1. Express each of the following statements using sets. Your answers should be of the form “[something] ∈ (or /∉) [some set]”.

(a) x is a nonnegative integer that is smaller than 5.
(b) Either a or b equals 1.
(c) Neither x nor y is 0.

Solution.
(a) $x \in \{1, 2, 3, 4\}$
(b) $1 \in \{a, b\}$
(c) $0 \notin \{x, y\}$

2. Write each of the sets below in two ways: a) in the form $\{x \in U \mid P(x)\}$, and b) in the form $\{f(x) \mid x \in S\}$ where $f(x)$ is a function (possibly of multiple variables), and S and U are some sets.

(i) $A = \{1, 2, 4, 8, 16, \ldots\}$ is the set of all (integer) powers of 2.
(ii) B is the set of all integers that can be written as the sum of two perfect squares.
(iii) C is the set of all the reciprocals of natural numbers.

Solution.
(i) $A = \{x \in \mathbb{N} \mid \exists n \in \mathbb{Z} (x = 2^n)\} = \{2^n \mid n \in \mathbb{N} \cup \{0\}\}$.
(ii) $B = \{n \in \mathbb{Z} \mid \exists x, y \in \mathbb{Z} (n = x^2 + y^2)\} = \{x^2 + y^2 \mid x, y \in \mathbb{Z}\}$.
(iii) $C = \{x \in \mathbb{R} \mid \frac{1}{x} \in \mathbb{N}\} = \{\frac{1}{n} \mid n \in \mathbb{N}\}$.

3. (a) Prove that $\{2k - 1 \mid k \in \mathbb{Z}\} = \{2k + 1 \mid k \in \mathbb{Z}\}$.

Solution. For convenience, let $A = \{2k - 1 \mid k \in \mathbb{Z}\}$ and $B = \{2k + 1 \mid k \in \mathbb{Z}\}$. We must show that for any x, $x \in A \iff x \in B$.

$x \in A \Rightarrow x \in B$: Assume that $x \in A$. By the definition of A, this means that $x = 2k - 1$ for some $k \in \mathbb{Z}$. Thus $x = 2k - 1 = 2k - 2 + 1 = 2(k - 1) + 1$. Since $k - 1$ is an integer, x is also an element of B.

$x \in A \Leftarrow x \in B$: Now assume that $x \in B$. By definition, $x = 2k + 1$ for some integer k. Thus $x = 2k + 1 = 2k + 2 - 1 = 2(k + 1) - 1$. Since $k + 1$ is an integer, x is also an element of A.

(b) Are the sets $\{2k - 1 \mid k \in \mathbb{N}\}$ and $\{2k + 1 \mid k \in \mathbb{N}\}$ also equal? Justify your answer. (Suggestion: start listing the elements in these sets by plugging in different natural numbers for k.)

Solution. No, these sets are not equal. The first is $\{1, 3, 5, 7, \ldots\}$, but the second is $\{3, 5, 7, \ldots\}$. The first contains 1, but the second does not.
4. **Exercises 2.1 p. 76-77:** 5)b; 13; 19)a–d.

Solutions. 5. (b): Any example where A, B, C are all equal to each other will work. (In fact, this is the only possibility since $A \subseteq B \land B \subseteq C \Rightarrow A \subseteq C$, and $A \subseteq C$ together with $C \subseteq A$ implies $A = C$, and then $B = A$ will follow too.)

13. (a)-(c): All True. By definition of the set X, we have $a \in X \iff P(a)$. Parts (a) and (b) state the two directions of this biconditional, while (c) states the contrapositive of (a).

19. (a): C. The proof shows only $Y \subseteq X$, and does not address the other inclusion $X \subseteq Y$, which is needed to conclude that $X = Y$.

(b); F. Only one example is given. A valid proof should assume nothing about the sets A, B, C beyond the given hypotheses: $A \subseteq B$ and $B \subseteq C$.

(c): C (or maybe A?). The statement “Thus, $x \in C$.” appears to be about any object x. Obviously, not every object is necessarily an element of C. Instead, it should say “Thus, if $x \in A$, then $x \in C$.”

(d): F. The definition of \subseteq is backwards.

5. **Exercises 2.2 p. 83-84:** 2)d, f; 10)f (it may help to draw a Venn diagram); 12)b,c (you may draw a Venn diagram);

Solutions. 2. (d) $P - N$ is the set P of all positive integers.

(f) \bar{N} is the set of all non-negative integers.

10. (f) Suppose that $A \subseteq C$ and $B \subseteq C$. To show $A \cup B \subseteq C$, we must show that for all $x \in A \cup B$, we have $x \in C$. Assume $x \in A \cup B$. Then, either $x \in A$ or $x \in B$. If $x \in A$, then $A \subseteq C$ implies $x \in C$. Similarly, if $x \in B$, then $B \subseteq C$ implies $x \in C$.

Thus, in either case, $x \in C$ as required.

12. (b) Let $A = \{1\} = C$ and $B = \{1, 2\}$.

(c) Let $A = \{1\}$, $B = \{2\}$ and $C = \{1, 2\}$.

6. **Exercises 2.3 p. 92-93:** 1)d, j, m.

Solutions. 1. (d) $\bigcap_{n \in \mathbb{N}} B_n = \emptyset$ and $\bigcup_{n \in \mathbb{N}} B_n = \mathbb{N} - \{1\}$.

(j) $\bigcap_{n \in \mathbb{N}} M_n = \{0\}$ since M_n consists of all integer multiples of n and 0 is the only integer that is a multiple of all integers. $\bigcup_{n \in \mathbb{N}} M_n = \mathbb{N}$ since the union contains $M_1 = \mathbb{N}$ as a subset.

(m) $\bigcap_{n \in \mathbb{Z}} A_n = \emptyset$ since even any two sets A_n and A_m with $n \neq m$ have no elements in common. $\bigcup_{n \in \mathbb{Z}} A_n = \mathbb{R} - \mathbb{Z}$ the set of all real numbers that are not integers, since the set A_n consists of all the real numbers x with $n < x < n + 1$.

2