xz \, dx + y^2 \, dy + z^2 \, dz.$$

Solution. Since $z = \cos(2t) = \cos^2 t - \sin^2 t = y^2 - x^2$, the curve C lies on the surface $z = y^2 - x^2$ (the surfaces $z = 2y^2 - 1$ or $z = 1 - 2x^2$ would also work). Since $x = \sin t$, $y = \cos t$ traces out the unit circle, the interior of C lies above the unit disk in the xy-plane. Thus C is the boundary of the surface S given by the graph of $z = y^2 - x^2$ for $x^2 + y^2 \leq 1$. Furthermore, since C is traversed in the clockwise direction, S must be given the lower normal according to the right-hand rule (thus we multiply by -1). Now, using Stokes’ Theorem, we have

$$\oint_C xz \, dx + y^2 \, dy + z^2 \, dz = \int_S \text{curl}(xz \mathbf{i} + y^2 \mathbf{j} + z^2 \mathbf{k}) \cdot \mathbf{n} \, d\sigma$$

$$= -\int_S x \, dz \, dx$$

$$= -\int_{x^2+y^2\leq1} x(2y) \, dx \, dy$$

$$= \int_{-1}^{1} \int_{\sqrt{1-x^2}}^{1} 2xy \, dy \, dx$$

$$= \int_{-1}^{1} 2x(1 - x^2) \, dx = x^2 - x^4/2\bigg|_{-1}^{1} = 0.$$

8. Show that the integral

$$\int_{(\pi/2,0,1)}^{(\pi/2,0,1)} z^2 \cos(x + y^2) \, dx + 2yz^2 \cos(x + y^2) \, dy + 2z \sin(x + y^2) \, dz$$

is independent of path and evaluate it.

Solution. To show that the integral is path independent, it suffices to find a function $F(x, y, z)$ such that the integrand equals dF. To get F, integrate the dx term with respect to x to get $F = \int z^2 \cos(x + y^2) \, dx = z^2 \sin(x + y^2) + C(y, z)$. If we now differentiate this function with respect to y and z (separately), we get the other two terms of the integrand when we let $C(y, z) = 0$. Thus the integral becomes

$$\int_{(-1,1,3)}^{(\pi/2,0,1)} d(z^2 \sin(x + y^2)) = z^2 \sin(x + y^2)\bigg|_{(-1,1,3)}^{(\pi/2,0,1)}$$

$$= \sin(\pi/2) - 9 \sin 0 = 1.$$
9. Let \(u \) be the vector field

\[
\mathbf{u}(x, y, z) = \frac{y}{x^2 + y^2} \mathbf{i} - \frac{x}{x^2 + y^2} \mathbf{j} + z^2 \mathbf{k}
\]
on \(\mathbb{R}^3 \) minus the \(z \)-axis.

(a) Show that \(\text{curl}(u) = 0 \) on this domain.

Solution.

\[
\text{curl}(\mathbf{u}) = \left| \begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{y}{x^2+y^2} & -\frac{x}{x^2+y^2} & z^2
\end{array} \right| = 0 \mathbf{i} + 0 \mathbf{j} + \left(\frac{x^2 - y^2}{(x^2 + y^2)^2} - \frac{x^2 - y^2}{(x^2 + y^2)^2} \right) \mathbf{k} = 0.
\]

(b) Show that \(u \) is not the gradient vector field of any function \(F \) on this domain.

(Hint: Find a closed curve \(C \) with \(\oint_C \mathbf{u} \cdot d\mathbf{s} \neq 0 \).

Solution. Let \(C \) be the unit circle in the \(xy \)-plane: \(x = \cos t, \ y = \sin t, \ z = 0 \) for \(0 \leq t \leq 2\pi \). Then

\[
\int_C \mathbf{u} \cdot d\mathbf{s} = \int_0^{2\pi} \left(\frac{\sin t}{\cos^2 t + \sin^2 t} (-\sin t) - \frac{\cos t}{\cos^2 t + \sin^2 t} (\cos t) + 0 \right) dt
\]

\[
= \int_0^{2\pi} -\left(\sin^2 t + \cos^2 t \right) dt
\]

\[
= -2\pi \neq 0.
\]

Since this integral is not zero, we know that the integral \(\int_C \mathbf{u} \cdot d\mathbf{s} \) is not path-independent in the given domain, and hence \(u \) is not a gradient vector field. (You could also prove this more directly by trying to solve for \(F(x, y, z) \) with \(\nabla F = \mathbf{u} \), and showing that no solutions exist.)