Math 8 - Homework \#3 Solutions
 October 18, 2007

For exercises 1-3, do the following:
(a) Rewrite the given proposition as a conditional (if-then) statement.
(b) Prove the proposition or give a counterexample.
(c) If you prove it, say whether your proof is direct, indirect or by contradiction.

1. The sum of any two rational numbers is rational.

Solution. (a) If x and y are rational, then $x+y$ is rational.
(b) Assume that x and y are rational. This means that $x=a / b$ and $y=c / d$ for integers a, b, c, d with $b, d \neq 0$. Thus

$$
x+y=\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}
$$

which is rational since $a d+b c$ and $b d$ are integers and $b d \neq 0$.
(c) This is a direct proof.
2. The product of any two irrational real numbers is irrational.

Solution. (a) If x and y are irrational real numbers, then $x y$ is irrational.
(b) This statement is false. A counterexample is given by letting $x=y=\sqrt{2}$, which we know is irrational from class. However, $x y=(\sqrt{2})^{2}=2$ is rational.
3. For every odd prime number p, at least one of the numbers $p+2, p+4$ is also prime.

Solution. (a) If p is an odd prime number, then at least one of $p+2, p+4$ is also prime.
(b) This statement is false. A counterexample is provided by the prime number $p=23$ (the primes $31,47,53$ and many more also work as counterexamples), since neither 25 nor 27 is prime.
4. Let n be an integer. Prove that if n^{2} is even, then n is even.

Solution. We shall prove the contrapositive, which states that if n is odd, then n^{2} is odd. Assume that n is odd. Thus $n=2 k+1$ for some integer k. Then $n^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=2\left(2 k^{2}+2 k\right)+1$, which is clearly odd.
5. Prove that the sum of two integers a and b is even if and only if a and b are both even or both odd.

Solution. We first prove the backward direction (\Leftarrow), namely the proposition "If a and b are both even or both odd, then $a+b$ is even." We have two cases to consider.

First, suppose that a and b are both even. This means that $a=2 k$ and $b=2 l$ for some integers k and l. Thus $a+b=2 k+2 l=2(k+l)$ is even. For the second case, suppose that a and b are both odd. This means that $a=2 k+1$ and $b=2 l+1$ for some integers k and l. Thus $a+b=2 k+1+2 l+1=2(k+l+1)$ is even.
We now prove the forward direction (\Rightarrow), namely that "If $a+b$ is even, then a and b are both even or both odd." We will prove this indirectly by proving the contrapositive, which says that "If one of a, b is even and the other is odd, then $a+b$ is odd." Thus, let us assume that one of a, b is even and the other is odd. Without loss of generality, we may assume that a is even and b is odd (the proof in the other case is similar). So $a=2 k$ and $b=2 l+1$ for some integers k and l. Thus $a+b=2 k+2 l+1=2(k+l)+1$, which is odd.
6. Prove that 5 is a prime number.

Solution. We prove this by contradiction. Assume that 5 is not prime. This means that 5 has a factorization $5=a b$ for integers a and b that lie strictly between 1 and 5 . Hence, each of a and b is either 2,3 or 4 . A simple check now shows that the possible values of the product $a b$ are $4,6,8,9,12,16$. Since $5=a b, 5$ must equal one of these numbers, but this is clearly a contradiction.

