Math 8 - Midterm 1 Solutions
October 19, 2007

1. (12 pts) Consider the proposition \(R \)

“If I go surfing or take a nap, then I will not go surfing or I will not take a nap.”

(a) (2 pts) Express this proposition symbolically in terms of propositional variables \(P \) and \(Q \) and logical connectives. Be sure to say what \(P \) and \(Q \) represent.

Solution. \((P \lor Q) \Rightarrow (\sim P \lor \sim Q)\), where \(P \) is “I will go surfing.” and \(Q \) is “I will take a nap.”

(b) (6 pts) Make a truth table for your answer to (a).

Solution.

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \lor Q)</th>
<th>(\sim P)</th>
<th>(\sim Q)</th>
<th>(\sim P \lor \sim Q)</th>
<th>((P \lor Q) \Rightarrow (\sim P \lor \sim Q))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

(c) (4 pts) State the converse and contrapositive of \(R \) as English sentences (without using phrases like “it is not the case that”, etc.). It may help to first write them in terms of \(P \) and \(Q \).

Solution. Converse: “If I don’t go surfing or I don’t take a nap, then I will go surfing or take a nap.” In fact, this is equivalent to the simpler statement “I will go surfing or take a nap.”

Contrapositive: First notice that the negation of the conclusion \((\sim P \lor \sim Q)\) is \(P \land Q \) by De Morgan’s law. Also by De Morgan’s law, the negation of the hypothesis \((P \lor Q)\) is \(\sim P \land \sim Q \). Thus the contrapositive says “If I go surfing and take a nap, then I will not go surfing and I will not take a nap.” Of course, it sounds absurd like this, but is equivalent to saying “I won’t go surfing and take a nap.”

2. (10 pts) Let \(P \) be the proposition

“The sum of a rational number and an irrational number is irrational.”

(a) (2 pts) Rephrase \(P \) as a conditional statement. (You may want to introduce some variables \(x, y \).)

Solution. “If \(x \) is rational and \(y \) is irrational, then \(x + y \) is irrational.”

(b) (2 pts) Express \(P \) in terms of symbols and variables only, without using words.

Solution. \([(x \in \mathbb{Q}) \land (y \notin \mathbb{Q})] \Rightarrow (x + y \notin \mathbb{Q}).\)

(c) (6 pts) Prove \(P \) is true.

Solution. We will prove \(P \) by contradiction. Assume that \(P \) is not true. This means that we have a rational number \(x \) and an irrational number \(y \) such that
$x + y$ is rational. By definition of rational, we can write $x = p/q$ and $x + y = r/s$ for integers p, q, r, s with $q, s \neq 0$. Thus

$$y = (x + y) - x = \frac{r}{s} - \frac{p}{q} = \frac{rq - ps}{sq},$$

which is a rational number since $rq - ps$ and sq are integers with $sq \neq 0$. However, this contradicts the assumption that y is irrational.

3. (a) (4 pts) List (or otherwise describe) the elements of the set $S = \{x \in \mathbb{R} \mid 3x \in \mathbb{N}\}$.

Solution. S is the set of all real numbers x such that $3x$ is a natural number. Thus

$$S = \left\{ \frac{1}{3}, \frac{2}{3}, \frac{3}{3}, \frac{4}{3}, \frac{5}{3}, \ldots \right\}$$

is the set of all positive rational numbers that can be written with a 3 in the denominator.

(b) (4 pts) List (or otherwise describe) the elements of the set $T = \{1/x \mid x \in S\}$.

Solution. T is the set of all reciprocals of elements of S. Thus

$$T = \left\{ \frac{3}{1}, \frac{3}{2}, \frac{3}{3}, \frac{3}{4}, \frac{3}{5}, \ldots \right\}$$

is the set of all positive rational numbers that can be written with a 3 in the numerator.

4. (10 pts) Prove that an integer n is the product of two even integers if and only if it is a multiple of 4.

Solution. (\Rightarrow) Assume that n is the product of two even integers x and y. Thus $x = 2k$ and $y = 2l$ for integers k and l. Hence $n = xy = (2k)(2l) = 4kl$ is a multiple of 4.

(\Leftarrow) Assume that n is a multiple of 4. Thus we can write $n = 4k$ for some integer k, and then we have $n = 2(2k)$, which is the product of two even integers, 2 and $2k$.

2