Atoms of a Countably Generated σ -Algebra Daniel Epelbaum Transcribed by Ashwin Trisal

Lemma 1 Every countably generated σ -algebra which is a collection of subsets of some set X contains an **atom**, an indecomposable nonempty element of the σ -algebra.

Let (X, \mathcal{A}) be such a σ -algebra, with generating set $\{A_i\}_{i \in \mathbb{N}}$. Define the equivalence relation

$$x \sim y \quad \Longleftrightarrow \quad \left[\forall A \in \mathcal{A}, \ x \in A \iff y \in A \right]$$

Then X/\sim has an induced σ -algebra structure from \mathcal{A} . In fact, the σ -algebra generated by $\pi(\mathcal{A})$, where $\pi: X \to X/\sim$ is the quotient map, is just $\pi(\mathcal{A})$.

One direction is clear, because $\pi(\bigcup_{\alpha \in I} U_{\alpha}) = \bigcup_{\alpha \in I} \pi(U_{\alpha})$ for any collection of sets $\{U_{\alpha}\}_{\alpha \in I}$. In particular, the closure under countable union of \mathcal{A} implies the closure under countable union of $\pi(\mathcal{A})$.

Secondly, $\pi(\mathcal{A})$ is closed under countable intersection. In general, $\pi(\cap_{\alpha}U_{\alpha}) \subseteq \cap_{\alpha}\pi(U_{\alpha})$. Moreover, in this specific case, if $[x] \in \cap_{\alpha}\pi(U_{\alpha})$, then for each U_{α} , $x \in U_{\alpha}$. So $x \in \cap_{\alpha}U_{\alpha}$, so $[x] \in \pi(\cap_{\alpha}U_{\alpha})$. So $\pi(\cap_{\alpha}U_{\alpha}) = \cap_{\alpha}\pi(U_{\alpha})$, and \mathcal{A} being closed under countable intersection implies that $\pi(\mathcal{A})$ is as well.

Finally, π being surjective implies that it commutes with the complement. So $\pi(\mathcal{A})$ is a σ -algebra.

Importantly, points in $\pi(\mathcal{A})$ correspond to atoms of \mathcal{A} . We show that $\pi(\mathcal{A})$ contains at least one point.

Lemma 2 If (Y, \mathcal{B}) is a σ -algebra generated by a collection of sets B, and $x, y \in Y$, then x and y can be separated by sets in the σ -algebra if and only if they can be separated by elements of the generating set.

(\Leftarrow): Easy because elements of the generating set are elements of the σ -algebra.

 (\Rightarrow) : Assume that the generating set fails to separate x and y. Consider the quotient space $Y' = Y/(x \sim y)$. Let \mathcal{C} be some σ -algebra containing B. Then $\pi^{-1}\pi(\mathcal{C})$ contains B but fails to separate x and y, so the smallest σ -algebra containing B fails to separate x and y. So \mathcal{B} fails to separate x and y.

Finally, let $[a] \in X/\sim$ be a point. I claim that $[a] \in \pi(\mathcal{A})$. For each point $[a] \neq [b] \in X/\sim$, [a] and [b] can be separated by elements of $\pi(\mathcal{A})$: otherwise [a] = [b]. So they can be separated by some element of the generating set. Define $\Lambda = \bigcap_{\{i \mid a \in A_i\}} \pi(A_i)$. Because there were only countably many A_i , this is the countable intersection of elements of $\pi(\mathcal{A})$; because we can separate non-equal points by elements of the generating set, $\Lambda = \{[a]\}$. So $\{[a]\} \in \pi(\mathcal{A}) \implies \{x \mid x \in [a]\} \in \mathcal{A}$ and is indecomposable, completing the proof.