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1 Convex Sets

The convexity theory requires real linearity and not complex linearity, even though complex
spaces are preferable for spectral theory. Therefore, although we will consider real linear
combinations throughout the following section, it is important to bear in mind the results
are equally applicable in real and complex vector spaces. Let V' be such a vector space.

Definition 1.1. A set K C V is called convez if for every z,y € K and t € (0,1), we have
tr+ (1 -ty € K.

That is, a convex set is closed under convex combinations. You may have a lot of intuition
about convexity from the finite-dimensional case; this is valuable, but relies heavily on
the local compactness of these spaces. As a result, this structure has not been helpful in
developing intuition for the setting that we most care about—infinite-dimensional function
spaces.

Lemma 1.1. Let K CV be convex. Then for each xq,...,x, € K and ty,...,t, € [0,1]
with Y t; = 1, we have

That is, K is closed under arbitrary finite convex combinations.

Proof. This follows by induction. It’s trivially true for n = 1 (unlike in most algebraic
contexts, we do not let the empty sum denote 0 here; we don’t know that 0 is in our set,
so we leave it undefined). Assume it is true for n = k; then, given xy,...,2x; € K and
th, .. trei1 € [0,1], we show that M 2, € K.

If tk+1 = 0 or 1, we’re done; if not, note that

k
Z ti=1—tg41
i=1
and therefore that
t;
S

T i =T € K by the inductive hypothesis.

11—t tk+1

: k
In particular, 7 | 1= tk

Now we see that
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which is therefore in K by definition. So by induction, K contains all of its finite convex
combinations. ]



An infinite convex combination can be made sense of, but requires some analytic structure
we currently lack.

Lemma 1.2. If {K,} is a family of convex sets, then K = (), K, is convez.

Proof. This is immediate: if for all & we have z,y € K, then by convexity tx+ (1—t)y € K,
for t € (0,1). O

Lemma 1.3. If {K,} is a family of convex sets with Ky C Ky C -+, then K =, K, is
conver.

Proof. This is also immediate: suppose z,y € K. Then for some N we have z,y € Ky, and
may apply convexity there to conclude tz + (1 —t)y € Ky C K. O]

In fact, we didn’t need countability above, just a totally ordered indexing set with
K, C Kg whenever o < 5.

Definition 1.2. The convex hull of a set E, denoted co F, is the smallest convex set con-
taining £. As with most notions of closures or hulls, it is obtained as the intersection of all
convex supersets of E. Equivalently, co F is the set of all convex combinations of elements
of E.

Definition 1.3. A face of a convex set K is a convex subset F' C K with the property that
if for z,y € K and t € (0,1), tx + (1 —t)y € F, then z,y € F. An extreme point of K is a
face that has only one point.

Faces are inaccessible convex subsets: they cannot be entered via nontrivial convex com-
binations of elements of K \ F. It is reasonable to imagine proper faces (F' C K) as lying
on the boundary of K.

Lemma 1.4. If G is a face of F', and F is a face of K, then G is a face of K.

Proof. Let z,y € K and t € (0,1) be such that tx 4+ (1 —t)y € G. Then tz + (1 —t)y € F,
because G C F'; F being a face of K then implies that x,y € F. But G is a face of I, so
also z,y € GG. Hence, G is a face of K. H

In particular, this gives us a natural partial order (by inclusion) on the faces of K.

Definition 1.4. The dimension of a convex set K is the dimension of the subspace of V'
generated by {x —yo | x € K} for any y, in K.

Definition 1.5. A point € K is said to be internal if for every y € V there is some ¢ > 0
such that for each 0 <t <c, x +ty € K.

Note the order of the quantifiers here: in the familiar case V is equipped with a norm,
this is weaker than the statement that x is an interior point. In infinite dimensions, this may
be strict.



Example 1.1. Let V = ¢(N) and K = {(a,) € ¢*(N) | Vk € N,|a;| < +}. This is convex,
as

1
tag + (1 — t)be| < tlax] + (1 — 1) |bp] < %

if ]ak\ s ‘bk‘ < % and t € [O, 1]

We have (0) internal to K if (b,) € ¢*(N), then only finitely many terms may exceed 1,
else the series would not converge. Thus, sup, k |bx| < oo, and dividing (b,,) by this amount
lands in K. However, B.((0)) contains the sequences 3€d, for all k € N (in particular, for k
such that %e > %), so clearly no e-neighborhood of 0 is contained in K.

We conclude with more examples of computing the faces of convex sets representative of
those we're interested in.

Example 1.2. Denote by I the unit interval [0, 1] C R. Then the faces of I are {0}, {1},
and [ itself.

First, we show that {0} is a face. Assume that for some z,y € I and ¢t € (0,1) we have
tr 4+ (1 —t)y = 0. Without loss of generality, suppose = > 0 (we are uninterested in the case
x =1y =0). But then y > 0 implies tx + (1 — t)y >tz > 0: a contradiction.

Similarly, {1} is a face: without loss of generality, suppose z < 1 in the setting above.
Then tx < t implies tx + (1 —t)y <t+ (1 —t)y <t+ (1 —t) = 1.

Finally, any convex set is trivially a face of itself.

Conversely, assume that F' C [ is a face of I. If I = {0} or F' = {1}, we're done. If F
contains both 0 and 1, it contains their convex hull; as t1 + (1 — )0 = ¢ for ¢ € [0, 1], said
hull is co{0,1} = I. Otherwise, let ¢ € F'\ {0,1} C (0,1). We can write ¢ = (1 — ¢)0 + ¢l
to conclude that 0 and 1 are both in F' by the definition of a face. By the argument above,
then, F' = I. Thus, the faces are exactly as claimed.

Example 1.3. Denote by I the unit interval [0,1] in R, and consider I™ C R™. Then,
considering R™ as the space of functions {f : {1,...,n} — R}, the faces of I" are exactly of
the following form:

KAo,Al = {f e R" | VCLO € AQ, f(CL()) = O; \V/CL1 - Al, f(al) = 1; AO |_|A1 - {1,,77,}}

This requires some work. First, that all such sets are faces: it is straightforward to show
that they are convex. For the face property, assume that gi,g, € R" and ¢ € (0,1) are
such that tg; + (1 — t)ga € Ka,.4,- Then for each ag € Ay, tgi(ap) + (1 —t)g2(ag) = 0, so
g1(ag) + g2(ag) = 0 by nonnegativity. Similarly, for each a1 € Ay, g1(a1) = g2(a1) = 1. So
91,92 € K4, 4,, so0 it is a face.

For the other direction, let K be a face of I"™. Define

AOZ{CLQG{I,...,TL}|Vf€K,f(a0):0},

and A; similarly. Then K C K4, 4,. Let f € K4, 4,. We show that there is an element of
K which agrees with f at every point—that is, that f € K.

Let z € {1,...,n} \ (Ao U A;). Then there exists g € K such that g(z) € (0,1): = ¢ Ay,
so there is some function with g(x) # 0, and « ¢ Ay, so there is some function with g(z) # 1;



if these functions have values 1 and 0 respectively, any nontrivial convex combination has
g(x) € (0,1). Given this, define the following functions:

o) = {g(z‘) i gl@:{g@ i

0 i=x 1 i=x

Then for any ¢ € (0,1), (1 — ¢)go(z) + cg1(x) = ¢, and for every i € {1,...,n} \ {z},
go(i) = q1(d) = g(i). Taking ¢ = g(x), we see that g itself is a convex combination of g,
and g1, so by the face condition gy,¢91 € K. Now taking ¢ = f(x), we have the function
(1 — f(x))go + f(x)g, which agrees with f at z and is in K.

To conclude, we show that given g € K, we can choose § € K with g(z) € (0,1) and
9(y) = g(y) for all y # z.

This allows us to build a function which agrees with f at each point of {1,...,n} (all
functions in K agree with f on Ay U Ay by definition of those sets) by setting its value one
point at a time. That is, f € K, so in fact K = K4, 4,.

Of particular interest, we have shown that a face of this set is the convex hull of its extreme
points. This is a special case of the Krein-Milman Theorem (Theorem 3.1), one of the most
important parts of the theory of locally convex topological vector spaces. Unfortunately, not
every convex set has this property, as the following fairly general counterexample shows.

Example 1.4. Let V = {f : R — R} with the vector space structure induced by pointwise
addition and scalar multiplication, and let K = {f € V | f(R) C I'}. Then the following
face of K is not the convex hull of its extreme points:

F={feK|3>0: f((—e¢€) =0}.

These are those functions which vanish on some neighborhood of 0. They again form a face:
say g1,92 € K and t € (0,1) with tg; + (1 — t)go = f € F. Fix some € > 0 such that
f((—e€,€)) = 0. Then for each x € (—¢,€), f(x) = 0 implies ¢g1(x) = go(z) = 0 just as in the
arguments above. So ¢g; and gs also vanish on (—¢,¢€), so F' is a face. However, the only set
on which every element of F' is either 0 or 1 is {0}. As F' is a strict superset of the set of
functions which are 0 at 0, it is not the convex hull of its extreme points.

We conclude with a slight generalization of convexity which incorporates the base field of
V', which we shall denote as K.

Definition 1.6. A set B C V is called balanced if for every a € K with |a| < 1, we have
aB C B. That is, B is invariant under scaling by elements of the closed unit disc of K.

Definition 1.7. A set K C V is called absolutely convex if it is both convex and balanced.
Equivalently, for every z,y in K and A\, u € K with |A| + |p| < 1, we have Az + py € K.

Similarly to the case with convexity, we may define balanced and absolutely convex hulls
by taking intersections over supersets.

While convexity is often the more useful property, certain circumstances require the
stronger notion of absolute convexity to be well defined; in particular, it is necessary in
the definition of locally convex topological vector spaces.
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2 Locally Convex Topological Vector Spaces

In linear analysis, we are often concerned with a Banach space X, with its norm topology.
Unfortunately, the norm topology has some serious issues, characterized by the intuition
that it has “too few compact sets”. To alleviate this, we often introduce weaker topologies.
Though they have weaker notions of convergence, these topologies often allow us to make
stronger statements. In the following, we will take K the base field of our Banach space,
insisting R is a subfield of K.

Definition 2.1. The weak topology on X has as basic open sets those of the form
We(xa ¢17 s >¢n) = {y e X ‘ ’¢z($ - y)’ < 6}

for x € X, ¢1,...,0, € X*, and € > 0. In fact, we only need those sets with ¢ = 1,
as We(x; b1, .., 0,) = Wiz ey, ..., e t¢,), and a subbasis consists of those sets of the
form We(x; ¢) or even Wi(z;¢) for a single functional. The best geometric picture available
for these sets is “slabs” which extend infinitely in all directions except those constrained by
the given functionals; this is unwieldy to picture in infinite dimensions, but indicates the
important fact that these sets are not norm-bounded.

A sequence z, converges to x in the weak topology (also converges weakly, denoted
r, — x) if for all ¢ € X* we have the numerical sequence ¢(x, — x) — 0. As discussed
in Appendix A, we can equivalently specify the topology using the net convergence z., S
defined by ¢(z, —z) — 0 for all ¢ € X*.

Equivalently, the weak topology is the initial topology on X with respect to the functionals
comprising X*: it is the weakest topology such that all such functionals are continuous. Here,
it is important to remember that X* was originally defined as the space of norm-continuous
(equivalently, bounded) functionals on X (equipped with its norm topology). Thus, in
making this definition, we begin with a norm topology on X, select the norm-continuous
functionals, then declare a new topology on X with respect to these functionals. This does
not in general correspond to the initial topology corresponding to the algebraic dual X’
(while this can be defined, the weak topology described here is generally more useful, as it
does encode some information about the original norm structure).

Equivalently, the weak topology is the seminorm topology with respect to the family of
seminorms defined by ||z, = |¢(z)| for ¢ € X*. In fact, we can restrict to the seminorms
induced by ¢ in the unit sphere of X* (with respect to the dual norm topology on X*). As
we shall see, this phrasing is of especial theoretical importance.

Finally, the weak topology can be described diagramatically: a map f from a topological
space A to X is weakly continuous if and only if for every ¢ € X*, ¢o f is continuous. That
is, the following diagrams commute for all ¢ € X*:

A—>X

N b

The weak topology is generally weaker (or coarser) than the norm topology. The Hahn-
Banach Theorem (our Theorem 2.2) will show that it continues to be Hausdorft.
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Definition 2.2. The weak star (alternately weak* or w*) topology on X* has as basic open
sets those of the form

Wi(gs 1, wn) = { € X7 | |d(z:) — ()| < €}

for € X*, x1,...,2, € X, and € > 0. Again, we only need to consider ¢ = 1 by rescaling
(and linearity), and a subbasis is given by those sets with only a single evaluation point as
data.

A sequence ¢,, converges to ¢ in the weak star topology (also converges weakly star and

denoted ¢, 2 ¢) if for all 2 € X we have the numerical sequence on(x) = ¢(x). An
equivalent specification for the topology is the net convergence defined analogously.

Equivalently, the weak star topology is the initial topology with respect to the functions
on X* given by evaluation at a fixed x € X (that is, the functions ev, : X* — K defined
by ev,(¢) = ¢(x)), and the seminorm topology with respect to the seminorms defined by
1811, = leva(6)] = ()]

Finally, a map f : A — X from a topological space A is weak star continuous if and only
if for every x € X the following diagram commutes:

A—>X*

NS

Since the mapping x — ev, gives a canonical injection of X into X**, this is an initial
topology with respect to only a subset of the (continuous) functionals on X*. It should
be unsurprising that the weak star topology is therefore generally weaker than the weak
topology on X*, although it is again also Hausdorff. Spaces for which the weak and weak
star topologies are the same are called reflexive, and are of particular interest.

A crucial property of the weak star topology is that it preserves the compactness of the
unit ball. This allows us to continue to appeal to (norm) boundedness to extract weak star
convergent subsequences, despite the fact that the weak star topology is not locally compact
(the unit ball is not a neighborhood of the origin, as all basic open sets are norm-unbounded).

Theorem 2.1 (Banach-Alaoglu). The closed unit ball of X* (with respect to the dual norm)
15 compact in the weak star topology.

Proof. For each x € X, define D, = {z € K| |z| < ||z||}, observing that this is compact in

K. Now define
D=1]]D.

rzeX

(with the product topology). By Tychonov’s theorem, this is compact.

Let Bf C X* be the unit ball of X* (under the dual norm), and define T': Bf — D by
T(¢), = ¢(x). This is injective, as if T'(¢p) = T'(¢), then ¢(x) = 1(x) for all z € X, so ¢ and
1 are the same functional. It is weak star continuous: a subbasis of D consists of those sets
Ueoe={Z€D||Z, — 2| <€}, 50T x“) —{ngEBl | [¢(x) — 2| < €}. If ¢ is a member
of this set, then Wy (¢; ) C T (U,..) for € < 1 (e — |p(x) — z|) by the Triangle Inequality.
Thus, T (U,...) is open and T is continuous.
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Now consider the partial inverse S : ImT — By (S = T|I_H}T). For any zp € K and € > 0,
the open set V = {z € K| |z — 20| < €}, we have (considering ev, restricted to By)

(ev,08) 1 (V) =St oev, (V)
=T ({¢ € By | [¢(z) — 20| < €})
={Z e D ||Z, — 2| < €},

which is open in the product topology. Thus, the diagram

Im7T —5 B;
evk‘ levw
K

commutes, so S is weakly star continuous as well. Thus, T is a homeomorphism onto its
image, so all that remains to show B} is compact is to show T'(Bj) C D is closed.

Let Z € T(By) € D. We can think of this as a map ¢ : X — K by ¢(z) = Z,; we
seek to show it is linear, continuous, and of norm bounded by 1. The last follows from the
definition of D: as |Z,| < ||z||, we must have |¢(x)| < ||z|| for all z, so ||¢|| < 1 (this also
gives continuity). Armed with this, for any z,y € X and € > 0 we can choose ¥ € B} such

that simultaneously |¢(z) — ¥(x)| < ke, [6(y) — ¥(y)| < i€, and |¢p(z +y) — Y(z +y)| < ze.
Then

[9(x +y) — o(x) — o(y)| =o(x +y) — Y(x +y) +v(@) — d(z) +U(y) — o(y)]

<|¢(@ +y) — (@ +y)| + |o(x) — v(@)| + o(y) — P(y)]
1 1 1
<3e—|— 36—1— 36—6,
so ¢ is linear. This shows that in fact Z € T'(BY), in particular Z = T'(¢). Thus, T'(Bj}) is
closed, hence compact by compactness of D, hence B} is compact, as T" is a homeomorphism
with respect to the weak star topology. O]

A proof very similar to this one will show the compactness of the unit ball in the space
of operators with a similar topology we will define there, the weak operator topology.

The important commonality between the norm, weak, and weak star topologies is that
they make X or X* into an object known as a locally convex topological vector space. In
fact, such spaces are slightly more general; this generalization happens to exactly capture
the kinds of topologies useful to functional analysis, so we define them here.

Definition 2.3. A topological vector space V (over the base field K) is a vector space endowed
with a topology 7 such that addition and K-multiplication are continuous maps.

This establishes the basic compatibility of the algebraic and topological structures of V.
For example, it provides a uniform structure on V: if a function from V' is continuous at 0
(or any point), it is continuous on all of V' by translation. Our model for a uniform structure
is R", where the topology is generated by the family of open balls about the origin, which
scale and translate to give a local description of general open sets. The correct generalization



is to find a similarly structured neighborhood basis of the origin; absolute convexity of these
basic open sets provides a convex structure we can use. We additionally require the basic
open sets to satisfy the following definition.

Definition 2.4. A neighborhood A C V of the origin is absorbent if for all x € V there is
some t € R positive such that x € tA.

Definition 2.5. A locally convex topological vector space is one in which the origin has a
neighborhood basis of absolutely convex absorbent sets.

The right way to think about the local convexity condition is that it asserts “open balls
are convex”. In fact, one can show that it is precisely the condition that allows us to discuss
open balls in the first place: a locally convex topological vector space is precisely a topological
vector space whose topology is generated by a family of seminorms.

The locally convex setting is the right place to do much of functional analysis. A principal
justification for this statement is that in any locally convex Hausdorff topological vector
space, we have the following powerful theorem:

Theorem 2.2 (Hahn-Banach). If Y and Z are disjoint non-empty convex subsets of a locally
convex topological space V', and Y is open, then there exists a functional p € V* such that
for eachy € Y and z € Z we have

Rep(y) > k > NRep(z)

for some real k > 0. Further, if in addition at least one of Y and Z is compact, there are
real numbers a,b and a p € V* such that for eachy €Y, z € Z,

Rep(y) > a > b > NRep(z).

As a consequence of this, we have the following more standard statement of the theorem
in the Banach space setting.

Corollary 2.3. Given a (not necessarily closed) subspace U of a Banach space X, and a
functional ¢ defined on U, there exists a functional p € X* extending ¢. Furthermore, this
extension may be chosen such that ||[¢|| = ||9|].

Theorem 2.2 takes a lot of work to prove, but it can be found in Kadison-Ringrose.

Example 2.1. K" with its norm topology is locally convex. In fact, a nice theorem states
that there is only one locally convex linear topology on K".

Example 2.2. A Banach space X equipped with its norm topology, its weak topology, or
any weak star topology that it may happen to have, is locally convex.

Example 2.3. Let X and Y be Banach space, and let B(X,Y") be the space of continuous
operators from X to Y. Then the following linear topologies are all locally convex:

e The topology induced by the operator norm, given by the norm ||T'||x,y = sup |Tz|y
[zl x=1



e The strong operator topology, characterized by the convergence

T, % T «— VeeX, |Ta—Tz|y — 0.

e The weak operator topology, characterized by the convergence

T, 25T « Vee X, e X*, ¢(Tx—Tx)— 0.

Example 2.4. Let (€2, 1) be a non-atomic finite-measure space, and define a metric on the
measurable functions f : 2 — R which have finite values everywhere but a set of measure 0

by
_ |f =gl

This is a translation-invariant metric with respect to which addition and scalar multiplication
are continuous, and therefore a topological vector space; call this space X. X fails to be
locally convex. Assume that ¢ : X — R is continuous. Then ¢~'(—1,1) is a convex open set
in X containing 0. We claim that ¢='(—1,1) is all of X.

Let g € X be arbitrary. For any partition U} | K; = €2, letting x; = xk,, we have

9= ZXig = %anz‘g
i=1 i=1

By continuity of ¢, there is some 6 > 0 such that if d(f,0) < 0, then |¢(f)| < 1. By non-
atomicity of €2, there is such a partition with p(K;) < ¢ for each 4, and a simple bounding
argument shows that this means that |¢p(ny;g)| < 1:

Inxigl|
d(nyig,0 :/—d
(nxig9,0) T gl

9]
= [ nxyi————dp
/Q 1+ |[nx.g|

Ing|
- M g
/}Q 1+ [ng] "'
< p(K;)

<1

So by convexity of the absolute value function, |¢(g)| < 1. But this was true for arbitrary
g € X, s0 ¢ = 0. So the continuous dual of X is only the 0 function, which would be
impossible in a locally convex space by Hahn-Banach.

This proof is especially cute because we never had to investigate the topology of the space,
but nonetheless concluded facts about its topology.

This metric is usually called the metric of convergence in measure.
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3 Krein-Milman

One of the jewels of the theory of locally convex topological vector spaces is the Krein-
Milman theorem.

Theorem 3.1 (Krein-Milman). Let V' be a locally convex topological vector space, and K C
V' a compact convexr set. Then K = coFE, where E is the set of extreme points of K.

First, we show the existence of an extreme point. We apply Zorn’s Lemma to the the
collection of closed faces of K, ordered by reverse inclusion.

Let A = {closed faces of K}, with I} < Fy <= F; D F,. Let {F;};c; be an ascending
chain in A. It has an upper bound: F = N;F;. This is nonempty because it is the intersection
of a decreasing family of nonempty closed sets in a compact set; it is convex because the
intersection of arbitrarily many convex sets, so long as the intersection is nonempty, is convex.

It is a face of K: let z,y € K, t € (0,1) such that tx + (1 — t)y € F. Then for each F;,
x,y € F; by the face condition, so x,y € N;F;, so z,y € F.

It is the intersection of closed sets, and therefore closed; it is a closed subset of a compact
set, so compact.

Now that every chain has an upper bound, Zorn’s Lemma produces a maximal element,
say Fy. Assume that Fj is not a point. Pick two points x # y € Fy. By Hahn-Banach, there
is a functional p such that Rep(x) > Rep(y). Because p is continuous and Fj is compact,
Re p attains a maximum value c. Now examine

G ={z€ Fy|Rep(z) =c}

Certainly y ¢ G. G is the inverse image of a closed set under continuous function, so G is
closed. Moreover, G is a face of Fy: if r;s € Fy, t € (0,1) such that tr + (1 —t)s € G, then

Rep(tr+(1—1t)s) =c
t-Rep(r)+(1—t)-Rep(s) =c

Assume, without loss of generality, that r ¢ G. Then

t-Rep(r)+ (1 —1t)-Rep(s) <t-c+ (1 —1t)-Rep(s)
<t-c+(1—t)c

a contradiction. So r,s € (G, so G is a face of Fy. By Lemma 1.2, GG is a face of K, and
because y ¢ G, G C Fy. So G is a strictly smaller nonempty closed face (closed because it
is compact in a Hausdorff space), contradicting the maximality of Fy. So Fy must consist of
a point.

This produces an extreme point for us. Now let E = {extreme points of K'}. Consider
coFE. 1Tt is closed, compact, convex. Assume that there is some y € K \ ¢6E. Again,
by Hahn-Banach, we can separate these convex sets by a functional p. Pick p so that
Rep(y) > Rep(coF). Again, the compactness of K implies that Rep attains a maximum
on K; the inverse image of this maximum is a face by the above arguments. By the above
argument on the existence of an extreme point, there must be some extreme point in K\ co E.
But E contained all the extreme points, a contradiction. So coF = K.
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4 Convex Spaces and Convex Functions
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5 Krein-Milman in Dual Spaces

Question. Is my space a dual space?

The fact that the weak star topology is compact on the unit ball means that if my space
could be given a weak star topology, the unit ball would be the closed convex hull of its ex-
treme points. In particular, it would need to have extreme points. For many locally convex
topological vector spaces, this is not the case, ruling out the possibility of them being dual
spaces.

Example 4.1. Cy(R), C[0,1], with the Banach structure coming from the supremum norm
Consider the vector space of continuous functions from R to R, vanishing at infinity. It is
a Banach space when equipped with the supremum norm. The unit ball has no extreme
points, however:

Let || f|| < 1. There is some compact set K such that Va2 € R\ K, |f(z)| < 1. Pick a
smooth bump function ¢ with the support of ¢ contained in R\ K and ||/« = %; then
|f(x) +Y(z) <1, |f(z) —¢(z)| < 1,s0 f+ ¢ and f — 1 are both in the unit ball. But
S(f+¥)+ 5(f —¢) = f, so f is not an extreme point. So Cy(R) is not a dual space.

The argument for C[0, 1] is different. The unit ball of C|0, 1] does contain extreme points,
but the entire thing is not a closed convex hull of its extreme points. I assert that the
functions f = 1 and f = —1 are extreme points: doing just f = 1, if f = tg; + (1 —1t)go, then
for each z, tg;(x)+(1—1t)g2(x) = 1. But 1 is an extreme point of [—1, 1], so g1(x) = ga(x) =1
for each x. Similarly, f = —1 is an extreme point.

Now assume that f € C]0, 1] is neither constantly 1 nor constantly —1. Assume that for
each c € (—1,1), f(x) # ¢; then f(z) € {—1,1} for each x € [0,1]. But [0, 1] is connected
and f is continuous, so f(x) must map strictly to {1} or to {—1}, contradicting it not being
constantly either. So there is some ¢ € (—1, 1) such that for some zy € [0, 1], f(xo) = c.

Now let 7 = min{|1 — ¢|,|c — (—1)|}. This is positive, because ¢ is neither 1 nor —1. By
continuity of f, there is some 6 > 0 such that |z —x¢| < § = |f(z)—c| < 5. In particular,
max{|f(z) — 1|,[f(z) + 1|} < § by the triangle inequality. So taking a smooth bump
function ¢ supported inside (z¢ — 6, o +9) with |||/ = §, we again have |(f +1)(x)| < 1,
I(f =¢)(z)] <1,and f = 2(f+¢)+ 3(f — ). So the only extreme points are the functions
1 and —1.

If C[0, 1] were a dual space, then the closure of their convex combinations in the supremum
norm would be all of the unit ball. But t1+4 (1 —¢)(—1) =t — 1+t = 2t — 1, so their convex
combinations are constant functions, which are one-dimensional. Because there is only one
locally convex linear topology on a one-dimensional space, these convex combinations are
homeomorphic to [0, 1], which is compact and cannot be dense in any Hausdorff space. So
C'[0, 1] is not a dual space.

Example 4.2. Let T': X — Y be a continuous bijective linear mapping of Banach spaces,

and 7" : Y* — X* map the extreme points of the unit ball in Y* to the extreme points of
the unit ball in X™* bijectively. Then T' is an isometric isomorphism.
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I show that ||Tx||y < ||z|/x; the other direction follows from the fact that 7! has all the
properties that 1" does. We need the following two statements:

[zl = sup |o(z)|

PE(X* )1

|Tz|| = sup [P(T)]
Pe(Y* )1

I claim that 7" maps the unit ball of Y* to the unit ball of X*. Let ¢» € (Y*);. There is
a convergent net of convex combinations of extreme points, say f, — 9. T* is weak star

continuous (prove this) so 7*(f,) N (¢). But T*(fy) = fy o T is a convex combination
of extreme points, and therefore in the unit ball. By the weak star closure of the unit ball,
T*(1)) is in the unit ball as well. This completes the proof.

Example 4.3. Extreme points in von Neumann algebras

Let H be a Hilbert space, B(H) the space of bounded operators on H with its standard in-
volution x. We call a *-closed subalgebra A of B(H) a von Neumann algebra, or W*-algebra,
if A is closed in the weak operator topology. By an argument very similar to that of the
Banach-Alaoglu theorem, the unit ball of B(H) is compact in the weak operator topology
(the unit ball in H is weakly compact). Therefore, the unit ball of A, equipped with the
weak operator topology, is also compact. By Krein-Milman, it should have extreme points.
Unfortunately, these extreme points aren’t things we generally want to deal with. We restrict
to the following two cases: the positive cone of A, and the self-adjoint cone of A.

Claim: extreme points of the unit ball of the entire thing are the isometries, extreme points
of the self-adjoint cone are projections.

Example 4.4. Recovering the Riemann integral

For X a locally compact Hausdorff topological space, the dual space of C'(X) is M(X),
the regular countably additive Borel measures on X. (This is the Riesz-Markov theorem.)
With respect to the weak star topology, the unit ball and the positive unit ball of M(X)
are compact. Taking X = [0, 1], and noting that the Lebesgue measure corresponds exactly
to the Riemann integral, we can reconstruct the Riemann integral as exactly the weak star

limit of .

1
my = —0
n n»
=1

which is the standard method to evaluate the Riemann integral for a continuous function.
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6 The Pettis Integral
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A Nets

A net is used for fishing.
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B Initial Topologies

Oftentimes, given a space X and maps f; : X — Y;, where the Y; are topological spaces, we
wish to define the weakest topology on X such that each of these maps are continuous.
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C Seminorm Topologies
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