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Introduction

No arbitrage principles play a central role in models of finance and economics. The assumption of no
arbitrage essentially states that there is “no free lunch” in a market. In other words, there are no zero cost
investment strategies that allow for a market participant to make a profit without taking some risk of a loss.
We shall mainly be interested in pricing derivative contracts, which derive their value from an underlying
asset or index such as a stock or interest rate. In this context no arbitrage can be used to determine a price
for a contract by constructing portfolios which replicate the payoff in complete markets or give a bound on
permissible prices for a contract by constructing portfolios which bound the payoff in incomplete markets.

Using results from linear programming, the pricing theory obtained by constructing such replicating
portfolios can be shown to be have as its dual problem the construction of a risk-neutral probability for the
market. The “risk-neutral” terminology can be motivated by considering an individual who values a contract
by only considering its expected payoff and is uninfluenced by the riskiness of obtaining an uncertain payoff.
Such an individual we might call a “risk-neutral” investor. The risk-neutral probability of a market is defined
as a probability measure which when taking the expected payoff of any derivative contract and discounting
into todays dollars gives the price of the contingent claim consistent with no arbitrage.

The connection between the existence of risk-neutral probability measures and no arbitrage in a market
is established in the The Arbitrage Theorem. For complete markets the Arbitrage Theorem states that
there is no arbitrage if and only if there exists a risk-neutral probability measure. In other words there is
no arbitrage in a market only if the derivatives have a price which is given by the expectation of its payoff,
under the risk-neutral probability measure, discounted to express the value in today’s dollars. This theory
plays a central role in the pricing of options in mathematical finance by connecting arbitrage considerations
with probability theory. This theory will be the main subject of these notes.

The materials presented here are taken from the following sources: Derivatives Securities: Lecture Notes
by R. Kohn, Options, Futures, and Other Derivatives by Hull, and Derivatives Securities by Jarrow and
Turnbill.

One Period Markets

We shall consider price movements over a single time period [0, T ] for a market consisting of two assets, a
stock and a bond. Many models could in principle be used to model the price movements, we shall restrict
ourselves in these notes to two very simple models, in particular, a binomial and trinomial tree to illustrate
the basic ideas. Throughout the discussion we shall assume that the interest rate for the bond is fixed with
rate r.

Binomial Market Model

Let the price of the stock at time 0 be denoted by s0. In the binomial market model we shall allow for only
two possibilities for the movement of the price over the period [0, T ]. Let these be denoted by s1, s2 with
s1 < s2, see figure 1.
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Figure 1: Binomial Model
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In our model no arbitrage requires that there be no zero cost investment strategies that would allow for
an investor to make a profit without some risk of a loss. This places constraints on the possible values of
s1, s2 in our model. In particular, if we had s1 > erT s0 and s2 > erT s0 then there would be an arbitrage
opportunity in the market. We could ensure ourselves a profit by taking out a bank loan for the amount s0

at time 0 and buying the stock. At time T we would then owe the bank s0e
rT , which is less than we would

make from selling the stock in either outcome of the market, s1 or s2. A similar type of investment strategy
can be constructed if s1 < erT s0 and s2 < erT s0, except in this case we sell the stock and buy a bond. From
the assumption of no arbitrage the prices in our model must satisfy:

s1 < s0e
rT < s2.

We shall now consider the pricing of a derivative security which has a payoff which depends only on the
price of the stock at time T . We shall denote the prices of the contract by f0, f1, f2 with the same indexing
convention we used for the stock. For example, a call option with strike price K would have the value at
time T given by f1 = (s1 − K)+ and f2 = (s2 − K)+. A put option would have the value f1 = (K − s1)+
and f2 = (K − s2)+. Determining the value of the contract at time 0 requires a bit more work, which we
shall now discuss.

The basic strategy to determine the value of the contingent claim at time 0 is to build a portfolio of the
bond and stock which gives the same payoff as the contract. No arbitrage then requires that the contract
be worth at time 0 the same as the replicating portfolio.

We shall denote the weights for the assets in our portfolio by w1 for the stock and w2 for the bond, so
that the portfolio at time zero has the value:

w1S0 + w2e
−rT .

Recall a bond which pays $1 at time T is worth e−rT today.
Replicating the payoff of the contingent claim at time T requires that we solve the following linear

equations for w1, w2:

w1s1 + w2 = f1

w1s2 + w2 = f2.

This has solution:

w∗
1 =

f2 − f1

s2 − s1

w∗
2 =

s2f1 − s1f2

s2 − s1

.

Since the portfolio with the weights w∗
1 and w∗

2 has the same payoff as the contingent claim in each
outcome of the stock market, by no arbitrage the value of the contingent claim at time 0 must be:

V (f) = w∗
1s0 + w∗

2e−rT .

Markets in which for any contingent claim a replicating portfolio can be constructed are referred to as
complete markets.

By using the definition of w∗
1 and w∗

2 and factoring the coefficients into common terms of f1 and f2 we
have:

V (f) = e−rT [(1 − q)f1 + qf2]

where q = s0erT −s1

s2−s1
. It can be readily checked that no arbitrage holds for the market, s1 < s0e

rT < s2, if
and only if 0 < q < 1. Thus we see that the Arbitrage Theorem holds for the binomial market model.
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Trinomial Market Model

Let us now consider a market which at time T has three different outcomes for the stock prices s1 < s2 < s3,
see figure 2. The assumption of no arbitrage in this market requires that at least one outcome does better
than the risk-free return and that at least one outcome does worse. This requires:

s1 < s0e
rT , and, s0e

rT < s3.
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Figure 2: Trinomial Model

Consider again a contingent claim with value f0 at time 0 and value f1, f2, f3 at time T . For a given
outcome of the stock market, we again know the values f1, f2, f3 of the contract, but do not know the value
of f0 at time 0. We again seek to construct a “replicating” portfolio. In this case we must find the weights
w1, w2 by solving the following linear system for the payoff at time T :

w1s1 + w2 = f1

w1s2 + w2 = f2

w1s3 + w2 = f3.

We see that this linear system only permits a solution for a select subset of contingent claims with payoffs
[f1, f2, f3] within a 2-dimensional subspace. Thus the payoff of many of the contingent claims can not
be replicated by formulating a portfolio using only the stock and bond. Such markets are referred to as
incomplete markets.

While we can not determine an exact price by this method, useful information can still be obtained. Any
portfolio having a larger value at time T than the contingent claim’s payoff, in each outcome of the stock
market, must have a greater value at time 0 by no arbitrage arguments. A similar statement follows for
portfolios having lesser value at time T than the contingent claim’s payoff. This gives the bounds:

V (f) ≤ w+

1 + w+

2 e−rT

V (f) ≥ w−
1 + w−

2 e−rT

where the superscript + indicates that the portfolio dominates the payoff of the contingent claim, while −
indicates the portfolio has a smaller value than the payoff of the contingent claim in each outcome of the
stock market.

More precisely, we can express this as:

min
w1si+w2≤fi

i=1,2,3

w1s0 + w2e
−rT ≤ V (f) ≤ min

w1si+w2≤fi
i=1,2,3

w1s0 + w2e
−rT .

General One Period Market Models

We shall use the following notation to express the structure of a market in general. Let the payoff of asset
i for outcome α of the market be denoted by payoff matrix Di,α. Let the price of the ith asset at time 0 be
denoted by pi.
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For example, the payoff matrix for the assets in the binomial market is:

D =

[

1 1
s1 s2

]

with asset prices at time 0:

p =
[

s0 e−rT
]T

.

For the trinomial market we have:

D =

[

1 1 1
s1 s2 s3

]

and asset prices:

p =
[

s0 e−rT
]T

.

In a general market with N assets with M possible outcomes we have:

D =











1 · · · 1
D2,1 · · · D2,1

...
...

DN,1 · · · DN,M











p ∈ R
N .

The Duality of Replicating Portfolios and Risk-Neutral Probabili-

ties

The problem of constructing the best replicating portfolio to determine the price of a contingent claim turns
out to be dual to the problem of finding the best valuation of the contingent claim under all risk-neutral
probabilities permitted by the market. In particular, if we consider the upper bound on the price of the
contingent claim in a market with N general assets we can express the problem of finding the weights {wi}
of the best replicating portfolio as:

V (f) ≤ min
∑

i wiDi,α≥fα

∑

i

wipi

= min
wi

max
πα≥0

∑

i

wipi +
∑

α

πα(fα −
∑

i

wiDi,α)

= max
πi≥0

min
wi

∑

i

wipi +
∑

α

πα(fα −
∑

i

wiDi,α)

= max
πα≥0

min
wi

∑

i

wi(pi −
∑

α

παDi,α) +
∑

α

παfα

= max
∑

α παDi,α=pi

πα≥0

∑

α

παfα.

The first equality follows by noting that:

max
πα≥0

∑

α

πα(fα −
∑

i

wiDi,α) =

{

0, if
∑

i Di,α ≥ fα for all α

∞, +otherwise
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The second inequality in which we used that min max = max min follows from the duality theorem.
For the lower bound a similar argument can be made to obtain:

V (f) ≥ max
∑

i wiDi,α≥fα

∑

i

wipi

= min
∑

α παDi,α=pi

πα≥0

∑

α

παfα.

This gives the following bound on the price of a contingent claim:

min
∑

α παDi,α=pi

πα≥0

∑

α

παfα ≤ V (f) ≤ max
∑

α παDi,α=pi

πα≥0

∑

α

παfα.

Now if we assume that one of the assets in the market is a risk-free bond with interest rate r, say the
asset with index i = 1, then we have e−rT =

∑

α D1,απα. Since the first row of the payoff matrix is of the
form D1,α = 1 and we have e−rT =

∑

α πα, if we define π̂α = erT πα then the weights {π̂α} are a risk-neutral
probability measure.

This allows for us to express the inequalities as:

min
risk-neutral

probability π̂

e−rT
∑

α

π̂αfα ≤ V (f) ≤ max
risk-neutral

probability π̂

e−rT
∑

α

π̂αfα.

For a complete market this becomes an equality and we see that the risk-neutral probability terms are
precisely the dual values of the weights of the replicating portfolio.

The General Principle of No Arbitrage

For the general class of markets considered here, no arbitrage corresponds to the following:
Principle of No Arbitrage:

(a)
∑N

i=1
wiDi,α ≥ 0 for all α, implies

∑N

i=1
wipi ≥ 0.

(b) if we have
∑N

i=1
wiDi,α ≥ 0 for all α and

∑N

i=1
wipi = 0 then we must have

∑N

i=1
wiDi,α = 0.

The condition (a) states that if the payoff is non-negative then the value of the portfolio must be non-
negative. The statement (b) says that if the payoff of a portfolio is always non-negative but costs nothing
then the non-negative payoff must be the trivial payoff which is zero. Part (a) is sometimes referred to as
the “weak no arbitrage principle” whereas (a) and (b) together is referred to as the “strong no arbitrage
principle”.

The Arbitrage Theorem

Theorem 1 (Arbitrage Theorem): The market satisfies (a) if and only if there exists πα ≥ 0 such that

∑

α

Di,απα = pi, i = 1, . . . , N. (1)

The market satisfies both (a) and (b) if in addition the πα can be chosen to be all strictly positive.
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Before proving the theorem we remark that since the weights πα are non-negative they can be renormal-
ized to form probability weights (provided they are not all zero). Thus in essence, the theorem states that
no arbitrage in a market is equivalent to the existence of risk-neutral probability weights for the assets.

sketch of the proof:

One direction of the theorem follows rather easily. If there are non-negative weights πα ≥ 0 so that
equation 1 holds then if

∑

i wiDi,α ≥ 0 for all α it follows immediately that
∑

α

∑

i wiDi,απα =
∑

i wipi ≥ 0,
which shows (a). If the weights are positive πα > 0 then (b) follows by a similar argument.

To prove the other direction of the theorem we shall make use of Farkas’s Lemma which states that:
AT y ≥ 0 ⇒ bT y ≥ 0, ∀y holds if and only if there is a solution x ≥ 0 satisfying Ax = b. In other words,
this lemma states that if a collection of inequalities implies another inequality, this occurs in a rather trivial
fashion. In particular, the new inequality is a positive linear combination of the inequalities in the collection.

We shall now show that the no arbitrage condition (a) implies the existence of the non-negative weights.
Condition (a) can be expressed in vector notation as stating: DT w ≥ 0 for all w implies wT p ≥ 0. By
Farkas’s Lemma we have that there is a solution π ≥ 0 satisfying Dπ = p. This shows that condition (a)
implies the existence of the non-negative weights satisfying equation 1.

We shall now show that if both condition (a) and (b) hold then weights πα can be found which are strictly
positive. To do this we shall label the weights so that π1, . . . , πM ′ > 0 and πM ′+1, . . . , πM = 0. If all the
weights are already positive we are finished, so we shall only consider the case when M ′ < M .

In the case that there are positive weights aα > 0 for some set of coefficients bα such that:

M
∑

α=M ′+1

aαD·,α =

M ′

∑

α=1

bαD·,α (2)

we have:

pi =
M ′

∑

α=1

Di,απα

= ǫ

M
∑

α=M ′+1

aαDi,α +

M ′

∑

α=1

Di,α(πα − ǫbα).

The equality on the second line follows by adding and subtracting the term on the left hand side of equation
2 and then substituting the right hand side in the second summand.

We can obtain positive coefficients π̃α in this case by directly using that aα > 0. In particular, we have
that π̃α = ǫaα > 0, for α = M ′ + 1, . . . ,M . To obtain positive coefficients for the remaining indices we use
that πα > 0 and make the factor ǫ > 0 sufficiently small so that π̃α = πα − ǫbα > 0 for α = 1, . . . ,M ′.

Now if there are not positive weights aα for any coefficients bα then the following statement holds:

M
∑

α=M ′+1

aαD·,α =
M ′

∑

α=1

bαD·,α, aα ≥ 0 ⇒ aα = 0, α = M ′ + 1, . . . ,M.

This states that the space spanned by the vectors {D·,1, . . . ,D·,M ′} does not include any non-trivial non-
negative linear combination of the vectors {D·,M ′+1, . . . ,D·,M}.

Geometrically, this corresponds to the set {D·,M ′+1, . . . ,D·,M} forming a cone which intersects the linear
space spanned by {D·,1, . . . ,D·,M ′} only at the vertex point 0. From this it can be shown that there is a vector
w which is orthogonal to the linear space {D·,1, . . . ,D·,M ′} and which for the half space {x ∈ R

N |〈x,w〉 > 0}
contains the cone. In other words, there is a w such that:

〈D·,α, w〉 = 0, α = 1, . . . ,M ′

〈D·,α, w〉 > 0, α = M ′ + 1, . . . ,M.
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Writing this out in terms of summands we have:

∑

i

wiDi,α = 0, α = 1, . . . ,M ′

∑

i

wiDi,α > 0, α = M ′ + 1, . . . ,M.

But then w represents a portfolio that has some positive payoffs without any risk of a loss, and requires

zero cost of investment since
∑

i wipi =
∑

i

∑M ′

α=1
wiDi,απα = 0. This contradicts the assumption of no

arbitrage. Therefore this second case, in which there are no positive weights aα, is excluded by the no
arbitrage conditions (a) and (b).
¥

8



References 
[1] Convex Analysis and Nonlinear Optimization by Borwein and Lewis, Canadian Mathematical Society 
[2] Numerical Optimization by Nocedal and Wright 
[3] Derivatives Securities: Lecture Notes by R. Kohn. 
[4] Options, Futures, and Other Derivatives by Hull. 
[5] Derivatives Securities by Jarrow and Turnbill. 
 
 

Paul J. Atzberger 
Please send any comments to: 

atzberg@math.ucsb.edu 


	Contingent Claims and the Arbitrage Theorem
	arbitrage.pdf



