
Introductory Category Theory Notes

Daniel Epelbaum and Ashwin Trisal

July 5, 2020

Contents

0 Introduction 3

1 What is a Category? 4
1.1 Basic Definitions and First Examples . . . . . . . . . . . . . . 4
1.2 Thinking in Diagrams . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Language of Morphisms . . . . . . . . . . . . . . . . . . . 7
1.4 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Natural Transformations, Categories of Functors 17
2.1 Natural Transformations . . . . . . . . . . . . . . . . . . . . . 17
2.2 Functor Categories . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Slice and Coslice Categories . . . . . . . . . . . . . . . . . . . 19
2.4 Comma Categories . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 The Yoneda Lemma 23
3.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Limits and Colimits 32
4.1 Products and Coproducts . . . . . . . . . . . . . . . . . . . . 32
4.2 Cones and Cocones . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Adjoint Functors 39
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Limits and Colimits . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Reflective and Coreflective Subcategories . . . . . . . . . . . . 49
5.4 Adjoints and Monads . . . . . . . . . . . . . . . . . . . . . . . 51

1



5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Index 56

2



0 Introduction

The following notes are currently being written for a graduate student learn-
ing seminar on category theory. The prerequisites for these notes are techni-
cally very minimal, but it helps to be familiar with some topology or algebra,
since many of the examples are drawn from these fields. In addition some of
the categorical constructions are motivated set-theoretically, the rudiments
of set theory are assumed, but only at a very elementary level.

If you notice any errors/typos/mistakes, please email daniel[at]math[dot]ucsb[dot]edu
or atrisal[at]math[dot]ucsb[dot]edu.
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1 What is a Category?

1.1 Basic Definitions and First Examples

A category is a collection of objects, together with a collection of composable
morphisms between these objects. Note here that we say ’collection’ to
sidestep some set theoretic issues that we will take up later on.

Definition 1.1. A category C consists of a class of objects, denoted O(C),
and, for every two objects x, y ∈ O(C), a class of morphisms, hom(x, y),
satisfying the following properties:

(i) For every three objects x, y, z ∈ O(C), there is a composition law
◦x,y,z : hom(y, z)× hom(x, y)→ hom(x, z).

(ii) Composition is associative: for all w, x, y, z ∈ O(C), f ∈ hom(y, z), g ∈
hom(x, y), h ∈ hom(w, x) we have:

f ◦ (g ◦ h) = (f ◦ g) ◦ h

(iii) For each x ∈ O(C), there is a distinguished element idx ∈ hom(x, x)
such that, for every y ∈ O(C),

� f ◦ idx = f for all f ∈ hom(x, y)

� idx ◦ f = f for all f ∈ hom(y, x).

There are three observations to make here, two notational and one foun-
dational. The first notational point has to do with omitting information—we
nearly always omit the subscripts from the composition symbol, or indeed
we omit the symbol altogether, since a pair of morphisms is either compos-
able, and then there is only one way of filling in the subscripts, or they are
not, and then there isn’t. Similarly, for compactness we will often avoid
writing x ∈ O(C) for objects and just write x ∈ C.

The second notational point is that we have to pay attention to morphisms—
as we shall see there are numerous circumstances where we will care about
distinguishing between categories with the same class of objects but dif-
ferent classes of morphisms, and so it will be confusing to simply write
“hom.” Some authors will write the category as a subscript, so that we
have homC(x, y) to denote “morphisms from x to y in the category C” but
we will opt for the more compact notation C(x, y).

The foundational issue is a bit stickier and this has to do with the fact
that we talk of “classes” of objects and morphisms rather than “sets.” The
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motivation for this is that we would like to speak of Set the category of all
sets with morphisms functions between sets, and we could not do this if we
required a “set” of objects, since this would then require a set of all sets,
which as we all know doesn’t exist. One common intution is that there are
“too many” sets to fit them all in one set, and this motivates the following
terminology: a category is called small if the class of objects is a set, and
it is called locally small if the class of morphisms between any two objects
is a set.

Since we have already mentioned an example, Set, let’s take a moment
to examine it. In this category objects are sets, morphisms are functions
between sets, and the associativity of the composition law is the associativity
of composition of functions. Formally:

Example 1.2 (The category of sets). Define Set as follows: O(Set) is the
class of all sets, and, for any two sets A,B ∈ O(Set), define hom(A,B) =
{f : A→ B} as the set of functions from A to B, with the composition law
given by the usual composition of functions. Since composition of functions
is associative, and there is always an identity function, Set is a category.

Many categories can be found living inside the category of sets – objects
are sets equipped with certain structures, and morphisms are still functions.
Here are a few:

The category Objects Morphisms

Top Topological spaces Continuous functions

Man Topological manifolds Continuous functions

SmoothMan Smooth manifolds Smooth functions

FI Sets Injective functions

FS Sets Surjective functions

FB Sets Bijective functions

k-Vect k-vector spaces k-linear functions

R-Mod Left R-modules R-linear functions

Ban Banach spaces Bounded linear functions

BanShort Banach spaces Linear functions of norm at most 1

Each of these is what we call a subcategory of the category of sets.

Definition 1.3 (Subcategory). A subcategory C′ of a category C is a
subcollection of objects of O(C), which we denote O(C′), and, for every
x, y ∈ C′, a subclass C′(x, y) ⊆ C(x, y) which contains the identity morphsim
for each object and is closed under composition. A subcategory is naturally
a category under the inherited composition law and choice of identity.
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Definition 1.4 (Cantorian). A category which is a subcategory of Set is
sometimes called cantorian. A category in which the objects are sets but
the morphisms are not functions is sometimes called quasi-cantorian.

It is quite hard to construct an example of a category which is not
cantorian, and harder still to construct one which is not at least quasi-
cantorian.

Remark 1.5. It is very common in the literature for people to define a cate-
gory simply by stating the objects and not the morphisms, for example we
might have said “Set is the category whose objects are sets” but as evidenced
by the table above this does not uniquely specify a category. Ironically, in-
stead of forgetting the morphisms, we can usually forget the objects in a
category instead—it would make more sense to say that we want to look
at the category where morphisms are functions from sets to sets, and this
does uniquely determine a category. More formally, we could define a cate-
gory to be simply a collection of morphisms following certain axioms about
composition, and the identity arrows would allow us to recover the notion
of an object. This project is left as an exercise to the reader, who could
also consult [3] for more details. This may seem like mere sophistry but this
notion of interchageability of an object with the identity morphism on that
object is an important step in developing categorical intution.

1.2 Thinking in Diagrams

There are many different sorts of notation used in category, but the most
ubiquitous is the commutative diagram. A diagram in a category is a graph
like the one below:

x y

z w

f

g h
j

The vertices in the graph are labelled by objects in the category, and the
edges are labelled by morphisms (or ’arrows’) in the category. Generally the
diagram doesn’t contain all of the implied morphisms, for example there is
of course a morphism from x to w by h◦f and one from j ◦g. These are left
out so as not to clutter the diagram. In a diagram, any path of arrows from
one object to another gives rise to a morphism through composition. When
we draw a diagram it is almost always to claim that all such compositions
are the same. More concretely:
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Notation 1.6. A diagram is commutative if for every pair of objects, all
paths from one to the other give rise to the same morphism.

For example,

x y

z

f

h
g

means that f : x → y, g : y → z, h : x → z are morphisms in the assumed
category C, and g ◦ f = h. Similarly,

w x

y z

f

i g

h

means that h ◦ i = g ◦ f , and

x y

z

f1

f3

f2

h
g

means that g ◦ f1 = g ◦ f2 = g ◦ f3 = h. That is, the statement that a
diagram commutes expresses equality of certain morphisms.

Convention 1.7. Unless explicitly stated otherwise, in these notes (and in
almost every text with which the authors are familiar) a diagram is commu-
tative unless explicitly stated otherwise.

1.3 The Language of Morphisms

“It is better to have a good category with bad objects than a bad category
with good objects.” – Grothendieck, apocryphal.

When one is talking about sets, one can talk about elements of those
sets. When one is talking about the category Set one can no longer talk
about elements of sets as each set is simply an object in Set and objects
in categories have nothing “inside” of them. The only tool at our disposal
is the morphism. This may at first seem like a drawback, but the shift
in perspective it forces is a valuable one. In this section we will start to
build up some of the tools for working with morphisms and show how they
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replace what we would otherwise do with elements. Those who know more
category theory may point out that we do in fact have a notion of “element”
of a set, but this definition is also entirely defined in terms of morphisms
(essentially, an element is a morphism from the set with one element, which
can be singled out using its relationship to morphisms... we will get there.)

Of course, one may point out in the world of sets that if elements cannot
be distinguished, there is no separation allowed between bijective sets. This
is of course correct, and lends a certain primacy to the notion of isomor-
phism.

Definition 1.8. In a category C, two objects x, y ∈ C are isomorphic (to
each other) if there are f ∈ C(x, y), g ∈ C(y, x) such that gf = idx and
fg = idy. In this case, we say that f and g are isomorphisms, and write
x ∼= y.

Notation 1.9. If f is an isomorphism, the morphism g such that gf =
fg = id is uniquely determined. We write g = f−1, and say that g is the
inverse of f .

Different categories will have radically different notions of isomorphism.
In the category of topological spaces, isomorphism is called homeomorphism;
in the category of metric spaces with non-expansive maps, it is called isom-
etry. Algebraists generally use the word “isomorphism” to refer to isomor-
phism in all of their categories. In any case, the language of category theory
is generally unable to distinguish between isomorphic objects. It is often
the case that we cannot determine objects on the nose, but merely “up to
isomorphism.”

Now that we have identified the bijections in Set it may seem like a
natural next step to ask about injections (or surjections, which we will get to
next.)We start with a pair of sets A,B and a morphism f : A→ B. We want
to tell if f is injective, but we can’t pick elements in A and “look at where
f sends them.” How then can we talk about “distinguishing elements?”
Consider an arbitrary set C and a set of parallel arrows g, h : C → A so
that the diagram

C A

A B

g

h f

f

commutes. Then what can we say about g, h? If C is a set with a single
element, then g and h pick out elements of A, and if f is injective then
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the statement that the diagram commutes (i.e. that f sends both of these
elements to the same place) means that these elements must be the same.
Further, this will still hold no matter the cardinality of C–if g and h ever send
the same element to a different pair of elements in A, then the injectivity
of f means that these elements will still be distinguished in B. Then f is
injective if for every pair of parallel arrows g, h the above diagram commutes
only if g and h are the same. This motivates the following definition.

Definition 1.10. A morphism f ∈ C(x, y) is called a monomorphism if
it satisfies the following property:
for every w ∈ C, g1, g2 ∈ C(w, x), fg1 = fg2 =⇒ g1 = g2. This property is
called left cancellation.

Notation 1.11. When f is a monomorphism, we often use ↪→ or � to
denote it. So the injection i : Q→ R can be written i : Q ↪→ R.

We strongly caution the reader that while injectivity can be viewed as a
motivation for the notion of a monomorphism, these are not the same. In a
subcategory of Set isomorphisms are always bijective, but monomorphisms
are not always injective.

Example 1.12. We begin with an example for the algebraically inclined.
Consider the category of divisible abelian groups, with morphisms being
additive functions, and the projection π : Q → Q/Z. This is clearly not
injective, and yet it is a monomorphism. Indeed, consider another divisible
abelian group A, and a pair of morphisms f, g so that the diagram

A Q

Q Q/Z

f

g π

π

commutes. Then we want to show f = g. Suppose for contradiction that
f 6= g. Since we can add and subtract maps of abelian groups replace in the
above diagram f by f − g and g by g− g, i.e. the 0 map. This new diagram
is still commutative (why?) and so we now have a diagram

A Q

Q Q/Z

h=f−g

0 π

π
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and since f 6= g we know that h 6= 0. By commutativity of the diagram
π ◦ h factors through the 0 map, and so to reach a contradiction we will
locate an element of A which is not in the kernel of π ◦ h. Since h 6= 0 we
know there is some element a not in the kernel of h. Then if h(a) is not in
the kernel of π (i.e. an integer) we have a contradiction, so we suppose that
h(a) is an integer k. Then we pick another integer j which does not divide
k and consider a

j in A which must be sent to k
j by h, and since this is not

an integer it is not in the kernel of π. Then a
j is not in the kernel of π ◦ h

and we have a contradiction. Then f = g.

Example 1.13. For the more topologically inclined, consider the category
of path-connected, locally path-connected pointed topological spaces (recall
that a pointed space is a space together with a choice of basepoint). Then
let X be such a space and π : X̃ → X a covering map. This covering map
may or may not be injective (in general it will not be) but it is always a
monomorphism. The key piece of insight here is that we have restricted to
the case where we can lift maps to X back up to the covering space X̃. Any
map f which can be factored through X̃ as some map π ◦ f̃ can be lifted,
and since we have fixed the basepoint it can be lifted uniquely back to f .
Then pick arrows g, h from some space Y to X̃. Since these maps are both
lifts of the maps π ◦ g = π ◦ h, uniqueness of lifts gives g = h.

We hope that with this pair of examples it is clear to the reader that the
concept of monomorphism and the concept of injection are not the same,
although one has motivated the definition of the other. We now turn to
surjectivity.

Again we want to think about sets A,B and a morphism f : A → B
and ask how we can tell if it is surjective purely in terms of arrows. For
injectivity we wanted to somehow carry over the idea that f can “see the
difference” between any elements in A, but here we want to carry over the
idea that f “sees” all the elements of B. We then consider a pair of parallel
arrows g, h : B → C so that the diagram

A B

B C

f

f g

h

commutes. A very similar analysis to the one above for injective functions
leads to the following definition.

Definition 1.14. A morphism f ∈ C(x, y) is called a epimorphism if it
satisfies the following property:
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for every z ∈ C, h1, h2 ∈ C(y, z), h1f = h2f =⇒ h1 = h2. This property is
called right cancellation.

Notation 1.15. When f is an epimorphism, we often use � to represent
it. So the surjection Z→ Z/(2) can be be written π : Z � Z/(2).

Again, though we have motivated epimorphisms with the idea of surjec-
tivity, and in Set these are the same, they are not the same in all Cantorian
categories.

Example 1.16. Let C be TopHaus, the category of Hausdorff topological
spaces. Let i : Q → R be the standard inclusion. Then if X is another
Hausdorff topological space, h1, h2 : R→ X continuous functions with h1i =
h2i. Then h1 = h2, based on the following sketch argument: for any x ∈ R,
x = lim

n→∞
qn, qn ∈ Q. Then:

h1(x) = h1( lim
n→∞

xn)

= lim
n→∞

h1(xn)

= lim
n→∞

h2(xn)

= h2( lim
n→∞

xn)

= h2(x)

using throughout that in Hausdorff spaces, convergent sequences have at
most one limit, and that continuous functions preserve limits. However, the
injection from Q to R is not a surjection, even though it is an epimorphism.

Example 1.17 (Best if you know sheaves). In the category of sheaves on
the punctured disk D̊, the differentiation map ∂ : O → O is an epimorphism,
but 1

z ∈ O is not the derivative of any analytic function. Here O represents
the sheaf of analytic functions.

Example 1.18. Consider the category of torsion free abelian groups, and
the inclusion morphism i : Z → Q. This is an epimorphism, although clearly
not surjective. Consider a pair of arrows f, g : Q → A to some torsion free
abelian group A with the commutative diagram

Z Q

Q A

i

i g

f
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Again we consider the modified diagram

Z Q

Q A

i

i 0

f−g

and set h = f − g. Again commutativity tells us that since h ◦ i factors
through the 0 map it must be the 0 map. Then the kernel h must contain
the image of i. Without loss of generality, replace A with the image of h.
Since A is isomorphic to Q/ker(h) and it is torsion free, we conclude that
if Z ⊂ ker(h) that ker(h) must be all of Q, which means h is the 0 map, or
f = g.

Remark 1.19. In Set a bijection is a map which is both surjective and in-
jective. In general categories the situation is more complicated. If f is an
isomorphism, then f is both a monomorphism and an epimorphism. To show
it is a monomorphism, fix an inverse g for f , and assume that h1f = h2f .
Then h1fg = h2fg = h1id = h2id, so h1 = h2. A similar argument shows
that it is an epimorphism. The reverse however needn’t be the case. In
fact, all of the examples above, except for sheaves on the punctured disk,
demonstrate this.

It’s clear that being an isomorphism is stronger than being a monomor-
phism or an epimorphism. Lying somewhere in between these two concepts
are sections and retractions, also right and left inverses.

Definition 1.20. A section is a morphism f ∈ C(x, y) such that there is
some morphism g ∈ C(y, x) with gf = idx. Sometimes we say that f is a
section of g, or a right inverse to g. Given g, if such an f exists we say
that g admits a section. All sections are monomorphisms.

Definition 1.21. A retraction is a morphism g ∈ C(x, y) such that there
is some morphism f ∈ C(y, x) with gf = idx. Sometimes we say that f is a
retraction of, or left inverse to g. Given g, if such an f exists we say that
g admits a retraction. All retractions are epimorphisms.

If a morphism is both a section and a retraction, then it is an isomor-
phism. In Set all monomorphisms are sections and all epimorphisms are
retractions (assuming the axiom of choice), but again this needn’t be the
case in an arbitrary Cantorian category, although it is true in any category
with an epi-mono factorization (we may prove this later, but for now do not
worry about it.)
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1.4 Functors

To close out this chapter, we will learn about one more kind of morphism—a
morphism of categories, i.e. a functor.

Definition 1.22. A functor from a category C to a category D, normally
denoted F : C → D, consists of the following data:

(i) For each object x ∈ C, an object F (x) ∈ D.

(ii) For each morphism f ∈ C(x, y), a morphism F (f) ∈ D(F (x), F (y)).

(iii) Respecting composition: for composable f, g, F (g ◦ f) = F (g) ◦ F (f).

(iv) Respecting identity: F (idx) = idF (x).

A functor takes objects to objects, morphisms to morphisms, and com-
muting diagrams to commuting diagrams. Technically, what we have defined
here is a covariant functor. It contrasts with the following:

Definition 1.23. A contravariant functor F : C → D assigns to each
object x ∈ C an object F (x) ∈ D, and to each morphism f ∈ C(x, y), a
morphism F (f) ∈ D(F (y), F (x)), obeying F (g ◦ f) = F (f) ◦ F (g), and
F (idx) = idF (x).

A covariant functor flips the direction of the arrows, which is something
that comes up a lot in category theory.

Functors are all over the place! Here are a few examples:

Example 1.24 (Continuous functions). Let Top denote the category of
topological spaces, and C-Vect the category of C-vector spaces. Define
F : Top→ C−Vect by F (X) = {f : X → C continuous}. If g : X → Y is a
continuous function, it induces a linear map F (Y )→ F (X) by composition:
if f : Y → C is continuous, then f ◦ g : X → C is continuous. Check that
this is linear and so on. In fact, this map respects the multiplication of
functions, so it’s a functor to the category of C-algebras.

Example 1.25 (π1). Let C denote the category of pointed topological
spaces: objects are topological spaces with distinguished basepoint, (X,x0),
and morphisms are continuous functions that take basepoint to basepoint.
A morphism in this category f : (X,x0) → (Y, y0) induces a map π1(f) =
f∗ : π1(X,x0)→ π1(Y, y0).
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Common Functors
Functor Source cat-

egory
Target
category

Action Variance

C(−, x) Any locally
small cate-
gory C

Set Takes any object y to
the set of morphisms
homC(y, x); composes
by precomposition

Contra-

πk Top∗ Grp Takes a pointed spaceX
to homotopy classes of
maps of k-spheres into
it

Co-

Spec ComRing Top Takes a commutative
ring to its prime ideals
with the Zariski topol-
ogy

Contra-

A functor is the right notion of morphism of categories. In this context,
we can define an isomorphism of categories:

Definition 1.26. Two categories C and D are isomorphic if there are
functors F : C → D, G : D → C such that GF is the identity functor on C,
and FG is the identity functor on D.

Just like isomorphism inside a category, isomorphism of categories pre-
serves many important qualities. However, isomorphism of categories turns
out to be too strong of a notion, and we will eventually accept the weaker
condition of equivalence.

1.5 Exercises

1. Write down your favorite category. What are the objects? What are
the morphisms? Find a subcategory by picking a particularly nice
family of morphisms.

2. Given a partially ordered set, create a category where the objects
are the elements of the set, and the morphisms are determined by
inclusions. Are these morphisms monomorphisms? Epimorphisms?

3. Identify the monomorphisms in the following categories:

(i) The category of groups, with group homomorphisms as mor-
phisms.
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(ii) The category of rings, with ring homomorphisms as morphisms.

(iii) The category of partially ordered sets, with order-preserving func-
tions as morphisms.

(iv) The category of topological spaces, with continuous maps as mor-
phisms.

4. Show that an isomorphism has a unique inverse.

5. Show that a morphism which is both a section and a retraction is an
isomorphism.

6. Prove the statement or give a counterexample (assuming all functors
covariant):

(i) Functors always take monomorphisms to monomorphisms.

(ii) Functors always take epimorphisms to epimorphisms.

(iii) Functors always take sections to sections.

(iv) Functors always take retractions to retractions.

(v) Functors always take isomorphisms to isomorphisms.

7. Find an example of a retract of categories: categories C and D and
F : C → D, G : D → C with GF being the identity functor on C.
Bonus if FG is not the identity on D.

8. Fix a category C and an object x ∈ C. Define the following category,
sometimes referred to as the x-pointed category of C:

� Objects are pairs (y, f), with y ∈ C, f ∈ C(x, y).

� A morphism from (y, f) to (z, g) is an element h ∈ C(y, z) such
that the following diagram commutes in C:

x

y z

f g

h

with the composition inherited from C.

Prove that this category, x ↓ C, actually is a category. Show that there
is a canonical functor F : x ↓ C → C. What would it mean if F was an
isomorphism of categories? What would that imply about the functor
C(x,−)? Find some examples of such categories.
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9. Find an example of two categories C and D, with a functor F : C → D
such that F takes some non-isomorphic objects in C to isomorphic
objects in D.

10. Given a category C and an object x ∈ C, show that the set of invertible
morphisms x→ x, denoted Aut(x), is a group.

11. Establish the following equivalences:

(i) A group is a one-object locally small category where every mor-
phism is invertible.

(ii) A monoid is a one-object locally small category.

12. Given a locally small category C and an object x ∈ C, build a canonical
poset from C by taking the elements of the poset to be the idempotents
in C(x, x), and declaring f ≤ g if gf = f . Given any poset, can
you build a category where the idempotents correspond exactly to the
poset in this manner?

13. Show that the composition of monics is a monic.

14. Suppose you have arrows f, g whose composition gf is a monomor-
phism. Is f always a monomorphism? Is g?

15. Show that in a category C, the relation x ' y ⇐⇒ there is an
isomorphism between x and y defines an equivalence relation on the
objects of C.

16. Define a category C to be skeletal if for every pair of objects x, y ∈
C, x ∼= y ⇐⇒ x = y. Given a small category D, construct its
skeletalization: find a skeletal category C and a functor F : D → C
which is an equivalence of categories: there is a G : C → D with
GF ∼= idD, FG ∼= idC .

17. Define the category FinOrd to be the category with objects all sets of
the form {0, . . . , n − 1} for n ∈ N, and with morphisms all functions
between these sets. Show that FinOrd is skeletal, and, moreover, that
it is a skeletalization of the category of finite sets.
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2 Natural Transformations, Categories of Func-
tors

2.1 Natural Transformations

Definition 2.1. Given two functors F,G : C → D, a natural transfor-
mation from F to G is a collection of maps (ηx)x∈C , where each map ηx
is in D(Fx,Gx). The naturality condition is expressed by the following
commuting square: for any f ∈ C(x, y),

Fx Fy

Gx Gy

ηx

Ff

ηy

Gf

Example 2.2. Let C be the category of sets. For each set S, there is a
functor −×S, defined by the following: on objects, a set A maps to the set
A× S, its Cartesian product; on morphisms, a function f : A→ B maps to
the function

f × idS : A× S → B × S
(a, s) 7→ (f(a), s)

(you should check that this functor preserves commuting triangles). Then for
any function g : S → T , id−×g : −×S → −×T is a natural transformation
between the two functors. To check it is a natural transformation, we first
pick two objects A,B, and a morphism f : A→ B. We want to check that
the following diagram commutes:

A× S B × S

A× T B × T

f×idS

idA×g idB×g

f×idT

Pick a pair (a, s) in the top left corner. Going right, then down, maps
(a, s) 7→ (f(a), s) 7→ (f(a), g(s)); going down, then right, maps (a, s) 7→
(a, g(s)) 7→ (f(a), g(s)). So the diagram commutes for arbitrary A,B, f ; we
have built a natural transformation.

Remark 2.3. It’s nice to note that in some sense, the natural transformation
commutes the two functors. If η : F → G is a natural transformation, for
any f ∈ C(x, y), G(f) ◦ ηx = ηy ◦ F (f). Removing labels, we can say that
Gη = ηF .
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Example 2.4 (Double dualization). One of the most recognized natural
transformations is the evaluation homomorphism V → V ∗∗, where V ∗ is the
dual of a vector space. To be precise, fix a field k, and let C denote the cat-
egory of k-vector spaces. The functor commonly denoted ∗, or dualization,
takes a vector space V to Homk(V, k), and if T : V →W is a k-linear map,
by means of the following diagram

V W

k
φ◦T

T

φ

T induces a map T ∗ : W ∗ → V ∗. Checking some coherence (linearity of T∗,
respecting composition and identity) we see that this is a functor. Now we
can define a natural transformation from the identity functor to the functor
∗∗. For each V , the component should be

ιV : V → V ∗∗

v 7→ (φ 7→ φ(v))

for each φ ∈ V ∗. This is evaluation of the linear functionals at v.
Naturality should be expressed by the following square: for any V,W ∈

C, T ∈ C(V,W ), we should have

V W

V ∗∗ W ∗∗

T

ιV ιW

T ∗∗

Again, we start at the top left, and take both paths. Going right, then down,
takes an element v ∈ V first to T (v) ∈W , and then to the map which takes
any φ : W → k to φ(T (v)). Going down, then right, takes v first to the
functional evv that takes any map ψ : V → k to ψ(v), and then to T ∗∗(evv).
By the definition of the functor ∗, T ∗∗(evv) = evv ◦T ∗. For any φ ∈ V ∗,
evv ◦T ∗(φ) = evv(φ ◦ T ) = φ(T (v)), exactly as desired.

Example 2.5. Let G be a group, and let G−Set be the category where ob-
jects are are sets with left actions by G, ρ : G→ Set(X,X), and morphisms
are functions f : (X, ρ) → (Y, σ) such that for each g ∈ G, f(ρ(g)(x)) =
σ(g)(f(x)). Let U denote the forgetful functor G − Set → Set. Then each
g ∈ G gives a natural transformation ηg : U → U by the following rule:
ηg(X,ρ)(x) = ρ(g)(x). This is a natural transformation by fiat – we declared
that morphisms in the category respected the group action.
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Of course, we can now say that two functors are naturally isomorphic if
there are natural transformations between them that compose to the identity
both ways.

The structure of categories, with morphisms being functors, and mor-
phisms between functors being natural transformations, is the basis of 2-
categories.

2.2 Functor Categories

Let C and D be two categories. We can form a new category from the
functors between them.

Definition 2.6. If C and D are categories, the functor category from C
to D, which we normally denote [C,D], is the category with:

1. Objects are functors F : C → D;

2. Morphisms between functors are natural transformations η : F → G.

Example 2.7. Let G be a group, considered as the morphisms of the one-
object category C. Then the functor category [C,D] is the category with
objects being objects in D together with G-symmetries, and morphisms
being morphisms in D which respect the group action. In particular, G −
Set ∼= [C,Set].

To ask for a category to have a bit of extra structure, we can phrase the
request in terms of a functor.

Functor categories are very important for the Yoneda lemma, limits, and
colimits.

2.3 Slice and Coslice Categories

A slice or coslice category is a category equipped with the data of a particular
morphism from a particular object.

Definition 2.8. Given a category C and an object x ∈ C, the slice cate-
gory, sometimes called the slice category over x, has

1. Objects are pairs (y, f), with f ∈ C(y, x);

2. Morphisms from (y, f) to (y′, f ′) are those g ∈ C(y, y′) with the fol-
lowing diagram commuting:
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y y′

x
f

g

f ′

Definition 2.9. Given a category C and an object x ∈ C, the coslice
category, sometimes called the coslice category under x, has

1. Objects are pairs (y, f), with f ∈ C(x, y);

2. Morphisms between (y, f) and (y′, f ′) are those morphisms g ∈ C(y, y′)
with the following diagram commuting:

x

y y′

f f ′

g

Example 2.10. The category of pointed topological spaces is naturally
a coslice category. Recall that the category of pointed topological spaces
has objects being pairs (X,x0), and a morphism from (X,x0) to (Y, y0) is
a continuous function f with f(x0) = y0. This can be expressed in the
following commutative diagram:

{∗}

X Y

x0 y0

f

which is transparently the coslice category under a point.

Example 2.11. The category of k-schemes is the slice category of schemes
over Spec k.

2.4 Comma Categories

Everything in the above can be generalized in the form of a comma category.

Definition 2.12. Given three categories C,D, E , with two functors F : C →
E , G : D → E , the comma category is defined as having

1. Objects are triples (c, d, α) with c ∈ C, d ∈ D, and α ∈ E(Fc,Gd);

2. Morphisms from (c, d, α) to (c′, d′, α′) are pairs (β, γ) with β ∈ C(c, c′),
γ ∈ D(d, d′), such that the following square commutes:
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Fc Fc′

Gd Gd′

α

Fβ

α′

Gγ

3. Composition of morphisms is given by composition on their compo-
nents.

The comma category is a very powerful, general notion.

Example 2.13. If E = C and F = idC , and D is the category with just
one object and no nontrivial morphisms, with G(∗) = c, then the comma
category is the slice category over c.

Example 2.14. If, conversely, G = idC and F is the inclusion of an object
c ∈ C, then we have the coslice category under c.

2.5 Exercises

1. Prove Example 2.13.

2. Prove 2.14.

3. If F1, F2, F3 : C → D, and η1 : F1 → F2, η2 : F2 → F3, then η2 ◦ h1 :
F1 → F3. Show that η2 ◦ η1 is a natural transformation.

4. If F1, F2 : C → D, G1, G2 : D → E , η1 : F1 → F2, ε1 : G1 → G2, define
a horizontal composition ε1η1 : G1F1 → G2F2 by the following rule:
for each x ∈ C, compose the maps

G1F1(x) G1F2(x)

G2F1(x) G2F2(x)

(ε1)F1(x)

G1((η1)x)

(ε1)F2(x)

(ε1)F1(x)

to get from G1F1 to G2F2. Show that both compositions are the same,
and that they assemble to a natural transformation G1F1 → G2F2.
This is the horizontal composition of natural transformations.

5. Show that if F1, F2, F3 : C → D, G1, G2, G3 : D → E , and η1 : F1 →
F2, η2 : F2 → F3, ε1 : G1 → G2, ε2 : G2 → G3, then vertical and
horizontal compositions commute:

(ε2 ◦ ε1)(η2 ◦ h1) = (ε2η2) ◦ (ε1η1).
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6. Fix a base field k. Consider the two functors k−Modop × k−Mod→
k − Mod by F (−1,−2) = −∗1 ⊗ −2 and G(−1,−2) = Homk(−1,−2).
Construct a natural transformation F → G, and show that when re-
stricted to the category of finite-dimensional vector spaces, this natural
transformation is a natural isomorphism. Construct its inverse in that
case.
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3 The Yoneda Lemma

The Yoneda Lemma is a canonical embedding of a locally small category C
into the category [Cop,Set], generally known as the category of presheaves
on C, PSh(C).

Throughout this section, we use the notation Nat to denote the class of
natural transformations from one functor (particularly presheaf) to another,
instead of our usual [Cop, Set].

Definition 3.1. A functor F : C → D is called full if for every pair of
objects x, y ∈ C, the map Fx,y : C(x, y)→ D(x, y) induced by the functor is
surjective.

Definition 3.2. A functor F : C → D is called faithful if for every pair of
objects x, y ∈ C, the map Fx,y : C(x, y)→ D(x, y) induced by the functor is
injective.

Remark 3.3. It is tempting to claim that a functor that is both full and
faithful is an equivalence of categories, in analogy with algebraic objects.
However, this is not correct. In order for F to be an equivalence of categories,
it must also be essentially surjective – for each z ∈ D, there must be some
x ∈ C such that F (x) ∼=D z.

Theorem 3.4 (Yoneda). Let C be a locally small category. Define the
functor h : C → PSh(C) by:

1. For each object x ∈ C, x 7→ hx = C(−, x).

2. For each f ∈ C(x, y), f maps to the natural transformation C(−, x)→
C(−, y) by f ◦ −.

Then h is a full and faithful functor. Moreover, for any F ∈ [Cop,Set],
Nat(hx, F ) ∼= F (x).

Definition 3.5. A functor of the form hx = C(−, x), or of the form xh =
C(x,−), is called representable.

Proof. Checking that h is actually a functor is easy. Certainly, it sends the
identity morphism to the identity natural transformation, since idx ◦− = −.
If g ∈ C(x, y), f ∈ C(y, z), then

(hf ◦ hg)(−) = hf (g ◦ −)

= f ◦ (g ◦ −)

= (f ◦ g) ◦ −
= hf◦g(−).
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The fact that f ◦ − defines a natural transformation is expressed in the
following commutative square: let f ∈ C(x, y), g ∈ C(w, z), consider the
following square:

C(z, x) C(w, x)

C(z, y) C(w, y)

−◦g

f◦− f◦−
−◦g

and for any h ∈ C(z, x), we can chase the diagram: going right, then down,
yields f ◦(h◦g); going down and then right yields (f ◦h)◦g. But associativity
of composition forces these to be the same.

Now we prove that Nat(hx, F ) ∼= F (x). This is the fundamental trick of
the Yoneda lemma: understanding natural transformations corresponding
to representable functors amounts to examining what occurs at the identity.
Let η : hx → F be a natural transformation. Then for any y ∈ C, f ∈ C(y, x),
we have the following diagram:

C(x, x) C(y, x)

F (x) F (y)

ηx

−◦f

ηy

F (f)

and applying commutativity to the element idx ∈ C(x, x), we see that
ηy(f) = F (f)(ηx(idx)). This means that η ∈ Nat(hx, F ) is uniquely de-
termined by its value at x. Conversely, let a ∈ F (x). Define the natural
transformation ηa : hx → F by ηay(f) = F (f)(a). Again, this is a natural
transformation: if g ∈ C(y, z), we chase the diagram

C(z, x) C(y, x)

F (z) F (y)

−◦g

F (−)(a) F (−)(a)

F (g)

Pick a morphism f ∈ C(z, x). Going right, then down sends f to F (f ◦g)(a).
Going down, then right sends f to

F (g)(F (f)(a)) = F (g)F (f)(a) = F (f ◦ g)(a).

Because these processes are obviously mutually inverse, this establishes
the isomorphism. Now that we know this is an isomorphism, we can establish
naturality in C×PSh(C). First, let ζ : F → G be a natural transformation of
presheaves. The isomorphism Nat(hx, F ) ∼= F (x) is established by taking a
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natural transformation η and sending it to ηx(idx). So consider the following
commutative diagram of sets (Nat(hx, F ) is a set because it is isomorphic to
F (x)):

Nat(hx, F ) F (x)

Nat(hx, G) G(x)

η 7→ηx(idx)

η 7→ζ◦η ζx

ξ 7→ξx(idx)

Fix an η ∈ Nat(hx, F ). Going right, then down gives

ζx ◦ ηx(idx)

whereas going down, then right gives

(ζ ◦ η)x(idx)

which are manifestly the same.
Similarly, to check naturality in C, let f ∈ C(x, y). Then f induces a

morphism hf : hx → hy, which in turn induces a function Nat(hy, F ) →
Nat(hx, F ) for every F ∈ PSh(C). Now we chase the diagram:

Nat(hy, F ) F (y)

Nat(hx, F ) F (x)

η 7→ηy(idy)

η 7→hf◦η F (f)

ξ 7→ξx(idx)

and again we unpack definitions: because η is a natural transformation from
hy to F , F (f) ◦ ηy(idy) = ηx(f). Now, first going right, then down,

F (f)(ηy(idy)) = ηx(f)

= hfx(ηx)(idx)

= (hf ◦ η)x(idx)

which shows the naturality in C.

Corollary 3.6. Representable functors are isomorphic if and only if the
objects they are represented by are isomorphic.

Corollary 3.7. Let G be any group, considered as a one-object category
where every morphism is an element of the group and composition is group
multiplication. Applying the Yoneda lemma shows that G has a faithful
action on some set (in this case, this is the left action on itself).
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Remark 3.8. Various versions of an enriched Yoneda lemma are available.
Here is one about Banach spaces: Yoneda for Banach-enriched categories.

Corollary 3.9. Applying Yoneda as above to Cop gives a contravariant
embedding of C to the covariant functors [C,Set]. We denote the functor
C(x,−) as xh.

Corollary 3.10. Because Set is closed under all small limits and colimits, so
is the category PSh(C), by taking limits and colimits in the target category.

Theorem 3.11. The Yoneda embedding is continuous (that is, it preserves
limits).

Proof. Let F : I → C be a functor from a diagram category with limit
(limF, εi). Let G ∈ PSh(C), and let (ηi) : ∆G → C(−, F (i)) be a natural
transformation of functors in the category [I, Set]: that is, for each i ∈ I,
a natural transformation G → C(−, F (i)) such that the following diagram
commutes for each f ∈ I(i, i′):

G

C(−, F (i)) C(−, F (i′))

ηi
ηi′

Ff◦−

Now, for each x ∈ C, we have a family of maps (ηi)x : Gx → C(x, F (i)).
For each element g of Gx, (ηi)x(g) ∈ C(x, F (i)) defines a map ∆x→ F . So
there is a unique lift limi(ηi)x(g) : x→ limF . This means that elements of
Gx give elements of C(x, limF ), and this is what is commonly known as a
function. Call this function Φx.

Now it remains to show that this is natural in x; let f ∈ C(x, x′), and
g ∈ G(x′). Φx ◦ Gf(g) is the unique morphism φ : x → limF such that
εi◦φ = (ηi)x(Gf(g)), by definition. But [Φx′(g)]◦f also shares this property:
εi[Φx′(g)]◦f = (ηi)x′(g)◦f = (ηi)x(Gf(g)), because ηi is a family of natural
transformations.

Corollary 3.12. Given a compact smooth manifold M , M can be recovered
functorially from its ring of smooth functions A = C∞(M).[1]

Proof. The points ofM are in correspondence with maximal ideals of C∞(M).
Because maximal ideals is a functor on commutative algebras, we have re-
covered the set; we just need to recover the smooth structure. We already
know that M is a manifold; we just have to recover which. But for any other
compact manifold N , N embeds into some large Rn via an embedding i, and
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map φ : M → N is smooth if and only if i ◦ φ has smooth components. But
we know all of smooth functions M → R: we have access to C∞(M). So we
have recovered the functor C(M,−), and, by opposite Yoneda, recovered M
up to smooth isomorphism (diffeomorphism).

Corollary 3.13 (Monos and epis). We can return to characterizing monomor-
phisms and epimorphisms as “injective” and “surjective” using the Yoneda
lemma. A morphism f ∈ C(x, y) is a monomorphism if and only if for ev-
ery z ∈ C, the Yoneda natural transformation (hf )z : C(z, x) → C(z, y) is
injective. Similarly, f is an epimorphism if and only if for every z ∈ C,
the opposite Yoneda natural transformation fh : C(y, z) → C(x, z) is an
injection.

Corollary 3.14 (Sections and retractions). Similarly, we can character-
ize sections and retractions. A morphism f ∈ C(x, y) is a section if fh :
C(y,−)→ C(x,−) is surjective for every z ∈ C; a morphism g ∈ C(y, x) is a
retraction if hg : C(−, y)→ C(−, x) is surjective for every z ∈ C.

The following proof is long and technical, and can probably be skipped.
Nevertheless, if you are interested, this is a good theorem to treat as an
exercise. Given just the definition of I, can you prove that F is the colimit
of a functor coming from I? What if you are given the functor?

Theorem 3.15 (Density theorem). [3, 3.7 Theorem 1] Every functor in
PSh(C) is the colimit of representable functors hx. In this sense, repre-
sentable functors are dense in PSh(C).

Proof. Throughout this proof, I dispense with our usual convention of using
lowercase letters to represent elements of a category, and instead choose up-
percase letters to represent them. Lowercase letters are reserved for elements
of sets and morphisms.

First, fix a presheaf F . Define the indexing category I:

1. The objects of I are pairs (X, a), with X ∈ C, a ∈ F (X).

2. The morphisms of I are pointed morphisms: if (X, a), (Y, b) are objects
of I, the morphisms from (X, a) to (Y, b) are those morphisms f ∈
C(X,Y ) such that Ff(b) = a.

Let p denote the forgetful functor I → C. Then F is the colimit of the
functor h ◦ p : I → PSh(C).

Define the structure morphisms η(X,a) : C(−, X) → F by η(X,a)(f) =
Ff(a). These are natural transformations: for any Y,Z ∈ C, g ∈ C(Y,Z),
we have the following diagram
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C(Z,X) C(Y,X)

F (Z) F (Y )

−◦g

f 7→Ff(a) f 7→Ff(a)

F (g)

and chasing f around this diagram gives F (f ◦ g)(a) = F (g) ◦ F (f)(a).
Moreover, these are natural transformations with respect to the category I:
if f ∈ I((X, a), (Y, b)), then we have the following commuting triangle

C(−, X)

F

C(−, Y )

g 7→F (g)(a)

f◦−

g 7→F (g)(b)

with commutativity coming because, for any g in C(−, X), we have

F (f ◦ g)(b) = F (g) ◦ F (f)(b)

= F (g)(a)

as desired.
Now we need to show that these morphisms are universal. Let

φ(X,a) : C(−, X)→ G

be a family of natural transformations of functors commuting with the in-
duced maps. Then for each Z ∈ C, define the function φZ : F (Z) → G(Z)
by

φZ(a) = (φ(Z,a))Z(idZ).

To show that φZ defined in this way assembles to a natural transformation
in the functor category, let g ∈ C(Z ′, Z), and examine the following diagram:

F (Z) F (Z ′)

G(Z) G(Z ′)

Fg

φZ φZ′

Gg

and fix a ∈ F (Z). Then g ∈ I((Z ′, Fg(a)), (Z, a)), and chasing a around we
see that down, then right is

Gg(φZ,a)Z(idZ)
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whereas right, then down is

(φ(Z′,Fg(a)))Z′(idZ′).

By the commutativity of

C(Z,Z) G(Z)

C(Z ′, Z) G(Z ′)

(φ(Z,a))Z

−◦g Gg

(φ(Z,a))Z′

we see that

Gg(φ(Z,a))Z(idZ) = (φ(Z,a))Z′(idZ′ ◦ g)

= (φ(Z,a))Z′(g)

and by commutativity of

C(Z ′, Z)

G(Z ′)

C(Z ′, Z ′)

(φ(Z,a))Z′

g◦−

(φ(Z′,Fg(a)))Z′

we have
(φ(Z′,Fg(a)))Z′(idZ′) = (φ(Z,a))Z′(g)

which proves that φ assembles to a natural transformation in the functor
category.

To show that φ ◦ η(X,a) = φ(X,a) for each (X, a) ∈ I, we want to show
that for every Y ∈ C, the following diagram commutes:

C(Y,X) F (Y )

G(Y )

f 7→Ff(a)

(φ(X,a))Y
φY

In order to do this, fix f ∈ C(Y,X). Then φY (Ff(a)) = (φ(Y,Ff(a)))Y (idY ).
To compute this morphism, consider the commuting triangle
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C(Y,X)

G(Y )

C(Y, Y )

(φ(X,a))Y

(φ(Y,Ff(a)))Y

−◦f

so φY (Ff(a)) = (φ(X,a))Y (f) as desired. This means that φ is a morphism
making the diagram commute. Uniqueness is, thankfully, obvious: for any
X ∈ C, a ∈ F (X), for a morphism φ : F → G to commute with the φ(X,a)

for all (X, a) ∈ I, we must have the following diagram

C(X,X) F (X)

G(X)

f 7→Ff(a)

(φ(X,a))X
φ

and applying this to f = idX , we see that φ(a) = (φ(X,a))X(idX), as defined
above.

Corollary 3.16. The embedding h : C → PSh(X) is the free cocompletion
of C: if F : C → D is any functor to a cocomplete category D, there is a
unique cocontinuous functor F̂ : PSh(X) → D which extends F . This is in
fact a 2-categorical adjunction from the category of locally small categories
with functors and natural transformations to the category of locally small
cocomplete categories with cocontinuous functors and natural transforma-
tions.

Remark 3.17. The moral of the Yoneda lemma, if there is one, is that when-
ever you are dealing with natural transformations of functors with a repre-
sentable functor involved, try to see what’s happening at the identity. That
should force the behavior on on the rest of the category.

3.1 Exercises

1. Let C be the category of G-sets, and U the forgetful functor C → Set.
Show that [C,Set](U,U) ∼= G as a group.

[Hint: U ∼= C((G, left translation),−). Apply Yoneda.]

30



2. Let C be the category of left R-modules, and let U : C → Ab be the
forgetful functor to the category of Abelian groups. Using whatever
version of enriched Yoneda you feel comfortable with, show

[C,Ab](U,U) ∼= R.

3. Find an example of two functors F,G : C → D, with, for each x ∈ C,
F (x) ∼= G(x), but F 6∼= G. Find representable functors with the same
property.

4. Find an example of a full and faithful functor which fails to be an
isomorphism of categories.
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4 Limits and Colimits

Limits and colimits can be thought of as generalized ways of gluing together
objects to make new objects.

4.1 Products and Coproducts

Fix a category C.

Definition 4.1. Given objects x, y ∈ C, an object z ∈ C together with
morphisms πx : z → x, πy : z → y is called the product of x and y if it
satisfies the following universal property: for every w ∈ C, fx ∈ C(w, x), fy ∈
C(w, y), there exists a unique morphism fx × fy = g ∈ C(w, z) that makes
the following diagram commute:

w

z

x y

∃!g fyfx

πyπx

Lemma 4.2. If (z, πx, πy) and (z′, π′x, π
′
y) are both the product of x and y,

then they are isomorphic with a unique isomorphism preserving the projec-
tions.

Proof. Examine the following diagram:

z

z′

z

x y

πyπx

πx×πy

π′yπ′x

π′x×π′y

πx πy

and note that (π′x × π′y) ◦ (πx × πy) : z → z is a morphism which commutes
with the projections πx and πy by commutativity of the diagram. By the
product property of (z, π1, π2), we know exactly one morphism does that, but
the identity obviously satisfies this property. So (π′x× π′y) ◦ (πx× πy) = idz.
Similarly, the other composition is idz′ . So the objects are in canonical
isomorphism.
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We could also have proved this using the Yoneda lemma, which we’ll do
later.

Definition 4.3. Given x, y ∈ C, an object z together with maps ix ∈
C(x, z), iy ∈ C(y, z) is their coproduct if for every w ∈ C and maps
fx ∈ C(x,w), fy ∈ C(y, w), there is a unique morphism fx

∐
fy = g ∈ C(z, w)

making the following diagram commute:

x y

z

w

fx

ix

fy

iy

∃!g

Lemma 4.4. Coproducts are unique up to unique isomorphism.

Proof. Exercise.

Example 4.5. In the category Top, the product of two topological spaces
is their setwise product with the product topology; the coproduct is their
disjoint union.

Example 4.6. In the category of left R-modules, the product and the co-
product of two modules M,N are both given by M ⊕ N . In fact, in any
additive category, finite products and coproducts coincide.

Example 4.7. In the category of pointed topological spaces >∗, the product
is the smash product: (X,x0)×(Y, y0) ∼= (X×Y/(x0, y) ∼ (x, y0), [(x0, y0)]).
The coproduct is the wedge sum (X

∐
Y )/(x0 = y0).

Example 4.8. The coproduct of k-algebras is given by their tensor product
(over k). Their product is actually just their setwise product endowed with
the standard operations.

Definition 4.9. Given three objects x, y, z ∈ C, and morphisms fy ∈
C(x, y), fz ∈ C(x, z), we say that an object p ∈ C together with maps
iy ∈ C(y, p), iz ∈ C(z, p) such that iy ◦ fy = iz ◦ fz is the pushout of
the diagram

x y

z

fy

fz
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if, for every object q ∈ C and maps φy ∈ C(y, q), φz ∈ C(z, q) with φy ◦ fy =
φz ◦ fz, there exists a unique morphism φ ∈ C(p, q) making the following
diagram commute:

x y

z p

q

fy

fz iy φy
iz

φz

∃!φ

Note that when x is the initial object in the category, p is automatically
the coproduct of y and z. So p is some object resembling a coproduct. (In
fact, it is the coproduct in the coslice category c ↓ C.)

Example 4.10. The category of commutative k-algebras is the coslice cat-
egory under k of commutative rings; the coproduct in this category is the
pushout of the diagram

k A1

A2

η1

η2

Example 4.11. The category of pointed topological spaces Top∗ is the
coslice category under a point; the coproduct is now the pushout of the
diagram

{∗} X

Y

x0

y0

Definition 4.12. Similarly, the pullback of three objects x, y, z ∈ C, to-
gether with morphisms gy ∈ C(y, x), gz ∈ C(z, x)

y

z x

gy

gz

is an object p ∈ C, together with morphisms πy : p→ y, πz : p→ z, such that
gy ◦ πy = gz ◦ πz, such that for every object q with ψy ∈ C(q, y), ψz ∈ C(q, z)
with gy ◦ ψy = gz ◦ ψz, there is a unique ψ ∈ C(q, p) making the diagrams
commute:
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q

p y

z x

∃!ψ

ψy

ψz

πy

πz gy

gz

Again, note that taking x to be a trivial object – here, the terminal
object of the category – makes p the product in a canonical way.

It should be clear now that we should be able to take “products” and
“coproducts” over arbitrary diagrams in C. But what is a diagram? A
diagram is a functor from a diagram category to C.

A diagram with two objects and no morphisms between them is a func-
tor from the category 2, which has the objects {1, 2}, and no nontrivial
morphisms. A diagram such as

x y

z

fy

fz

is the same as a functor from the category

A B

C

Obviously, we can phrase more complicated diagrams, with more compli-
cated commutativity conditions, as functors from categories with more com-
plicated structure.

4.2 Cones and Cocones

Definition 4.13. Denote the indexing category by I. If F is a functor
F ∈ [I, C], a cone over F is an object y ∈ C together with morphisms
φx : y → Fx for every x ∈ I such that the following diagram commutes for
every f ∈ I(x, x′):

y

Fx Fx′

φx φx′

Ff
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Equivalently, a cone is a morphism in the functor category [I, C] from
the constant functor ∆y to F .

Definition 4.14. A cocone is the same thing, but with all the arrows re-
versed. A cocone under F is a morphism in [I, C] from F to ∆y for some
y.

Fx Fx′

y

Ff

φx φx′

A morphism of cones or cocones is a morphism in the slice category over
F , over a morphism in the coslice category under F . Explicitly, if (y, φx)
and (y′, φ′x′) are two cones over F , a morphism between them is a map
g ∈ C(y, y′) such that for every x ∈ I,

y y′

Fx

g

φx φx′

and similarly, a map of cocones is a g ∈ C(y, y′) such that for every x ∈ I,

Fx

y y′

φx φ′x

g

Definition 4.15. Given a functor F , a limit of F is a universal cone over
F : a cone (z, ψx) such that for every other cone (y, φx), there is a unique
morphism of cones from (y, φx) → (z, ψx). In this case, we write (z, ψx) as
limF .

This statement says that C(−, z) ∼= [I, C](∆−, F ). By Yoneda, this guar-
antees uniqueness of z up to unique isomorphism; the structure maps of z
come for free from the isomorphism.

Definition 4.16. Given a functor F , a colimit of F is a universal co-
cone: a cocone (z, ψx) such that for every other cocone (y, φx), there is a
unique morphism of cones (z, ψx) → (y, φx). In this case, we write (z, ψx)
as colimF .
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This says that C(z,−) ∼= [I, C](F,∆−). Again, uniqueness of the object
comes from representability.

Example 4.17 (Trivial limits). Let I be the category

1 2 . . .

and F any functor F : I → C. Then F always has a limit, and the limit
is isomorphic to F (1). This can intuitively be seen by the fact that a cone
(y, φx) is uniquely determined by φ1.

Example 4.18 (Trivial colimits). Similarly, if I is the category

. . . 2 1

and F is any functor F : I → C, F has a colimit, with the object being
F (1). Again, we can see this from the fact that a cocone (y, φx) is uniquely
determined by φ1.

This indicates to us that limits are related to initial objects, and colimits
are related to terminal objects.

Example 4.19. Objects are often colimits of distinguished subobjects. For
example, every module is a colimit of finitely generated modules – its own
submodules. Every manifold is a colimit of copies of Rn.

Example 4.20. Fix a prime number p, and consider the system

Z/pZ 17→p−−−→ Z/p2Z 17→p−−−→ Z/p3Z→ . . .

The limit over this diagram is just Z/pZ; the colimit, referred to as the
Prüfer group Z(p∞), which can be thought of as the union of these groups.

Example 4.21. Fix a prime number p, and consider the system

. . .→ Z/p3Z 17→1−−−→ Z/p2Z 17→1−−−→ Z/pZ

The colimit of this diagram is just Z/pZ; the limit is the p-adic integers,
which can be identified with sequences of residue classes (a0, a1, . . .) with
p|(ai+1 − ai) for all i.

Example 4.22. A CW complex is precisely a colimit of standard n-disks
Dn in Top, with the only maps allowed being attachment maps. When we
combine this with particular adjointness results about functors, this allows
for easier computations with respect to CW complexes.
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Definition 4.23. A category C is called complete if, for every small cat-
egory I and functor F : I → C, limF exists. Similarly, C is called co-
complete if for every small category I and functor F : I → C, colimF
exists.

Remark 4.24. The general recipe for building a limit in concrete categories
is as follows: the largest possible limit is the product over all of the objects
of I, Πx∈IFx. Quotienting this product by appropriate relations gives an
object which is necessarily the limit of the diagram.

Remark 4.25. Conversely, to build a colimit in a concrete category, we first
take the maximal colimit:

∐
x∈I Fx. Then the colimit of the diagram F

is the coherent sequences in
∐
x∈I Fx: the elements (tx)x∈ I , with each

tx ∈ Fx, such that for each f ∈ I(x, x′), Ff(tx) = tx′ .

Because the presheaf category PSh(C) is complete, and the Yoneda em-
bedding is continuous, we can always find a limit inside the presheaf cate-
gory, and then check if that functor is representable.

38



5 Adjoint Functors

5.1 Introduction

Definition 5.1 (Adjoint functors). Let F : C → D and G : D → C be
functors. We say that (F,G) are an adjoint pair, with F being the left
adjoint and G being the right adjoint, if there is an isomorphism of the
following two functors Cop × D → Set: C(−, G−) and D(F−,−). In this
case, we write F a G.

Let us make explicit the isomorphism that occurs here. For each (x, y) ∈
C × D, there is an isomorphism Φx,y : C(x,Gy) → D(Fx, y) satisfying the
following commutative diagram:

C(x,Gy) C(x′, Gy′)

D(Fx, y) D(Fx′, y′)

C(f,Gg)

Φx,y Φx′,y′

D(Ff,g)

where the horizontal morphisms are defined in the following way: if f ∈
Cop(x, x′), g ∈ D(y, y′), φ : x → Gy, C(f,Gg) is defined as the following
composition: Gg ◦ φ ◦ f . Similarly, if ψ ∈ D(Fx, y), D(Ff, g) is defined by
g ◦ ψ ◦ Ff , as in the following diagrams.

x′ x Fx′ Fx

Gy Gy′ y y′

f

φ

Ff

ψ

Gg g

This is generally stated as being an isomorphism that is natural in both
arguments.

Example 5.2 (The discrete space). There is a functor G : Top → Set,
generally called the forgetful functor, which takes a topological space to its
underlying set, and a continuous function to its underlying function. Define
a functor F : Set→ Top which takes a setX to the topological space (X, 2X),
and a function f : X → X ′ to the same function (X, 2X)→ (X ′, 2X

′
). Note

that f is actually a continuous map, because the preimage of an open set in
(X ′, 2X

′
) is open, because every set in (X, 2X) is open.

In fact, F a G. Let’s check this explicitly. First, define

Φx,y : Set(x,Gy)→ Top(Fx, y)
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by noting that every function from a set with the discrete topology is au-
tomatically continuous, and every continuous map arises from a particular
function on the underlying sets. Let (Y, τ) and (Y ′, τ ′) be topological spaces
g : (Y, τ)→ (Y ′, τ ′) a continuous function, and X,X ′ two sets, f : X ′ → X
a function. Now, let φ ∈ Set(X,GY ): that is, a function from X to the set
Y . We wish to show that Top(Ff, g) ◦ ΦX,Y ◦ φ = ΦX′,Y ′ ◦ Set(f,Gg) ◦ φ.
We can write out the left-hand side:

Top(Ff, g) ◦ ΦX,Y φ = Top(Ff, g)φ

= g ◦ φ ◦ f

inside the category of sets, where everything is living. On the other side,

ΦX′,Y ′ ◦ Set(f,Gg) ◦ φ = ΦX′,Y ′(g ◦ φ ◦ f)

= g ◦ φ ◦ f

so the diagram commutes and Φ actually defines a natural isomorphism.

Example 5.3 (Free functors). Many categories have objects which are sets
together with some additional structure, and morphisms between objects are
functions between the sets that preserve the structure in some way. In this
case, there is a forgetful functor C → Set. Any left adjoint to a forgetful
functor is called a free functor. Many categories, particularly algebraic
categories, often enjoy free functors; to name a few, Grp,Alg, R −mod, R −
Mod.

Example 5.4 (Hom-tensor adjunction). One of the classical adjunctions
is hom-tensor adjunction. In its simplest form, we can state it as follows:
let R be a commutative ring, and R −Mod its category of modules. There
is a functor ⊗ : R −Mod × R −Mod → R −Mod, and an internal functor
HomR : R−Modop×R−Mod→ R−Mod. Then for each each B ∈ R−Mod,
the functors F = − ⊗ B and G = HomR(B,−) satisfy F a G. In fact, this
isomorphism is much stronger and more general, but this should hold for
now.

Remark 5.5. Proving the adjointness for just the free topological space was
time-consuming. Below is an equivalent characterization of adjointness that
is sometimes easier to prove, and is sometimes more useful for proofs.

Definition 5.6 (unit-counit definition of adjointness). Let F : C → D,
G : D → C. F a G if and only if there are two natural transformations
η : 1C → GF , ε : FG → 1D, such that the following coherence equations
hold:
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1. F → F1C
1F η−−→ FGF

ε1F−−→ 1DF → F is 1F ;

2. G→ 1DG
η1G−−→ GFG

1Gε−−→ G1D → G is 1G.

We call η the unit and ε the counit of the adjunction.

Remark 5.7. Satisfying the equations shown above is generally called satis-
fying zizag, after the graphical calculus for dualizable objects in a monoidal
category.

Theorem 5.8 (equivalence of unit-counit and hom-set adjunction). These
two definitions are equivalent, and the data of the hom-set isomorphism and
the unit and counit can be recovered from each other.

Proof. Assume that F a G, F : C → D. Define η by, for each x ∈ C,

ηx = Φ−1
x,Fx(idFx)

and similarly, define ε by, for each y ∈ D,

εy = ΦGy,y(idGy).

To show that η is a natural transformation, we will use the fact that it
comes from the Yoneda lemma. The functor hX = C(−, x) has a natural
transformation to D(F−, Fx) by the definition of a functor. Φ−1

−,Fx provides

a natural transformation to the functor hGFx, so we have a natural trans-
formation Φ−1

−,Fx ◦ hF : hx → hGFx. Note that η is natural in x because
all of the preceding natural transformations were natural in x as well. This
morphism of representable functors is instantiated by the value at the iden-
tity, which gives us our definition of η, which is now manifestly natural.
Similarly, ε can be constructed from the opposite Yoneda lemma, defined by
letting yh = D(y,−), applying G to obtain Gh◦yh, and then applying ΦGy,−
to land back in FGyh. Because this version of Yoneda is contravariant, it
actually induces a morphism FGy → y.

To show that ε, η satisfy zigzag, we can again apply Yoneda. First, we
need identities about composition of η, ε [2]. First, using the fact that Φ is
natural in x, for any f : x′ → x, we have the following commuting square:

C(x,GFx) D(Fx, Fx)

C(x′, GFx) D(Fx′, Fx)

−◦f

Φx,Fx

−◦Ff
Φx′,Fx
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and applying this to ηx = Φ−1
x,Fx(idFx), we see that ηxf = Φ−1

x′,Fx(Ff).
Similarly, if f : Fx→ y, we have the diagram

C(x,GFx) D(Fx, Fx)

C(x,Gy) D(Fx, y)

Φx,Fx

Gf◦− f◦−
Φx,y

and applying this to ηx, we get that Gf ◦ ηx = Φ−1
x,y(f).

Similar calculations show that ε ◦ Ff = Φ(f), and f ◦ ε = Φ(Gf). Now
we apply this to the zigzag equations:

1. At a particular object x,

εFx ◦ F (ηx) = Φ(ηx)

= idFx.

2. At a particular object y,

G(εy) ◦ ηGy = Φ−1(εy)

= idGy.

Now assume that F : C → D, G : D → C possess natural transformations
η : 1C → GF , ε : FG → 1D satisfying zigzag. Then for each x ∈ C, y ∈ D,
define a natural isomorphism Φ : C(x,Gy)→ D(Fx, y) by

Φx,y(f) = εy ◦ Ff.

Naturality of ε, η implies that if g ∈ D(y, y′), then g ◦ εy = εy′ ◦ FGg, and if
f ∈ C(x, x′), then GFf ◦ ηx = ηx′ ◦ f . Now we can find an explicit inverse
to Φ, defined by g 7→ Gg ◦ ηx. Compute:

G(εy ◦ Ff) ◦ ηx = G(εy) ◦GFf ◦ ηx
= G(εy) ◦ ηx ◦ f
= f

and

εy ◦ F (Gg ◦ ηx) = εy ◦ FGg ◦ Fηx
= g ◦ εy ◦ Fηx
= g

so composition both ways is the identity. To check naturality, let f : x′ → x,
g : y → y′. Then we have the following square:
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C(x,Gy) D(Fx, y)

C(x′, Gy′) D(Fx′, y′)

εy◦F−

Gg◦−◦f g◦−◦Ff
εy′◦F−

and going right, then down has the expression

g ◦ εy ◦ F − ◦Ff

whereas going down, then right is

εy′ ◦ F (Gg ◦ − ◦ f).

But both are equivalent by the fact that F is a functor and εy′ ◦FGg = g◦εy.
To recover the counit and unit once they have induced the hom-set iso-

morphism, if we define Φx,y(f) = εy◦Ff , then ΦGy,y(idGy) = εy◦idFGy = εy;
similarly, Φ−1

x,Fx(idFx) = G(idFx) ◦ ηx = idGFx ◦ ηx = ηx.
Conversely, assume that Φ has given unit η and counit ε as above. Then

εy ◦ Ff = ΦGy,y(idGy) ◦ Ff
= Φx,y(f)

by naturality of Φ.

Example 5.9 (Units and counits). In the world of free functors, we can
think of the unit as being the “natural inclusion” from the original set to
the new set that is built with the extra structure. For example, when taking
the free group on a set X, FX, the unit is defined by taking each element
of X to the letter it represents. The counit maps from the free group on a
group back to the original group; it is the presentation of the group where
each word is a generator.

In Top, the unit is actually the identity: it simply takes a set to itself via
the identity morphism. However, the counit is a continuous map from the
space equipped with the discrete topology to itself with its original topology.

Example 5.10 (Unit and counit for tensor adjunction). Let C be the cate-
gory Z−Mod, also denoted Ab, and consider F a G, where F is the functor
− ⊗ Z2, and G is Hom(Z2,−). Then ηM is the map that takes m ∈ M to
the linear map a 7→ a ⊗ m, and εM is the map that takes an element of
Hom(Z2,M)⊗Z2, say,

∑
φi⊗ai, and evaluates:

∑
φi(ai). (Note that these

formulae work for any abelian group).

43



We can also define an adjunction by the following universal property: F
and G are adjoint if, for every y ∈ D, there is a map εy : FGy → y such
that, for every g : Fx → y, there exists a unique f : x → Gy such that
g = εy ◦ Ff . The data of η can be recovered similarly; this is just hom-set
adjunction in disguise.

Theorem 5.11 (Uniqueness of adjoints). Let F a G,F a G′. Then G ∼= G′.

Proof. This is an easy exercise in unit/counit messing about. Let η : 1C →
GF, η′ : 1C → G′F be the respective units; ε : FG→ 1D, ε

′ : FG→ 1D their
counits. By Yoneda, we need to exhibit a natural isomorphism C(−, G−)→
C(−, G′−). Define this transformation by means of the following diagram:

C(x,Gy) D(Fx, y)

C(x,G′y) D(Fx, y)

εy◦F−

idD

G−◦η′x

which is explicitly defined by the component at y

G(εy ◦ F−) ◦ η′x

with inverse
G(ε′y ◦ F−) ◦ ηx.

We can explicitly check inversion:

G(ε ◦ F (G(ε′ ◦ F−) ◦ η)) ◦ η′ = G(ε ◦ FGε′ ◦ FGF − ◦Fη) ◦ η′

= G(ε′ ◦ ε ◦ FGF − ◦Fη) ◦ η′

= G(ε′ ◦ F − ◦ε ◦ Fη) ◦ η′

= Gε′ ◦GF − ◦η′

= Gε′ ◦ η′ ◦ −
= −

and symmetry implies that this is a two-sided inverse.
The exact same proof shows that left adjoints are unique up to canonical

isomorphism.

5.2 Limits and Colimits

Limits and colimits are particular instances of adjoint functors, when they
are defined for an entire category of functors. Let us start with the simplest
example.
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Example 5.12 (Products and coproducts). Let 2 denote the category with
two objects, {1, 2}, and no non-identity morphisms, and let C2 denote the
category of functors Fun(2, C). Objects in this category are indexed pairs
of objects in C; morphisms are indexed pairs of morphisms in C. There is a
functor ∆ : C → C2 defined as follows: For each x ∈ C, ∆(x)(i) = x for each
i ∈ {1, 2}. For each f : x→ x′, ∆(f)(i) = f .

x x x

⇒

x′ x′ x′

f f f

Let’s first examine the functor C2(∆−,−). Specifically, C2(∆x, {y1, y2}) is
the collection of pairs of morphisms f1 ∈ C(x, y1), f2 ∈ C(x, y2). Recall the
diagram for the product:

x

y1 × y2

y1 y2

∃ !f f2

f1

π1

π2

That is, C(x, y1 × y2) ∼= C2(∆x, {y1, y2}), with the isomorphism being in-
stantiated by the counit: f 7→ {π1 ◦ f, π2 ◦ f}. In fact, the product functor
is right adjoint to the diagonal embedding. The unit is what we think of as
the standard diagonal embedding x → x× x, and the counit is the natural
transformation

y1 × y2 y1 × y2

y1 y2

π1 π2

Similarly, the coproduct is a left adjoint to ∆. The unit is now in the functor
category; it is the natural transformation

x1 x2

x1 q x2 x1 q x2

i1 i2
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whereas the counit goes from y q y → y, and is generally called the fold
map, ∇.

Example 5.13 (Limits over diagrams). Recall that if C,D are categories,
F : C → D, a limit over F is an object limF ∈ D together with morphisms
εx : limF → Fx for every x ∈ C such that the following properties hold:

1. For every f ∈ C(x, x′), the following diagram commutes:

limF

Fx Fx′

εx
εx′

Ff

2. For every y ∈ D and family of maps φx : y → Fx such that the
following diagram commutes for every f ∈ C(x, x′)

y

Fx Fx′

φx

φx′

Ff

there is a unique morphism limφ : y → limF such that φx = εx limφ
for every x ∈ C.

This is precisely the definition of a right adjoint! Let us set up the machinery.
We have a functor ∆ : D → Fun(C,D) which takes any object y to the
functor F (x) = y, F (f) = idy, and takes any f : y → y′ to the natural
transformation ζ with component ζx = f . Saying that limits over diagrams
in C exist in D is exactly the same as saying that ∆ possesses a right adjoint.
In the same vein, saying that colimits over C-diagrams exist in D is saying
that ∆ possesses a left adjoint.

One of the more useful statements in category theory is the following:

Theorem 5.14 (Adjoints and limits). If F a G, F : C → D, G : D → C,
and J : E → C is a diagram functor with colimit colimJ , then F (colim J) =
colim(F ◦J). Similarly, if K : E → D is a diagram functor with limit limK,
then G(limK) = lim(G ◦K).

This is more commonly stated as

1. Left adjoints preserve colimits.

2. Right adjoints preserve limits.
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Proof. All that is required to show is that F (colim J) satisfies the repre-
sentability criterion of colim(F ◦ J). Let ζ be the structure natural trans-
formation J → ∆ colim J . Then F (ζ) provides a natural transformation
F ◦J → ∆(F colim J). We take these to be the structure maps, and seek to
show that, for every y ∈ D and natural transformation φ : FJ → ∆y, there
exists a unique colimφ : F (colim J) → y such that (∆ colimφ) ◦ ζ = φ. As
way of motivation, consider the following diagram, induced after applying
G to the proposed diagram in D:

Jx GFJx

colim J GF (colim J) Gy

ηJx

ζx GFζJx

Gφ

ζcolim J

colim(Gφ)◦(ζJx)

Gψ

where ψ is the map we want. This gives the recipe: define ψ : F (colim J)→
y by

ψ = εy ◦ F (colim(Gφ) ◦ (ζJx)).

Applying F and precomposing with εy shows that ψ is a map making the
diagram commute. Assiming that ψ′ : F (colim J) → y also made the dia-
gram commute, applying G would land in the diagram above, and there is a
unique map from GF (colim J)→ Gy which commutes with the unique map
induced by the map from the colimit of J to Gy by adjointness. But this
means that ψ = ψ′.

Similarly, right adjoints preserve limits, using an exact parallel of the
argument above.

Example 5.15. The group algebra functor Grp→ k−Alg is left adjoint to
group of units functor k − Alg → Grp which takes any algebra to its group
of units.

Example 5.16. The universal enveloping algebra of a Lie algebra L, de-
noted U(L), provides an example of a left adjoint U : Lie→ Alg. The right
adjoint is the functor that takes any algebra to itself, considered as a Lie
algebra with bracket [x, y] = xy − yx.

Example 5.17. Let k be a field, and let k− vect denote the category of its
finite-dimensional vector spaces. Then for any Y ∈ k − vect, the functors
− ⊗ Y and Y ∗ ⊗ − are both left and right adjoint to each other. This can
be seen by computing the unit and counit: the unit takes any object X to
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Y ∗ ⊗X ⊗ Y by fixing a basis {yi} and sending each x to
∑

i y
∗
i ⊗ x⊗ y; the

counit takes Y ⊗X⊗Y ∗ → X by sending simple tensors y⊗x⊗y∗ → y∗(y)·x.

Example 5.18 (The GNS construction). [4] Given a C∗-algebra A, the
most fundamental tool in its representation theory is the GNS construc-
tion, which provides it with a faithful representation on Hilbert space that
is universal among all representations. In fact, the GNS is a left adjoint nat-
ural transformation in the following sense: let C be the opposite category
of C∗-algebras, sometimes referred to as the category of noncommutative
locally compact Hausdorff spaces, and let D be Cat. Then there are two
functors F,G : C → D: F is the “states” functor, which takes any C∗-
algebra to its category of norm one positive linear functionals, as a poset,
and pulls back positive linear functionals along ∗-homomorphisms. G is the
“pointed representation” functor, which takes any C∗-algebra to its category
of representations, equipped with a norm one point, and ∗-homomorphisms
pull back representations. There is a restriction natural transformation
G → F , which, for each C∗-algebra A, takes the pointed representation
(H, ρ : A → B(H), η) to the states a 7→ 〈ρ(a), a〉. The GNS construction
provides a left adjoint to this natural transformation.

Remark 5.19. For any adjoint functors F a G, we are given lots of rep-
resentatable functors: the functor D(F−, y) is isomorphic to the functor
C(−, Gy). In fact, if D(F−, y) is representable for every y, then F is a left
adjoint.

Example 5.20. The completion of a metric space is another adjoint, al-
though this time with respect to uniformly continuous functions. Similarly,
the Stone-Čech-compactification is an adjoint that goes from locally com-
pact spaces to compact ones.

Example 5.21 (Push-pull formula). Consider the following situation: As-
sume that we have four categories A,B,C,D, and functors F1, F2, G1, G2

such that the following diagram commutes:

A B

C D

F1

G1 G2

F2

where all the Fi, Gi are right adjoints to their left adjoints, F ∗i , G
∗
i . Then
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there is a natural transformation F ∗2G2 → G1F
∗
1 defined as follows:

F ∗2G2
∼= F ∗2G21B
ηF1−−→ F ∗2G2F1F

∗
1

∼= F ∗2F2G1F
∗
1

εF2−−→ 1CG1F
∗
1

∼= G1F
∗
1

so the natural transformation is exactly

(εF21G1F ∗1
) ◦ (1F ∗2G2ηF1).

This may seem like a complicated setup, but it is very common; such a square
occurs whenever we have a commuting square of schemes, because the we
have both a pushforward and a pullback of quasicoherent sheaves. In fact,
this argument works whenever we have a commuting square of dualizable
1-morphisms in a 2-category.

5.3 Reflective and Coreflective Subcategories

One of the ubiquitous concepts in the world of adjoint functors is finding a
best approximation to an object inside a smaller subcategory. For example,
we can characterize complete metric spaces as being those which process all
uniformly continuous functions from a metric space to a complete metric
space, or abelianizations as being universal objects that process maps from
a non-abelian object into abelian ones.

Definition 5.22. A full subcategory D of C is called reflective if the in-
clusion functor ι : C → D has a left adjoint.

Let us unspool the definitions. Let ι : D → C be the inclusion, and
F : C → D its adjiont. This means that for any objects x ∈ C, y ∈ D, we
have

C(x, ιy) ∼= D(Fx, y).

By fullness of D, we can treat F as a functor C → C, and restate as

C(x, ιy) ∼= C(ιFx, y)

for every y ∈ D. The isomorphism should be instantiated by the unit: for
any morphism f ∈ C(x, ιy), we should have a unique arrow filling in the
following diagram:
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x ιFx

ιy

ηx

f
∃! ιg

and fullness lets us treat this diagram as

x Fx

y

ηx

f
∃! g

so there is a minimal D-object approximating x. The counit gets phrased
as

Fx

Fιy y

g
∃!Ff

εy

and using fullness this is

Fx

Fy y

∃!Ff
g

εy

but Fy is actually isomorphic to y. We can prove this via the Yoneda lemma:

D(Fιy, z) ∼= C(ιy, ιz)
∼= D(y, z)

so the functors D(Fι−,−) and D(−,−) are isomorphic, which shows that
Fι is naturally isomorphic to the identity on D. Because ε is the counit on
D, ε must be an isomorphism (in fact, the isomorphism).

Definition 5.23. A full subcategory D of C is called coreflective if the
inclusion functor ι : D → C has a right adjoint.

Call the adjoint G. The situation here is very similar to the reflective
situation, except that Fx is now a maximal D-approximation rather than a
minimal one. We have the following diagram:

y

Gx x

∃!Gg
f

εx
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Example 5.24 (Groupification). Let Mon denote the category of monoids.
Then the inclusion functor Grp→ Mon makes Grp a coreflective subcategory:
the right adjoint is the functor which takes a monoid to its group of units. It
also makes Grp a reflective subcategory: the left adjoint is defined by taking
any monoid M to the group with generators M and relations x1·x2 = (x1x2).

Example 5.25 (Stone-Čech Compactification). The Stone-Čech β of a lo-
cally compact Hausdorff space is the minimal compact space approximating
it. This means that locally compact spaces are a reflective subcategory of
locally compact spaces.

Example 5.26. Let C = Ab, the category of Abelian groups, and D be the
category of 2-torsion Abelian groups: groups for which 2x = 0 for all x.
Then D is reflective: the left adjoint is the functor −⊗ Z2.

5.4 Adjoints and Monads

Definition 5.27. A monad is a monoid in the category of endofunctors.
Explicitly, a monad in a category C is a functor T : C → C with a natural
transformation µ : T 2 → T and η : 1C → T satisfying the following coherence
properties:

T

T 2 T T 2

Tη
1T

ηT

µ µ

and

T 3 T 2

T 2 T

Tµ

µT µ

µ

the first diagram expressing that η acts like a two-sided unit for multiplica-
tion; the second expressing its associativity.

Theorem 5.28. Every adjoint pair F a G, F ∈ [C,D], gives rise to a
monad.

Proof. Define T = GF : C → C. The unit of the monad is the unit of the
adjunction; the multiplication is the map GFGF → GF by 1Gε1F , which
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maps to G1DF ∼= GF . We need to show that all the appropriate triangles
and squares commute. First,

µ ◦ (Tη) = 1Gε1F ◦ 1GF η

= 1Gε1F ◦ 1G1F η

= 1G(ε1F ◦ 1F η)

= 1G1F

= 1GF

= 1T

with the other zigzag diagram being used to prove that µ ◦ (ηT ) = 1T . For
associativity,

µ ◦ (µT ) = (1Gε1F ) ◦ (1Gε1F 1GF )

= 1G(ε ◦ (ε1F 1G))1F

= 1G([1F 1G ◦ ε][ε ◦ 1F 1G])1F

= 1G([ε ◦ 1F 1G][1F 1G ◦ ε])1F
= 1G(ε ◦ 1F 1Gε)1F

= (1Gε1F ) ◦ (1GF 1Gε1F )

µ ◦ (Tµ) = (1Gε1F ) ◦ (1GF 1Gε1F )

using the commutativity of horizontal and vertical composition of natural
transformations.

Similarly, the other-sided composition of adjoint functors, ε : FG→ 1D,
gives rise to a comonad.

Definition 5.29. A comonoid is the opposite of a monoid. It is an object
X together with maps ε : X → {∗},∆ : X → X × X with commutative
diagrams

X

X2 X X2

id×ε

∆∆

id
ε×id

and

X3 X2

X2 X

id×∆

∆×id ∆

∆
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Definition 5.30. A comonad is a comonoid in the category of endofunc-
tors.

In fact, every monad and comonad come from an adjoint pair, using the
Kliesli category.

5.5 Exercises

1. Construct a right adjoint to the forgetful functor Top → Set. Define
the unit and counit.

2. Show that the forgetful functor Grp → Set does not have a right ad-
joint. [Hint: any such group would have a lifting property that only
the trivial group satisfies.]

3. Let C be the category of k-vector spaces, and define the Fredholm
category D = C/I as follows:

i) The objects of D are the objects of C;
ii) D(V,W ) = C(V,W )/I(V,W ), where

I(V,W ) = {f ∈ C(V,W ) | f(V ) is finite dimensional}.

Let F denote the quotient functor C → D. Show that F admits nei-
ther a left nor a right adjoint. [Hint: limits and colimits over trivial
diagrams in C are the direct sum and product, respectively.]

4. Define the universal property of the metric completion of a metric
space in terms of adjoint functors. Again, determine the unit and
counit.

5. Let x ∈ C be an object, and let C/x be the category where

i) Objects are pairs (f, y) with f : x→ y;

ii) Morphisms (f, y) → (f ′, y′) are maps g : y → y′ such that gf =
f ′.

C/x is equipped with a forgetful functor F to C by forgetting the
morphism: (f, y) 7→ y. Show that F admits a right adjoint G if and
only if x is an initial object in C, in which case C/x ∼= C. Show that if
C has coproducts, then F has a left adjoint.
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6. Let C be a category, x ∈ C, and D = [C,Set], the category of covariant
functors from C to Set. Define a functor evx : D → Set by the following
rule: evx(F ) = F (x), and, if η : F → F ′, evx(η) = ηx. Show that evx
is a right adjoint. [Hint: Nat(C(x,−), F ) ∼= F (x).]

7. Prove that Example 5.26 does what it’s supposed to.
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