Math 8 - Homework \#4

Due: October 25, 2007

1. Express each of the following statements using sets. Your answers should be of the form "[something] \in (or \notin) [some set]".
(a) x is a nonnegative integer that is smaller than 5 .
(b) Either a or b equals 1.
(c) Neither x nor y is 0 .
2. Describe the sets from problem 2, parts (a)-(d), on page 47 of the text in the form $\{f(x) \mid x \in S\}$, where $f(x)$ is a function, and S is some set.
3. (a) Prove that $\{2 k-1 \mid k \in \mathbb{Z}\}=\{2 k+1 \mid k \in \mathbb{Z}\}$.
(b) Are the sets $\{2 k-1 \mid k \in \mathbb{N}\}$ and $\{2 k+1 \mid k \in \mathbb{N}\}$ also equal? Justify your answer. (Suggestion: start listing the elements in these sets by plugging in different natural numbers for k.)
4. (optional) In class, we wrote the set of even integers as $2 \mathbb{Z}=\{2 k \mid k \in \mathbb{Z}\}$. In this exercise, we explore the arithmetic of sets a little more. All sets considered here will be subsets of \mathbb{R}, meaning that all their elements are assumed to be real numbers.
(a) If we replace \mathbb{Z} with \mathbb{R} in the above example, what set do we get? In other words, describe the set $2 \mathbb{R}$.
(b) Let $m, n \in \mathbb{Z}$. The set of multiples of n can be written $n \mathbb{Z}=\{n k \mid k \in \mathbb{Z}\}$. We can also write $m \mathbb{Z}+n \mathbb{Z}=\{m x+n y \mid x, y \in \mathbb{Z}\}$ for the set of all sums of multiples of m and n. Describe the following sets: (i) $2 \mathbb{Z}+3 \mathbb{Z}$; (ii) $2 \mathbb{Z}+4 \mathbb{Z}$; (iii) $2 \mathbb{N}+3 \mathbb{N}$. (Suggestion: start by listing some elements of these sets by choosing different values for x and y in the expression $m x+n y$.)
