Midterm Practice Exam:
Professor: Paul J. Atzberger
Introduction to Numerical Analysis, 104A
November 1st, 2006
Directions: Answer each question carefully and be sure to show all of your work. You are permitted to use a calculator but please be sure to show intermediate steps in your calculations. If you have any questions please feel free to ask.
Problem 1: Compute the absolute and relative errors when approximating p by the value p^*.

$$
\text{Err} = |p^* - p|, \quad \text{Err}_{rel} = \frac{|p^* - p|}{|p|}
$$

a) $p = \pi$ by $p^* = 3.14$

$$
\begin{align*}
\text{Err}_{abs} &= 1.59265 \times 10^{-3} \\
\text{Err}_{rel} &= 5.0696 \times 10^{-4}
\end{align*}
$$

b) $p = e^1$ by $p^* = 1699/625$

$$
\begin{align*}
\text{Err}_{abs} &= 1.18172 \times 10^{-4} \\
\text{Err}_{rel} &= 4.84729 \times 10^{-5}
\end{align*}
$$

c) $p = 6!$ by $p^* = 359$

$$
\begin{align*}
\text{Err}_{abs} &= 361 \\
\text{Err}_{rel} &= 5.01389 \times 10^{-1}
\end{align*}
$$

d) $p = \cos(0.1)$ by $p^* = 1 - (0.1^2/2)$

$$
\begin{align*}
\text{Err}_{abs} &= 4.16528 \times 10^{-6} \\
\text{Err}_{rel} &= 4.18619 \times 10^{-6}
\end{align*}
$$
Problem 2: In this problem we shall use k-digit-chopping to model the role of floating point arithmetic. In particular, you shall compare the accuracy when using different formulas to compute an approximate p^* to p. For each problem below do the following: (i) compute the relative errors using each formula, (ii) state which of the two formulas p^*_1 or p^*_2 gives a more accurate approximation.

a) For the 4-digit-chopping model for the number representation and arithmetic use each of the formulas to compute the approximate p^* of p:

Formula 1: $p^*_1 = \sqrt{2} \cdot \sqrt{3} + \sqrt{3} \cdot \pi + \sqrt{2} \cdot \pi + 2$

Formula 2: $p^*_2 = (\sqrt{2} + \pi) \cdot (\sqrt{3} + \sqrt{2})$

The near-exact solution is given by $p = 14.33377077364420$.

b) For the 5-digit-chopping model for the number representation and arithmetic use each of the formulas to compute the approximate p^* of p:

Formula 1: $p^*_1 = (\sqrt{2.1} - \sqrt{2})/0.1$

Formula 2: $p^*_2 = (\sqrt{2.01} - \sqrt{2})/0.01$

The near-exact solution is given by $p = 0.35355339059327$.
Problem 2: (k-digit chopping, \(k = 4\))

\[
\sqrt{2} \approx 1.414 \\
\sqrt{3} \approx 1.732 \\
\pi \approx 3.141
\]

Formula 1:
\[
\sqrt{2} \cdot \sqrt{3} \approx 2.449 \\
\sqrt{3} \cdot \pi \approx 5.440 \\
\sqrt{5} \cdot \pi \approx 4.441
\]

\[
(\sqrt{2} \cdot \sqrt{3}) + (\sqrt{3} \cdot \pi) \approx 7.889 \\
((\sqrt{2} \cdot \sqrt{3}) + (\sqrt{3} \cdot \pi)) + (\sqrt{5} \cdot \pi) \approx 12.882 \\
((\sqrt{2} \cdot \sqrt{3}) + (\sqrt{3} \cdot \pi)) + 2 \pi \approx 14.333 : = \rho_1^*
\]

Formula 2:
\[
(\sqrt{2} + \pi) \approx 4.555 \\
(\sqrt{3} + \sqrt{5}) \approx 3.466 \\
(\sqrt{2} + \pi) \cdot (\sqrt{3} + \sqrt{5}) \approx 14.333 : = \rho_2^*
\]

In each case
\[
\varepsilon_{rel,1} = \frac{|\rho_1^* - \rho_1|}{|\rho_1|} \approx 2.6 \times 10^{-4}
\]
\[
\varepsilon_{rel,2} = \frac{|\rho_2^* - \rho_2|}{|\rho_2|} \approx 2.6 \times 10^{-4}
\]

For this problem we find that the relative errors are equal, so far accuracy either formula 1 or formula 2 could be used. However, formula 1 requires fewer arithmetic operations and generally that approach will have better accuracy, so formula 1 is preferred.
b) (k-digit chopping, k = 5)

\[\sqrt{11} \approx 1.4491 \]
\[\sqrt{2} \approx 1.4142 \]

\[\sqrt{11} - \sqrt{2} \approx 3.49 \times 10^{-2} \]
\[(\sqrt{11} - \sqrt{2})/0.1 \approx 3.49 \times 10^{-1} : = \rho^* \]

\[\sqrt{2.01} \approx 1.4177 \]
\[\sqrt{2} \approx 1.4142 \]

\[(\sqrt{2.01} - \sqrt{2})/0.01 \approx 3.5 \times 10^{-1} : = \rho^* \]

The relative errors are

\[\varepsilon_{rel,1} = \frac{|\rho^* - p|}{p} = 1.288 \times 10^{-2} \]

\[\varepsilon_{rel,2} = \frac{|\rho^* - p|}{p} = 1.005 \times 10^{-2} \]

For this problem we find that the second formula performed better. In fact \(p = \frac{5}{\sqrt{x}} \) and above is a finite difference approx. to \(\frac{d}{dx} \sqrt{x} \) evaluated at \(x = 2 \).
Problem 3: Compute the relative errors of when approximating p by the value p^* and state the number of significant digits.

\[\epsilon_{rel} = \frac{|p - p^*|}{|p|} \leq 5 \times 10^{-t} \text{ then } t \text{ significant digits.} \]

a) $p = \pi$ by $p^* = \frac{22}{7}$

\[\epsilon_{rel} = 4.025 \times 10^{-4} \leq 5 \times 10^{-4}, \text{ } t = 4, \text{ significant digits.} \]

b) $p = e^2$ by $p^* = \frac{2886601}{390625}$

\[\epsilon_{rel} = 8.695 \times 10^{-5} \leq 5 \times 10^{-4}, \text{ } t = 4. \]

c) $p = 5!$ by $p^* = 121$

\[\epsilon_{rel} = 8.3 \times 10^{-5} \leq 5 \times 10^{-4}, \text{ } t = 2. \]

d) $p = \sin(0.1)$ by $p^* = 0.1 - (0.1^3/6)$

\[\epsilon_{rel} = 8.3453 \times 10^{-7} \leq 5 \times 10^{-6}, \text{ } t = 6. \]
Problem 4: Give the rate of convergence of $f(n) \to 0$ as $n \to \infty$ of the following expressions. State your final result using "Big Oh" notation in the form $f(n) = O(g(n))$, where $g(n) = n^{-p}$ for some p.

a) $f(n) = \frac{n+1}{n^2} = \frac{1}{n} + \frac{1}{n^2} \leq \frac{2}{n}$

$\therefore f(n) = O\left(\frac{1}{n}\right)$

b) $|f(n)| = \left|\frac{\sin(n)+1}{n^2}\right| \leq \frac{|\sin(n)|+1}{n^2} \leq \frac{2}{n^2}$

$\therefore f(n) = O\left(\frac{1}{n^2}\right)$

c) $f(n) = \frac{e^{1/n}+n}{n^3} \leq \frac{e+n}{n^3} = \frac{e}{n^3} + \frac{1}{n^2} \leq \frac{e+1}{n^2}$

$\therefore f(n) = O\left(\frac{1}{n^2}\right)$

d) $f(n) = \frac{n+1}{(n-1)(n+1)} = \frac{\frac{n+1}{n}}{(n-1)(n+1)} = \frac{1}{n-1} \leq \frac{1}{n} \left(1+\frac{1}{n} \right)$

$\leq \frac{2}{n}, \quad (n \geq 2)$

$\therefore f(n) = O\left(\frac{1}{n}\right)$,
Problem 5: Finding Roots and Fixed Points

a) If we are asked to find the root of \(f(x) = x^2 - 1 \) in \([0, 2]\), give a function \(g(x) \) for which the root is a fixed point.

\[g(x) = x^2 + x - 1 \]

b) State the criteria for the function \(g(x) \) to have a fixed point in the interval \([a, b]\). Does the function \(g(x) = \sqrt{x} \) have a fixed point in the interval \([0.5, 2]\)?

A function \(g(x) \) has a fixed point in \([a, b]\), if

(i) \(g(x) \) is continuous,

(ii) \(g(x) \in [a, b] \) for \(x \in [a, b] \).

For \(g(x) = \sqrt{x} \), \(g \) is continuous and \(g(0.5) = g(1) = 1.1181 \), so \(g(x) \notin [0.5, 1] \) and does not have any fixed points in this interval.

c) State the criteria for a function \(g(x) \) used in a fixed point iteration method to converge on an interval \([a, b]\). Does the function \(g(x) = 0.5 \times x + \frac{1}{x} \) meet this criteria on the interval \([1, 2]\)?

A function \(g(x) \) converges to a fixed point if in addition to (i), (ii) above, we have that \(|g'(x)| < 1 \) for \(x \in [a, b] \). \(|g'(x)| = \frac{1}{2} + \frac{1}{x} \) does meet the criteria.

d) If \(p_n \) is the \(n^{th} \) approximate of the root \(p \) in a root finding algorithm, the error is given by \(e_n = |p_n - p| \) and the error for the next iteration is given by \(e_{n+1} = |p_{n+1} - p| \). The rate of convergence is defined as \(m \) if

\[\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^m} \leq C \]

for some finite constant \(C \) (technically this should be \(\lim \sup \)).

State the rate of convergence of the Bisection Method and Newton’s Method (give \(m \)). Suppose we are very close to the root \(p \), in the sense that the left and right hands sides in the limit above can be approximately equated. For an error of \(e_n = 10^{-2} \) give an estimate of the error \(e_{n+1} \) in the case \(C = 1 \) when using the Bisection Method. Give the estimate when using Newton’s Method.

Bisection Method: \(e_{n+1} \approx e_n = 10^{-2} \)

Newton Method: \(e_{n+1} \approx e_n = 10^{-4} \)

For Newton, a very drastic improvement in accuracy is obtained over one iteration. For Bisection, the typical improvement is at most \(\frac{1}{2} \) at each step.