Elasticity Theory

Paul J. Atzberger

206D: Finite Element Methods
University of California Santa Barbara
A material is modeled by a **reference configuration** $\tilde{\Omega}$ which is a closed bounded set in \mathbb{R}^3. The current configuration of the material body is described by the deformation mapping $\phi: \tilde{\Omega} \rightarrow \mathbb{R}^3$, assumed $\det \nabla \phi > 0$. The $\phi(x)$ represents the current position of the material point x from the reference configuration. The displacement u of the material is $u(x) = \phi(x) - x$. Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by

$$
\nabla \phi = \begin{bmatrix}
\frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\
\frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\
\frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3}
\end{bmatrix}.
$$

This allows us to express variations in the deformation with position as $\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z)$. The Euclidean distance between deformations to leading order is

$$
\| \phi(x + z) - \phi(x) \|_2 = \| \nabla \phi \cdot z + o(z) \|_2 \Rightarrow C := \nabla \phi^T \nabla \phi.
$$
A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3. The current configuration of the material body is described by the deformation mapping $\phi: \bar{\Omega} \rightarrow \mathbb{R}^3$, assumed $\det \nabla \phi > 0$.

The displacement u of the material is $u(x) = \phi(x) - x$.

The deformation gradient is given by $\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix}$.

This allows us to express variations in the deformation with position as $\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(|z|)$.

The Euclidean distance between deformations to leading order is $\|\phi(x + z) - \phi(x)\|_2 = \|\nabla \phi \cdot z\|_2 + o(|z|) \Rightarrow C := \nabla \phi^T \nabla \phi + o(|z|)$.
Elasticity Theory

A material is modeled by a reference configuration $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The current configuration of the material body is described by the deformation mapping $\phi : \bar{\Omega} \rightarrow \mathbb{R}^3$, assumed $\det \nabla \phi > 0$.

Very useful when modeling small deformations allowing for expansions neglecting higher orders.

The deformation gradient is given by

$$
\nabla \phi = \begin{pmatrix}
\frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\
\frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\
\frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3}
\end{pmatrix}
$$

This allows us to express variations in the deformation with position as

$$
\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(\|z\|^2).
$$

The Euclidean distance between deformations to leading order is

$$
\|\phi(x + z) - \phi(x)\|_2 = \|\nabla \phi(x) \cdot z\|_2 + o(\|z\|^2) \Rightarrow C := \nabla \phi^T \nabla \phi
$$
Elasticity Theory

A material is modeled by a reference configuration $\tilde{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The current configuration of the material body is described by the deformation mapping

$$\phi: \tilde{\Omega} \rightarrow \mathbb{R}^3,$$

assumed \(\det \nabla \phi > 0 \).

The $\phi(x)$ represents the current position of the material point x from the reference configuration.
Elasticity Theory

A material is modeled by a **reference configuration** $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The **current configuration** of the material body is described by the **deformation mapping**

$$\phi : \bar{\Omega} \rightarrow \mathbb{R}^3, \quad \text{assumed } \det \nabla \phi > 0.$$

The $\phi(x)$ represents the current position of the material point x from the reference configuration.

The **displacement** u of the material is

$$u(x) = \phi(x) - x.$$
Elasticity Theory

A material is modeled by a **reference configuration** $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The **current configuration** of the material body is described by the **deformation mapping**

$$\phi : \bar{\Omega} \rightarrow \mathbb{R}^3, \text{ assumed } \det \nabla \phi > 0.$$

The $\phi(x)$ represents the current position of the material point x from the reference configuration.

The **displacement** u of the material is

$$u(x) = \phi(x) - x.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders.
Elasticity Theory

A material is modeled by a reference configuration \(\tilde{\Omega} \) which is a closed bounded set in \(\mathbb{R}^3 \).

The current configuration of the material body is described by the deformation mapping

\[
\phi : \tilde{\Omega} \rightarrow \mathbb{R}^3, \quad \text{assumed} \quad \det \nabla \phi > 0.
\]

The \(\phi(x) \) represents the current position of the material point \(x \) from the reference configuration.

The displacement \(u \) of the material is

\[
u(x) = \phi(x) - x.
\]

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The deformation gradient is given by
A material is modeled by a **reference configuration** $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The **current configuration** of the material body is described by the **deformation mapping**

$$\phi : \bar{\Omega} \rightarrow \mathbb{R}^3, \quad \text{assumed} \quad \det \nabla \phi > 0.$$

The $\phi(x)$ represents the current position of the material point x from the reference configuration.

The **displacement** u of the material is

$$u(x) = \phi(x) - x.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix}.$$
Elasticity Theory

A material is modeled by a **reference configuration** \(\tilde{\Omega} \) which is a closed bounded set in \(\mathbb{R}^3 \).

The **current configuration** of the material body is described by the **deformation mapping**

\[
\phi : \tilde{\Omega} \rightarrow \mathbb{R}^3, \quad \text{assumed } \text{det} \nabla \phi > 0.
\]

The \(\phi(x) \) represents the current position of the material point \(x \) from the reference configuration.

The **displacement** \(u \) of the material is

\[
u(x) = \phi(x) - x.\]

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

\[
\nabla \phi = \begin{bmatrix}
\frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\
\frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\
\frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3}
\end{bmatrix}.
\]

This allows us to express variations in the deformation with position as

\[
\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).
\]
Elasticity Theory

A material is modeled by a **reference configuration** $\tilde{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The **current configuration** of the material body is described by the **deformation mapping**

$$\phi : \tilde{\Omega} \to \mathbb{R}^3,$$

assumed $\det \nabla \phi > 0$.

The $\phi(x)$ represents the current position of the material point x from the reference configuration.

The **displacement** u of the material is

$$u(x) = \phi(x) - x.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix}
\frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\
\frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\
\frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3}
\end{bmatrix}.$$

This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is
Elasticity Theory

A material is modeled by a **reference configuration** $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The **current configuration** of the material body is described by the **deformation mapping**

$$\phi : \bar{\Omega} \to \mathbb{R}^3, \quad \text{assumed } \det \nabla \phi > 0.$$

The $\phi(x)$ represents the current position of the material point x from the reference configuration.

The **displacement** u of the material is

$$u(x) = \phi(x) - x.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The

deformation gradient is given by

$$\nabla \phi = \begin{bmatrix}
\frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\
\frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\
\frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3}
\end{bmatrix}.$$

This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2) \quad \Rightarrow \quad C := \nabla \phi^T \nabla \phi$$
Elasticity Theory

A material is modeled by a **reference configuration** $\bar{\Omega}$ which is a closed bounded set in \mathbb{R}^3.

The **current configuration** of the material body is described by the **deformation mapping** $\phi : \bar{\Omega} \to \mathbb{R}^3$, assumed $\det \nabla \phi > 0$.

The $\phi(x)$ represents the current position of the material point x from the reference configuration.

The **displacement** u of the material is

$$u(x) = \phi(x) - x.$$

Very useful when modeling small deformations allowing for expansions neglecting higher orders. The **deformation gradient** is given by

$$\nabla \phi = \begin{bmatrix} \frac{\partial \phi_1}{\partial x_1} & \frac{\partial \phi_1}{\partial x_2} & \frac{\partial \phi_1}{\partial x_3} \\ \frac{\partial \phi_2}{\partial x_1} & \frac{\partial \phi_2}{\partial x_2} & \frac{\partial \phi_2}{\partial x_3} \\ \frac{\partial \phi_3}{\partial x_1} & \frac{\partial \phi_3}{\partial x_2} & \frac{\partial \phi_3}{\partial x_3} \end{bmatrix}.$$

This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is

$$\| \phi(x + z) - \phi(x) \|^2 = \| \nabla \phi \cdot z \|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2) \Rightarrow C := \nabla \phi^T \nabla \phi$$
This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2).$$
Elasticity Theory

This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla\phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(x + z) - \phi(x)\|^2 = \|\nabla\phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla\phi^T \nabla\phi z + o(\|z\|^2).$$

The right Cauchy-Green Tensor is \(C := \nabla\phi^T \nabla\phi. \)
Elasticity Theory

This allows us to express variations in the deformation with position as

\[\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z). \]

The Euclidean distance between deformations to leading order is

\[\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2). \]

The right Cauchy-Green Tensor is \(C := \nabla \phi^T \nabla \phi \).

The material strain is modeled by

\[E := \frac{1}{2} (C - I). \]
This allows us to express variations in the deformation with position as
\[\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z). \]

The Euclidean distance between deformations to leading order is
\[\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2). \]

The right \textbf{Cauchy-Green Tensor} is \(C := \nabla \phi^T \nabla \phi \).

The material \textbf{strain} is modeled by
\[E := \frac{1}{2} (C - I). \]

This is one of the most fundamental concepts in elasticity theory.
Elasticity Theory

This allows us to express variations in the deformation with position as
\[\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z). \]

The Euclidean distance between deformations to leading order is
\[\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z^T \nabla \phi^T \nabla \phi z + o(\|z\|^2). \]

The right Cauchy-Green Tensor is \(C := \nabla \phi^T \nabla \phi \).

The material strain is modeled by
\[E := \frac{1}{2} (C - I). \]

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as...
Elasticity Theory

This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2).$$

The right Cauchy-Green Tensor is $C := \nabla \phi^T \nabla \phi$. The material strain is modeled by

$$E := \frac{1}{2} (C - I).$$

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \sum_k \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}.$$

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
This allows us to express variations in the deformation with position as

$$\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).$$

The Euclidean distance between deformations to leading order is

$$\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi \cdot z + o(\|z\|^2).$$

The right Cauchy-Green Tensor is $C := \nabla \phi^T \nabla \phi$.

The material strain is modeled by

$$E := \frac{1}{2} (C - I).$$

This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as

$$E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \sum_k \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}.$$
This allows us to express variations in the deformation with position as
\[
\phi(x + z) - \phi(x) = \nabla \phi(x) \cdot z + o(z).
\]
The Euclidean distance between deformations to leading order is
\[
\|\phi(x + z) - \phi(x)\|^2 = \|\nabla \phi \cdot z\|^2 + o(\|z\|^2) = z' \nabla \phi^T \nabla \phi z + o(\|z\|^2).
\]

The right Cauchy-Green Tensor is \(C := \nabla \phi^T \nabla \phi \).
The material strain is modeled by
\[
E := \frac{1}{2} (C - I).
\]
This is one of the most fundamental concepts in elasticity theory.

In matrix form these tensors can be expressed as
\[
E_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) + \frac{1}{2} \sum_k \frac{\partial u_k}{\partial x_i} \frac{\partial u_k}{\partial x_j}.
\]
In practice, the second quadratic term is often neglected to obtain an approximation.
The symmetric gradient approximation for strain is denoted by
\[
\epsilon_{ij} := \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right).
\]
Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) surface forces $t(x, n) \, dA$.

(b) body forces $f(x) \, dV$.

The $t(x, n)$ is called the Cauchy stress vector. The $f(x)$ is called the body force.

Axiom of Static Equilibrium

For a body B in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field t so that for every smooth volume V of B we have

$$\int_V f(x) \, dV + \int_{\partial V} t(x, n) \, dA = 0$$

The symbol \wedge denotes the vector cross-product in \mathbb{R}^3.

Paul J. Atzberger, UCSB

http://atzberger.org/
Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) surface forces \(\mathbf{t}(\mathbf{x}, \mathbf{n}) \) which apply over the boundaries of the body, (force = \(\mathbf{t}(\mathbf{x}, \mathbf{n}) \) \(\cdot \) dA).

(b) body forces \(\mathbf{f}(\mathbf{x}) \) which apply throughout the volume, (force = \(\mathbf{f}(\mathbf{x}) \) \(\cdot \) dV).

The \(\mathbf{t}(\mathbf{x}, \mathbf{n}) \) is called the Cauchy stress vector.
The \(\mathbf{f}(\mathbf{x}) \) is called the body force.

Axiom of Static Equilibrium

For a body \(B \) in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field \(\mathbf{t} \) so that for every smooth volume \(V \) of \(B \) we have

\[
\int_V \mathbf{f}(\mathbf{x}) \, dV + \int_{\partial V} \mathbf{t}(\mathbf{x}, \mathbf{n}) \, dA = 0.
\]

The symbol \(\wedge \) denotes the vector cross-product in \(\mathbb{R}^3 \).
Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \(t \) which apply over the boundaries of the body, (force = \(t(x, n)dA \)).
Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) **surface forces** \(t \) which apply over the boundaries of the body, \((\text{force} = t(x, n)dA) \).

(b) **body forces** \(f \) which apply throughout the volume, \((\text{force} = f(x)dV) \).
Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) **surface forces** \(t \) which apply over the boundaries of the body, (force = \(t(x, n) dA \)).

(b) **body forces** \(f \) which apply throughout the volume, (force = \(f(x) dV \)).
Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces t which apply over the boundaries of the body, (force $= t(x, n)dA$).
(b) body forces f which apply throughout the volume, (force $= f(x)dV$).

The $t(x, n)$ is called the Cauchy stress vector.
Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) surface forces t which apply over the boundaries of the body, $(\text{force} = t(x, n)dA)$.
(b) body forces f which apply throughout the volume, $(\text{force} = f(x)dV)$.

The $t(x, n)$ is called the Cauchy stress vector. The $f(x)$ is called the body force.
Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) surface forces \(t \) which apply over the boundaries of the body, (force = \(t(x, n)dA \)).
(b) body forces \(f \) which apply throughout the volume, (force = \(f(x)dV \)).

The \(t(x, n) \) is called the **Cauchy stress vector**. The \(f(x) \) is called the **body force**.

Axiom of Static Equilibrium
Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:
(a) **surface forces** t which apply over the boundaries of the body, $(\text{force} = t(x,n)dA)$.
(b) **body forces** f which apply throughout the volume, $(\text{force} = f(x)dV)$.

The $t(x,n)$ is called the **Cauchy stress vector**. The $f(x)$ is called the **body force**.

Axiom of Static Equilibrium

For a body B in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field t so that for every smooth volume \mathcal{V} of B we have
Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) **surface forces** t which apply over the boundaries of the body, (force $= t(x, n)dA$).

(b) **body forces** f which apply throughout the volume, (force $= f(x)dV$).

The $t(x, n)$ is called the **Cauchy stress vector**. The $f(x)$ is called the **body force**.

Axiom of Static Equilibrium

For a body B in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field t so that for every smooth volume V of B we have

$$
\int_V f(x)dV_x + \int_{\partial V} t(x,n)dA_x = 0
$$

The symbol \wedge denotes the vector cross-product in \mathbb{R}^3.
Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) **surface forces** t which apply over the boundaries of the body, $(force = t(x, n)dA)$.
(b) **body forces** f which apply throughout the volume, $(force = f(x)dV)$.

The $t(x, n)$ is called the **Cauchy stress vector**. The $f(x)$ is called the **body force**.

Axiom of Static Equilibrium

For a body B in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field t so that for every smooth volume V of B we have

\[
\int_V f(x)dV_x + \int_{\partial V} t(x, n)dA_x = 0
\]

\[
\int_V x \wedge f(x)dV_x + \int_{\partial V} x \wedge t(x, n)dA_x = 0.
\]

The symbol \wedge denotes the vector cross-product in \mathbb{R}^3.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Elasticity Theory

Assumptions for Equilibrium

Interactions of the body with the outside world is assumed to occur only through two types of applied forces:

(a) **surface forces** \(t \) which apply over the boundaries of the body, \(\text{force} = t(x, n) dA \).

(b) **body forces** \(f \) which apply throughout the volume, \(\text{force} = f(x) dV \).

The \(t(x, n) \) is called the **Cauchy stress vector**. The \(f(x) \) is called the **body force**.

Axiom of Static Equilibrium

For a body \(B \) in a deformed configuration at mechanical equilibrium, it is assumed that there exists a stress vector field \(t \) so that for every smooth volume \(V \) of \(B \) we have

\[
\int_V f(x) dV_x + \int_{\partial V} t(x, n) dA_x = 0 \\
\int_V x \wedge f(x) dV_x + \int_{\partial V} x \wedge t(x, n) dA_x = 0.
\]

The symbol \(\wedge \) denotes the vector cross-product in \(\mathbb{R}^3 \).
Elasticity Theory

Notational Conventions

- M^3: the set of 3×3 matrices.
- M^3_+: the set of M^3 with positive determinant.
- O^3: the set of orthogonal 3×3 matrices.
- O^3_+: the set $O^3 \cap M^3_+$.
- S^3: the set of symmetric 3×3 matrices.
- S^3_+: the set of positive definite matrices of S^3.
Elasticity Theory

Notational Conventions

M^3 : the set of 3×3 matrices.
Elasticity Theory

Notational Conventions

\[\mathbb{M}^3 \quad : \quad \text{the set of } 3 \times 3 \text{ matrices.} \]
\[\mathbb{M}_+^3 \quad : \quad \text{the set of } \mathbb{M}^3 \text{ with positive determinant.} \]
Notational Conventions

\(\mathcal{M}^3 \) : the set of 3 \(\times \) 3 matrices.
\(\mathcal{M}^3_+ \) : the set of \(\mathcal{M}^3 \) with positive determinant.
\(\mathcal{O}^3 \) : the set of orthogonal 3 \(\times \) 3 matrices.
Notational Conventions

- \mathbb{M}^3 : the set of 3×3 matrices.
- \mathbb{M}_+^3 : the set of \mathbb{M}^3 with positive determinant.
- \mathbb{O}^3 : the set of orthogonal 3×3 matrices.
- \mathbb{O}_+^3 : the set $\mathbb{O}^3 \cap \mathbb{M}_+^3$.
Notational Conventions

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{M}^3</td>
<td>the set of 3×3 matrices.</td>
</tr>
<tr>
<td>\mathbb{M}_+^3</td>
<td>the set of \mathbb{M}^3 with positive determinant.</td>
</tr>
<tr>
<td>\mathbb{O}^3</td>
<td>the set of orthogonal 3×3 matrices.</td>
</tr>
<tr>
<td>\mathbb{O}_+^3</td>
<td>the set $\mathbb{O}^3 \cap \mathbb{M}_+^3$.</td>
</tr>
<tr>
<td>\mathbb{S}^3</td>
<td>the set of symmetric 3×3 matrices.</td>
</tr>
</tbody>
</table>
Notational Conventions

\[M^3 \] : the set of 3×3 matrices.
\[M^3_+ \] : the set of M^3 with positive determinant.
\[O^3 \] : the set of orthogonal 3×3 matrices.
\[O^3_+ \] : the set $O^3 \cap M^3_+$.
\[S^3 \] : the set of symmetric 3×3 matrices.
\[S^3_+ \] : the set of positive definite matrices of S^3.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Notational Conventions

\[
\begin{align*}
M^3 & : \text{ the set of } 3 \times 3 \text{ matrices.} \\
M^3_+ & : \text{ the set of } M^3 \text{ with positive determinant.} \\
O^3 & : \text{ the set of orthogonal } 3 \times 3 \text{ matrices.} \\
O^3_+ & : \text{ the set } O^3 \cap M^3_+. \\
S^3 & : \text{ the set of symmetric } 3 \times 3 \text{ matrices.} \\
S^3_> & : \text{ the set of positive definite matrices of } S^3.
\end{align*}
\]
Consider \(t(\cdot, \mathbf{n}) \in C^1(B, \mathbb{R}^3) \), \(t(x, \cdot) \in C^0(S^2, \mathbb{R}^3) \), and \(f(x) \in C^0(B, \mathbb{R}^3) \).

There exists a symmetric tensor field \(T \in C^1(B, S^2) \) satisfying

\[
(i) \quad t(x, \mathbf{n}) = T(x) \mathbf{n}, \quad x \in B, \ \mathbf{n} \in S^2,
\]

\[
(ii) \quad T(x) = T^T(x), \quad x \in B,
\]

\[
(iii) \quad \text{div} \ T(x) + f(x) = 0, \quad x \in B.
\]

This \(T \) is called the Cauchy stress tensor.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem:

\[
\int_V f(x) \, dV + \int_{\partial V} T(x) \mathbf{n} \, dA = \int_V (f(x) + \text{div} \ T(x)) \, dV = 0.
\]

Can express mechanics either in deformed material body coordinates \(x \in \mathbb{R}^3 \) or in reference body frame \(x_R \in \bar{\Omega} \).

Transformations to reference configuration \(\bar{\Omega} \):

Coordinates are related by \(x = \phi(x_R) \), \(dx = dV_x = \det(\nabla \phi) \, dx_R \).

Density transforms as \(\rho(x) \, dx = \rho_R(x_R) \, dx_R \).

This gives \(\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi - 1) \rho_R(x_R) \).

Force density scales similarly as \(f(x) = \det(\nabla \phi - 1) f_R(x_R) \).

This assumes that forces track with point masses, termed dead load.
Consider $t(\cdot, n) \in C^1(B, \mathbb{R}^3)$, $t(x, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $f(x) \in C^0(B, \mathbb{R}^3)$.

There exists a symmetric tensor field $T \in C^1(B, S^2)$ satisfying

(i) $t(x, n) = T(x)n$, $x \in B$, $n \in S^2$,

(ii) $T(x) = T_T(x)$,

(iii) $\text{div} T(x) + f(x) = 0$, $x \in B$.

This T is called the Cauchy stress tensor.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem:

$$\int_V f(x) \, dV + \int_{\partial V} T(x)n \, dA = \int_V \left(f(x) + \text{div} T(x) \right) \, dV = 0.$$

Can express mechanics either in deformed material body coordinates $x \in \mathbb{R}^3$ or in reference body frame $x_R \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi) \, dx_R$.

Density transforms as $\rho(x) \, dx = \rho_R(x_R) \, dx_R$.

This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1}) \rho_R(x_R)$.

Force density scales similarly as $f(x) = \det(\nabla \phi^{-1}) f_R(x_R)$.

This assumes that forces track with point masses, termed dead load.
Consider $t(\cdot, n) \in C^1(B, \mathbb{R}^3)$, $t(x, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $f(x) \in C^0(B, \mathbb{R}^3)$. There exists a symmetric tensor field $T \in C^1(B, S^2)$ satisfying
Elasticity Theory

Cauchy's Theorem

Consider \(t(\cdot, n) \in C^1(B, \mathbb{R}^3), \ t(x, \cdot) \in C^0(S^2, \mathbb{R}^3), \) and \(f(x) \in C^0(B, \mathbb{R}^3). \) There exists a symmetric tensor field \(T \in C^1(B, S^2) \) satisfying

\[
\begin{align*}
(i) \quad t(x, n) &= T(x)n, \quad x \in B, n \in S^2, \\
(ii) \quad T(x) &= T^T(x), \quad x \in B, \\
(iii) \quad \text{div} \ T(x) + f(x) &= 0, \quad x \in B.
\end{align*}
\]
Cauchy’s Theorem

Consider \(t(\cdot, n) \in C^1(B, \mathbb{R}^3), \ t(x, \cdot) \in C^0(S^2, \mathbb{R}^3), \) and \(f(x) \in C^0(B, \mathbb{R}^3). \) There exists a symmetric tensor field \(T \in C^1(B, S^2) \) satisfying

\[
\begin{align*}
(i) & \quad t(x, n) = T(x)n, \quad x \in B, n \in S^2, \\
(ii) & \quad T(x) = T^T(x), \quad x \in B, \\
(iii) & \quad \text{div} \ T(x) + f(x) = 0, \quad x \in B.
\end{align*}
\]

This \(T \) is called the **Cauchy stress tensor**.
Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(B, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(B, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathbf{T} \in C^1(B, S^2)$ satisfying

(i) $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathbf{T}(\mathbf{x})\mathbf{n}$, $\mathbf{x} \in B, \mathbf{n} \in S^2$,
(ii) $\mathbf{T}(\mathbf{x}) = \mathbf{T}^T(\mathbf{x})$, $\mathbf{x} \in B$,
(iii) $\text{div} \mathbf{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = 0$, $\mathbf{x} \in B$.

This \mathbf{T} is called the **Cauchy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem.
Elasticity Theory

Cauchy’s Theorem

Consider \(t(\cdot, n) \in C^1(B, \mathbb{R}^3) \), \(t(x, \cdot) \in C^0(S^2, \mathbb{R}^3) \), and \(f(x) \in C^0(B, \mathbb{R}^3) \). There exists a symmetric tensor field \(T \in C^1(B, S^2) \) satisfying

\[
(i) \quad t(x, n) = T(x)n, \quad x \in B, n \in S^2, \\
(ii) \quad T(x) = T^T(x), \quad x \in B, \\
(iii) \quad \text{div} \ T(x) + f(x) = 0, \quad x \in B.
\]

This \(T \) is called the **Cauchy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

\[
\int_V f(x) dV + \int_{\partial V} T(x)n dA = \int_V (f(x) + \text{div} T(x)) dV = 0.
\]
Elasticity Theory

Cauchy’s Theorem

Consider \(\mathbf{t}(\cdot, \mathbf{n}) \in C^1(B, \mathbb{R}^3), \mathbf{t}(\mathbf{x}, \cdot) \in C^0(S^2, \mathbb{R}^3), \) and \(\mathbf{f}(\mathbf{x}) \in C^0(B, \mathbb{R}^3). \) There exists a symmetric tensor field \(T \in C^1(B, S^2) \) satisfying

\[
\begin{align*}
(i) & \quad \mathbf{t}(\mathbf{x}, \mathbf{n}) = T(\mathbf{x})\mathbf{n}, \quad \mathbf{x} \in B, \mathbf{n} \in S^2, \\
(ii) & \quad T(\mathbf{x}) = T^T(\mathbf{x}), \quad \mathbf{x} \in B, \\
(iii) & \quad \text{div} \, T(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = 0, \quad \mathbf{x} \in B.
\end{align*}
\]

This \(T \) is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

\[
\int_V \mathbf{f}(\mathbf{x}) dV + \int_{\partial V} T(\mathbf{x})\mathbf{n} dA = \int_V (\mathbf{f}(\mathbf{x}) + \text{div} \, T(\mathbf{x})) \, dV = 0.
\]

Can express mechanics either in deformed material body coordinates \(\mathbf{x} \in \mathbb{R}^3 \) or in reference body frame \(\mathbf{x}_R \in \bar{\Omega}. \)
Elasticity Theory

Cauchy's Theorem

Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(B, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(B, \mathbb{R}^3)$. There exists a symmetric tensor field $T \in C^1(B, S^2)$ satisfying

(i) $\mathbf{t}(\mathbf{x}, \mathbf{n}) = T(\mathbf{x})\mathbf{n}$, $\mathbf{x} \in B$, $\mathbf{n} \in S^2$,
(ii) $T(\mathbf{x}) = T^T(\mathbf{x})$, $\mathbf{x} \in B$,
(iii) $\text{div} \, T(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = 0$, $\mathbf{x} \in B$.

This T is called the **Cauchy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_V \mathbf{f}(\mathbf{x})dV + \int_{\partial V} T(\mathbf{x})\mathbf{n}dA = \int_V (\mathbf{f}(\mathbf{x}) + \text{div} \, T(\mathbf{x})) \, dV = 0.$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \tilde{\Omega}$.

Transformations to reference configuration $\tilde{\Omega}$:
Consider $\mathbf{t}(\cdot, \mathbf{n}) \in C^1(\mathcal{B}, \mathbb{R}^3)$, $\mathbf{t}(\mathbf{x}, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $\mathbf{f}(\mathbf{x}) \in C^0(\mathcal{B}, \mathbb{R}^3)$. There exists a symmetric tensor field $\mathbf{T} \in C^1(\mathcal{B}, S^2)$ satisfying

1. $\mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathbf{T}(\mathbf{x})\mathbf{n}$, for $\mathbf{x} \in \mathcal{B}, \mathbf{n} \in S^2$,
2. $\mathbf{T}(\mathbf{x}) = \mathbf{T}^T(\mathbf{x})$, for $\mathbf{x} \in \mathcal{B}$,
3. $\text{div} \mathbf{T}(\mathbf{x}) + \mathbf{f}(\mathbf{x}) = 0$, for $\mathbf{x} \in \mathcal{B}$.

This \mathbf{T} is called the **Cauchy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_{\mathcal{V}} \mathbf{f}(\mathbf{x}) dV + \int_{\partial \mathcal{V}} \mathbf{T}(\mathbf{x})\mathbf{n} dA = \int_{\mathcal{V}} (\mathbf{f}(\mathbf{x}) + \text{div} \mathbf{T}(\mathbf{x})) dV = 0.
$$

Can express mechanics either in deformed material body coordinates $\mathbf{x} \in \mathbb{R}^3$ or in reference body frame $\mathbf{x}_R \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:
Coordinates are related by $\mathbf{x} = \phi(\mathbf{x}_R)$, $d\mathbf{x} = dV_x = \text{det}(\nabla \phi) d\mathbf{x}_R$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Elasticity Theory

Cauchy’s Theorem

Consider $t(\cdot, n) \in C^1(B, \mathbb{R}^3)$, $t(x, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $f(x) \in C^0(B, \mathbb{R}^3)$. There exists a symmetric tensor field $T \in C^1(B, S^2)$ satisfying

$(i) \quad t(x, n) = T(x)n, \quad x \in B, n \in S^2,$

$(ii) \quad T(x) = T^T(x), \quad x \in B,$

$(iii) \quad \text{div} \, T(x) + f(x) = 0, \quad x \in B.$

This T is called the Cauchy stress tensor.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_V f(x) dV + \int_{\partial V} T(x)n dA = \int_V (f(x) + \text{div} \, T(x)) \, dV = 0.$$

Can express mechanics either in deformed material body coordinates $x \in \mathbb{R}^3$ or in reference body frame $x_R \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Elasticity Theory

Cauchy's Theorem

Consider $t(\cdot, n) \in C^1(B, \mathbb{R}^3)$, $t(x, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $f(x) \in C^0(B, \mathbb{R}^3)$. There exists a symmetric tensor field $T \in C^1(B, S^2)$ satisfying

(i) $t(x, n) = T(x)n$, \hspace{1cm} x $\in B, n \in S^2,$

(ii) $T(x) = T^T(x)$, \hspace{1cm} x $\in B$,

(iii) $\text{div } T(x) + f(x) = 0$, \hspace{1cm} x $\in B$.

This T is called the **Cauchy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$\int_{V} f(x) dV + \int_{\partial V} T(x)n dA = \int_{V} (f(x) + \text{div } T(x)) dV = 0.$$

Can express mechanics either in deformed material body coordinates $x \in \mathbb{R}^3$ or in reference body frame $x_R \in \tilde{\Omega}$.

Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, \hspace{1cm} $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R).$
Elasticity Theory

Cauchy's Theorem

Consider $t(\cdot, n) \in C^1(B, \mathbb{R}^3)$, $t(x, \cdot) \in C^0(S^2, \mathbb{R}^3)$, and $f(x) \in C^0(B, \mathbb{R}^3)$. There exists a symmetric tensor field $T \in C^1(B, S^2)$ satisfying

1. $t(x, n) = T(x)n$, $x \in B, n \in S^2$,
2. $T(x) = T^T(x)$, $x \in B$,
3. $\text{div} T(x) + f(x) = 0$, $x \in B$.

This T is called the **Cachy stress tensor**.

This follows readily by using the Axiom of Static Equilibrium and the Gauss Divergence Theorem

$$
\int_V f(x) dV + \int_{\partial V} T(x)n dA = \int_V \left(f(x) + \text{div} T(x) \right) dV = 0.
$$

Can express mechanics either in deformed material body coordinates $x \in \mathbb{R}^3$ or in reference body frame $x_R \in \bar{\Omega}$.

Transformations to reference configuration $\bar{\Omega}$:

Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R)$.

This assumes that forces track with point masses, termed **dead load**.
Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R)$. This assumes that forces track with point masses, termed dead load.
Elasticity Theory

Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

- First Piola-Kirchhoff Stress Tensor T_R:
 $T_R := \det(\nabla \phi)T(\nabla \phi)$.

- Second Piola-Kirchhoff Stress Tensor Σ_R:
 $\Sigma_R := (\nabla \phi)^{-1}T_R = (\nabla \phi)^{-1}\det(\nabla \phi)T(\nabla \phi) - T_R$.

The Second Piola-Kirchhoff Stress Tensor Σ_R is motivated by making a tensor that is symmetric. For small deformations, the three tensors T, T_R, Σ_R become the same to leading order.
Transformations to reference configuration $\tilde{\Omega}$: Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is
Elasticity Theory

Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi) dx_R$. Density transforms as $\rho(x) dx = \rho_R(x_R) dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1}) \rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1}) f_R(x_R)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$\text{div}_{R} T_R + f_R = 0,$$

where $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.
Transformations to reference configuration $\bar{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:
Stress balance in reference configuration is

$$\text{div}_R T_R + f_R = 0,$$

where $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:
Elasticity Theory

Transformations to reference configuration \(\tilde{\Omega} \):
Coordinates are related by \(x = \phi(x_R) \), \(dx = dV_x = \det(\nabla \phi) dx_R \). Density transforms as \(\rho(x) dx = \rho_R(x_R) dx_R \).
This gives \(\rho(x) = \rho(\phi(x_R)) = \det(\nabla^{-1}) \rho_R(x_R) \). Force density scales similarly as \(f(x) = \det(\nabla^{-1}) f_R(x_R) \).
This assumes that forces track with point masses, termed **dead load**.

Piola Transform:
Stress balance in reference configuration is

\[
\text{div}_R T_R + f_R = 0, \quad \text{where } T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}.
\]

We define two associated stress tensors:

(a) **First Piola-Kirchhoff Stress Tensor** \(T_R \), \(T_R := \det(\nabla \phi) T (\nabla \phi)^{-T} \).
Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi) dx_R$. Density transforms as $\rho(x) dx = \rho_R(x_R) dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1}) \rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1}) f_R(x_R)$. This assumes that forces track with point masses, termed **dead load**.

Piola Transform:

Stress balance in reference configuration is

$$\text{div}_R T_R + f_R = 0, \text{ where } T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}.$$

We define two associated stress tensors:
(a) **First Piola-Kirchhoff Stress Tensor** T_R, $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.
(b) **Second Piola-Kirchhoff Stress Tensor** Σ_R, $\Sigma_R := (\nabla \phi)^{-1} T_R = (\nabla \phi)^{-1} \det(\nabla \phi) T (\nabla \phi)^{-T}$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Elasticity Theory

Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi)dx_R$. Density transforms as $\rho(x)dx = \rho_R(x_R)dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1})\rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1})f_R(x_R)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:

Stress balance in reference configuration is

$$\text{div}_R T_R + f_R = 0,$$
where $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.

We define two associated stress tensors:

(a) **First Piola-Kirchhoff Stress Tensor** T_R, $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.

(b) **Second Piola-Kirchhoff Stress Tensor** Σ_R, $\Sigma_R := (\nabla \phi)^{-1} T_R = (\nabla \phi)^{-1} \det(\nabla \phi) T (\nabla \phi)^{-T}$.

The Second Piola-Kirchhoff Stress Tensor Σ_R is motivated by making a tensor that is symmetric.
Elasticity Theory

Transformations to reference configuration $\tilde{\Omega}$:
Coordinates are related by $x = \phi(x_R)$, $dx = dV_x = \det(\nabla \phi) dx_R$. Density transforms as $\rho(x) dx = \rho_R(x_R) dx_R$. This gives $\rho(x) = \rho(\phi(x_R)) = \det(\nabla \phi^{-1}) \rho_R(x_R)$. Force density scales similarly as $f(x) = \det(\nabla \phi^{-1}) f_R(x_R)$. This assumes that forces track with point masses, termed dead load.

Piola Transform:
Stress balance in reference configuration is

$$\text{div}_{R} T_R + f_R = 0, \text{ where } T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}.$$

We define two associated stress tensors:
(a) First Piola-Kirchhoff Stress Tensor T_R, $T_R := \det(\nabla \phi) T (\nabla \phi)^{-T}$.
(b) Second Piola-Kirchhoff Stress Tensor Σ_R, $\Sigma_R := (\nabla \phi)^{-1} T_R = (\nabla \phi)^{-1} \det(\nabla \phi) T (\nabla \phi)^{-T}$.

The Second Piola-Kirchhoff Stress Tensor Σ_R is motivated by making a tensor that is symmetric. For small deformations, the three tensors T, T_R, Σ_R become the same to leading order.
Elastic Materials:

A material is called elastic if there exists a mapping for the stress of the form

\[\hat{T} : M_3^+ \rightarrow S_3^+ \]

where for every deformed state

\[T(x) = \hat{T}(\nabla \phi(x_R)) \]

\(\hat{T} \) is the response function for the Cauchy stress for the material.

The \(T = \hat{T}(\nabla \phi(x_R)) \) is the constitutive equation for the material.

Transforming the tensors, we have the Piola-Kirchhoff stress

\[\hat{\Sigma}(F) := \det(F) F^{-1} \hat{T}(F) F^{-T} \]

Typically we will have

\(F = \nabla \phi(x_R) \).

A material is called homogeneous if \(\hat{T} \) does not depend on \(x \).
Elastic Materials:

A material is called **elastic** if there exists a mapping for the stress of the form

\[
\hat{T} : M^{3} + \rightarrow S^{3},
\]

where for every deformed state \(T(x) = \hat{T}(\nabla \phi(x)) \). The \(\hat{T} \) is the response function for the Cauchy stress for the material. The \(T = \hat{T}(\nabla \phi(x)) \) is the constitutive equation for the material. Transforming the tensors, we have the Piola-Kirchhoff stress \(\hat{\Sigma}(F) := \text{det}(F) F^{-1} \hat{T}(F) F^{-T} \). Typically we will have \(F = \nabla \phi(x) \). A material is called **homogeneous** if \(\hat{T} \) does not depend on \(x \).
A material is called **elastic** if there exists a mapping for the stress of the form

\[\hat{T} : \mathbb{M}_+ \rightarrow \mathbb{S}_+ , \]

where for every deformed state \(\hat{T}(x_R) = \hat{T}(\nabla \phi(x_R)) \). The \(\hat{T} \) is the response function for the Cauchy stress for the material. The \(T = \hat{T}(\nabla \phi(x_R)) \) is the constitutive equation for the material.
A material is called elastic if there exists a mapping for the stress of the form

\[\hat{T} : \mathbb{M}^3_+ \rightarrow \mathbb{S}^3_+ , \]

where for every deformed state
Elastic Materials:

A material is called **elastic** if there exists a mapping for the stress of the form

\[\hat{T} : \mathbb{M}^3_+ \rightarrow \mathbb{S}^3_+ , \]

where for every deformed state

\[T(x) = \hat{T}(\nabla \phi(x_R)). \]
A material is called *elastic* if there exists a mapping for the stress of the form

\[\hat{T} : \mathbb{M}_+^3 \rightarrow \mathbb{S}_+^3, \]

where for every deformed state

\[T(x) = \hat{T}(\nabla \phi(x_R)). \]

The \(\hat{T} \) is the **response function** for the Cauchy stress for the material.
Elastic Materials:

A material is called **elastic** if there exists a mapping for the stress of the form

\[\hat{T} : \mathbb{M}_+^3 \rightarrow \mathbb{S}_+^3, \]

where for every deformed state

\[T(x) = \hat{T}(\nabla \phi(x_R)). \]

The \(\hat{T} \) is the **response function** for the Cauchy stress for the material. The \(T = \hat{T}(\nabla \phi(x_R)) \) is the **constitutive** equation for the material.
Elastic Materials:

A material is called **elastic** if there exists a mapping for the stress of the form

\[\hat{T} : \mathbb{M}_3^+ \to \mathbb{S}_+^3, \]

where for every deformed state

\[T(x) = \hat{T}(\nabla \phi(x_R)). \]

The \(\hat{T} \) is the **response function** for the Cauchy stress for the material. The \(T = \hat{T}(\nabla \phi(x_R)) \) is the **constitutive** equation for the material.

Transforming the tensors, we have the **Piola-Kirchhoff stress**
Elasticity Theory

Elastic Materials:

A material is called **elastic** if there exists a mapping for the stress of the form

$$\hat{T} : M^3_+ \rightarrow S^3_+,$$

where for every deformed state

$$T(x) = \hat{T}(\nabla \phi(x_R)).$$

The \hat{T} is the **response function** for the Cauchy stress for the material.

The $T = \hat{T}(\nabla \phi(x_R))$ is the **constitutive** equation for the material.

Transforming the tensors, we have the **Piola-Kirchhoff stress**

$$\hat{\Sigma}(F) := \text{det}(F)F^{-1}\hat{T}(F)F^{-T}.$$
A material is called **elastic** if there exists a mapping for the stress of the form
\[\hat{T} : M_+^3 \rightarrow S_+^3, \]
where for every deformed state
\[T(x) = \hat{T}(\nabla \phi(x_R)). \]

The \(\hat{T} \) is the **response function** for the Cauchy stress for the material. The \(T = \hat{T}(\nabla \phi(x_R)) \) is the **constitutive** equation for the material.

Transforming the tensors, we have the **Piola-Kirchhoff stress**
\[\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}. \]

Typically we will have \(F = \nabla \phi(x) \).
A material is called **elastic** if there exists a mapping for the stress of the form

$$\hat{T} : M^3_+ \to S^3_+,$$

where for every deformed state

$$T(x) = \hat{T}(\nabla \phi(x_R)).$$

The \hat{T} is the **response function** for the Cauchy stress for the material. The $T = \hat{T}(\nabla \phi(x_R))$ is the **constitutive** equation for the material.

Transforming the tensors, we have the **Piola-Kirchhoff stress**

$$\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}.$$

Typically we will have $F = \nabla \phi(x)$.

A material is called **homogeneous** is \hat{T} does not depend on x.
Given physical invariances, we make the assumption that the Cauchy stress vector \(\sigma(x, n) = T(x) n \) is independent of the choice of coordinates in the sense

\[
Q \sigma(x, n) = \sigma(Qx, Qn), \quad \forall Q \in O^3.
\]

A material that is frame-indifferent is referred to as an objective material.

Theorem
When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O^3 \) that

\[
\hat{T}(QF) = Q \hat{T}(F) Q^T.
\]

We also have there exists a mapping \(\hat{\Sigma} : S^3 \rightarrow S^3 \) so that

\[
\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).
\]

Significance:
The \(\hat{\Sigma} \) only depends on \(F^T F \).
Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector \(\mathbf{t}(x, n) = T(x)n \) is independent of the choice of coordinates in the sense

\[
\mathbf{Q}^\mathbf{t}(\mathbf{Q}F) = \mathbf{Q}^\mathbf{t}(F) \mathbf{Q}^T,
\]

\[\forall \mathbf{Q} \in O_3^+.\]

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(\mathbf{Q} \in O_3^+ \) that

\[
\hat{\mathbf{T}}(\mathbf{Q}F) = \mathbf{Q}^T \hat{\mathbf{T}}(F) \mathbf{Q}.
\]

We also have there exists a mapping \(\hat{\mathbf{\Sigma}} : S_3 \rightarrow S_3 \) so that

\[
\hat{\mathbf{\Sigma}}(\mathbf{F}) = \hat{\mathbf{\Sigma}}(\mathbf{F}^T \mathbf{F}).
\]

Significance:

The \(\hat{\mathbf{\Sigma}} \) only depends on \(\mathbf{F}^T \mathbf{F} \).
Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $t(x, n) = T(x)n$ is independent of the choice of coordinates in the sense

$$Qt(x, n) = t(Qx, Qn), \quad \forall Q \in O_3^+.$$
The Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector \(t(x, n) = T(x)n \) is independent of the choice of coordinates in the sense

\[
Qt(x, n) = t(Qx, Qn), \quad \forall Q \in O^+_3.
\]

A material that is **frame-indifferent** is referred to as an **objective material**.
Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector \(\mathbf{t}(x, n) = T(x)\mathbf{n} \) is independent of the choice of coordinates in the sense

\[
Q\mathbf{t}(x, n) = \mathbf{t}(Qx, Qn), \quad \forall Q \in O_3^+.
\]

A material that is \textbf{frame-indifferent} is referred to as an \textbf{objective material}.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O_3^+ \) that

\[
\hat{T}(QF) = Q\hat{T}(F)Q^T.
\]

\[\hat{\Sigma}: S^3 \to S^3 \]

\[
\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).
\]
Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector \(t(x, n) = T(x)n \) is independent of the choice of coordinates in the sense

\[
Q t(x, n) = t(Qx, Qn), \quad \forall Q \in O_3^+.
\]

A material that is **frame-indifferent** is referred to as an **objective material**.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O_3^+ \) that

\[
\hat{T}(QF) = Q \hat{T}(F) Q^T.
\]
Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector \(t(x, n) = T(x)n \) is independent of the choice of coordinates in the sense

\[
Qt(x, n) = t(Qx, Qn), \quad \forall Q \in O^3_+.
\]

A material that is **frame-indifferent** is referred to as an **objective material**.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O^3_+ \) that

\[
\hat{T}(QF) = Q \hat{T}(F)Q^T.
\]

We also have there exists a mapping \(\hat{\Sigma} : S^3_+ \to S^3 \) so that
Given physical invariances, we make the assumption that the Cauchy stress vector \(t(x, n) = T(x)n \) is independent of the choice of coordinates in the sense

\[
Qt(x, n) = t(Qu, Qn), \quad \forall Q \in \mathbb{O}_3^+.
\]

A material that is **frame-indifferent** is referred to as an **objective material**.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in \mathbb{O}_3^+ \) that

\[
\hat{T}(QF) = Q \hat{T}(F)Q^T.
\]

We also have there exists a mapping \(\hat{\Sigma} : S^3_+ \to S^3 \) so that

\[
\hat{\Sigma}(F) = \hat{\Sigma}(F^TF).
\]
Elasticity Theory

Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector \(t(x, n) = T(x)n \) is independent of the choice of coordinates in the sense

\[
Qt(x, n) = t(Qx, Qn), \quad \forall Q \in O_3^+.
\]

A material that is **frame-indifferent** is referred to as an **objective material**.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O_3^+ \) that

\[
\hat{T}(QF) = Q \hat{T}(F)Q^T.
\]

We also have there exists a mapping \(\hat{\Sigma} : S_3^3 \to S_3^3 \) so that

\[
\hat{\Sigma}(F) = \hat{\Sigma}(F^TF).
\]

Significance: The \(\hat{\Sigma} \) only depends on \(F^TF \).

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Axiom of Material Frame-Indifference

Given physical invariances, we make the assumption that the Cauchy stress vector $\mathbf{t}(\mathbf{x}, \mathbf{n}) = T(\mathbf{x})\mathbf{n}$ is independent of the choice of coordinates in the sense

$$Q \mathbf{t}(\mathbf{x}, \mathbf{n}) = \mathbf{t}(Q\mathbf{x}, Q\mathbf{n}), \quad \forall Q \in O_3^+.$$

A material that is frame-indifferent is referred to as an objective material.

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O_3^+$ that

$$\hat{T}(QF) = Q \hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : S^3_+ \rightarrow S^3$ so that

$$\hat{\Sigma}(F) = \hat{\Sigma}(F^TF).$$

Significance: The $\hat{\Sigma}$ only depends on F^TF.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O^3$ that

$$\hat{T}(QF) = Q \hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : S^3 \rightarrow S^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^TF).$$

Proof:
Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O^+_3 \) that

\[
\hat{T}(QF) = Q \hat{T}(F) Q^T.
\]

We also have there exists a mapping \(\hat{\Sigma} : S^3_+ \rightarrow S^3 \) so that

\[
\hat{\Sigma}(F) = \check{\Sigma}(F^T F).
\]

Proof:

This follows by rotating the deformed body to obtain the relations
Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O^+_3$ that

$$\hat{T}(QF) = Q \hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : S^3_+ \rightarrow S^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^T F).$$

Proof:
This follows by rotating the deformed body to obtain the relations

$$x \mapsto Qx, \ \phi \mapsto Q\phi, \ \nabla \phi \mapsto Q\nabla \phi, \ n \mapsto Q^{-T}n = Qn, \ t(x, n) \mapsto Qt(x, n).$$
Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O^3$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : \mathbb{S}^3 \rightarrow \mathbb{S}^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^TF).$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$\mathbf{x} \mapsto Q\mathbf{x}, \; \phi \mapsto Q\phi, \; \nabla \phi \mapsto Q\nabla \phi, \; \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \; t(\mathbf{x}, \mathbf{n}) \mapsto Qt(\mathbf{x}, \mathbf{n}).$$

From frame-indifference axiom, we have $t(Q\mathbf{x}, Q\mathbf{n}) \mapsto Qt(\mathbf{x}, \mathbf{n})$ and $\hat{T}(QF)Q \cdot \mathbf{n} = Q\hat{T}(F) \cdot \mathbf{n}$, using $Q^TQ = I$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O_3^+$ that

$$\hat{T}(QF) = Q \hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : S^3_{>0} \rightarrow S^3$ so that

$$\hat{\Sigma}(F) = \tilde{\Sigma}(F^T F).$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$x \mapsto Qx, \quad \phi \mapsto Q\phi, \quad \nabla\phi \mapsto Q\nabla\phi, \quad n \mapsto Q^{-T}n = Qn, \quad t(x, n) \mapsto Qt(x, n).$$

From frame-indifference axiom, we have $t(Qx, Qn) \mapsto Qt(x, n)$ and $\hat{T}(QF)Q \cdot n = Q \hat{T}(F) \cdot n$, using $Q^TQ = I$.

This implies $\hat{T}(QF) \cdot n = Q \hat{T}(F)Q^T \cdot n, \quad \forall n \in S^2 \Rightarrow \hat{T}(QF) = Q \hat{T}(F)Q^T.$
Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O_3^+ \) that

\[
\hat{T}(QF) = Q \hat{T}(F) Q^T.
\]

We also have there exists a mapping \(\hat{\Sigma} : \mathbb{S}_+^3 \rightarrow \mathbb{S}^3 \) so that

\[
\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).
\]

Proof:

This follows by rotating the deformed body to obtain the relations

\[
\mathbf{x} \mapsto Q\mathbf{x}, \quad \phi \mapsto Q\phi, \quad \nabla\phi \mapsto Q\nabla\phi, \quad \mathbf{n} \mapsto Q^{-T}\mathbf{n} = Q\mathbf{n}, \quad \mathbf{t}(\mathbf{x}, \mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n}).
\]

From frame-indifference axiom, we have \(\mathbf{t}(Q\mathbf{x}, Q\mathbf{n}) \mapsto Q\mathbf{t}(\mathbf{x}, \mathbf{n}) \) and \(\hat{T}(QF)Q \cdot \mathbf{n} = Q \hat{T}(F) \cdot \mathbf{n} \), using \(Q^T Q = I \). This implies \(\hat{T}(QF) \cdot \mathbf{n} = Q \hat{T}(F)Q^T \cdot \mathbf{n}, \quad \forall \mathbf{n} \in S^2 \Rightarrow \hat{T}(QF) = Q \hat{T}(F) Q^T. \)

From \(\hat{\Sigma}(F) := \det(F)F^{-1} \hat{T}(F)F^{-T} \), we have \(\hat{\Sigma}(QF) = \hat{\Sigma}(F), \quad \forall Q \in O_3^+ \).
Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O^3_+$ that

$$\hat{T}(QF) = Q\hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : S^3_+ \to S^3$ so that

$$\hat{\Sigma}(F) = \hat{\Sigma}(F^TF).$$

Proof:
This follows by rotating the deformed body to obtain the relations

$$x \mapsto Qx, \quad \phi \mapsto Q\phi, \quad \nabla\phi \mapsto Q\nabla\phi, \quad n \mapsto Q^{-T}n = Qn, \quad t(x, n) \mapsto Qt(x, n).$$

From frame-indifference axiom, we have $t(Qx, Qn) \mapsto Qt(x, n)$ and $\hat{T}(QF)Q \cdot n = \hat{T}(F) \cdot n$, using $Q^TQ = I$.

This implies $\hat{T}(QF) \cdot n = Q\hat{T}(F)Q^T \cdot n$, $\forall n \in S^2 \Rightarrow \hat{T}(QF) = Q\hat{T}(F)Q^T$.

From $\hat{\Sigma}(F) := \det(F)F^{-1}\hat{T}(F)F^{-T}$, we have $\hat{\Sigma}(QF) = \hat{\Sigma}(F)$, $\forall Q \in O^3_+$.

Now consider product $F^TF = G^TG$ for any F and G invertible. Let $Q = GF^{-1}$, then $Q^TQ = I$, $\det(Q) > 0$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Elasticity Theory

Theorem

When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation $Q \in O_3^+$ that

$$\hat{T}(QF) = Q \hat{T}(F)Q^T.$$

We also have there exists a mapping $\hat{\Sigma} : S_3^+ \to S_3^+$ so that

$$\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).$$

Proof:

This follows by rotating the deformed body to obtain the relations

$$x \mapsto Qx, \quad \phi \mapsto Q\phi, \quad \nabla \phi \mapsto Q\nabla \phi, \quad n \mapsto Q^{-T}n = Qn, \quad t(x, n) \mapsto Qt(x, n).$$

From frame-indifference axiom, we have $t(Qx, Qn) \mapsto Qt(x, n)$ and $\hat{T}(QF)Q \cdot n = Q \hat{T}(F) \cdot n$, using $Q^T Q = I$.

This implies $\hat{T}(QF) \cdot n = Q \hat{T}(F)Q^T \cdot n, \forall n \in S^2 \Rightarrow \hat{T}(QF) = Q \hat{T}(F)Q^T$.

From $\hat{\Sigma}(F) := \det(F)F^{-1} \hat{T}(F)F^{-T}$, we have $\hat{\Sigma}(QF) = \hat{\Sigma}(F), \forall Q \in O_3^+$.

Now consider product $F^T F = G^T G$ for any F and G invertible. Let $Q = GF^{-1}$, then $Q^T Q = I$, $\det(Q) > 0$.

This gives $\hat{\Sigma}(F) = \hat{\Sigma}(QF) = \hat{\Sigma}(G)$ so that $\hat{\Sigma}$ only depends on the product $F^T F$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem
When the Axiom of Material Frame-Indifference holds, we have for every orthogonal transformation \(Q \in O^3_+ \) that
\[
\hat{T}(QF) = Q \hat{T}(F)Q^T.
\]
We also have there exists a mapping \(\hat{\Sigma} : S^3_+ \rightarrow S^3 \) so that
\[
\hat{\Sigma}(F) = \hat{\Sigma}(F^T F).
\]

Proof:
This follows by rotating the deformed body to obtain the relations
\[
x \mapsto Qx, \ \phi \mapsto Q \phi, \ \nabla \phi \mapsto Q \nabla \phi, \ n \mapsto Q^{-T}n = Qn, \ t(x,n) \mapsto Qt(x,n).
\]
From frame-indifference axiom, we have \(t(Qx, Qn) \mapsto Qt(x,n) \) and \(\hat{T}(QF)Q \cdot n = Q \hat{T}(F)Q^T \cdot n \), using \(Q^T Q = I \).
This implies \(\hat{T}(QF) \cdot n = Q \hat{T}(F)Q^T \cdot n \), \(\forall n \in S^2 \) \(\Rightarrow \hat{T}(QF) = Q \hat{T}(F)Q^T \).
From \(\hat{\Sigma}(F) := \det(F)F^{-1} \hat{T}(F)F^{-T} \), we have \(\hat{\Sigma}(QF) = \hat{\Sigma}(F) \), \(\forall Q \in O^3_+ \).
Now consider product \(F^T F = G^T G \) for any \(F \) and \(G \) invertible. Let \(Q = GF^{-1} \), then \(Q^T Q = I \), \(\det(Q) > 0 \).
This gives \(\hat{\Sigma}(F) = \hat{\Sigma}(QF) = \hat{\Sigma}(G) \) so that \(\hat{\Sigma} \) only depends on the product \(F^T F \).
Isotropic Materials

A material is isotropic if
$$\hat{T}(F) = \hat{T}(FQ), \forall Q \in O_3^+.$$ This is equivalent to
$$\hat{T}(F) = \hat{T}(FF^T).$$ Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on invariants of the matrix $A = FF^T$ (also of $A^T = F^TF$).

We define the triple invariants $\iota_A = (\iota_1(A), \iota_2(A), \iota_3(A))$ as coefficients of
$$\det(\lambda I - A) = \lambda^3 - \iota_1(A) \lambda^2 + \iota_2(A) \lambda - \iota_3(A).$$ Invariants can be expressed as
$$\iota_1(A) := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3,$$
$$\iota_2(A) := \frac{1}{2}(\text{trace}(A)^2 - \text{trace}(A^2)) = \lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3,$$
$$\iota_3(A) := \det(A) = \lambda_1 \lambda_2 \lambda_3.$$ Provides convenient way to model many isotropic materials.
Elasticity Theory

Isotropic Materials

A material is isotropic if

\[
\hat{T}(F) = \hat{T}(FQ), \quad \forall Q \in O_3^+.
\]

This is equivalent to

\[
\hat{T}(F) = \hat{T}(FF^T).
\]

Significance:
Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order

\[FQ\]

is important (not same as \[QF\]).

Invariants:
The material responses depend only on invariants of the matrix

\[A = FF^T\] (also of \[A^T = F^TF\]).

We define the triple invariants

\[\iota_A = (\iota_1(A), \iota_1(A), \iota_3(A))\]
as coefficients of

\[
\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).
\]

Invariants can be expressed as

\[
\iota_1(A) := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3,
\]

\[
\iota_2(A) := \frac{1}{2}(\text{trace}(A)^2 - \text{trace}(A^2)) = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3,
\]

\[
\iota_3(A) := \det(A) = \lambda_1\lambda_2\lambda_3.
\]

Provides convenient way to model many isotropic materials.
A material is \textit{isotropic} if

\[\hat{T}(F) = \hat{T}(FQ), \forall Q \in O^3. \]
Elasticity Theory

Isotropic Materials

A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \ \forall Q \in \mathbb{O}_+. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on invariants of the matrix \(A = FF^T \) (also of \(A^T = F^TF \)).

We define the triple invariants \(\iota_A = (\iota_1(A), \iota_2(A), \iota_3(A)) \) as coefficients of

\[\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A). \]

Invariants can be expressed as

\[\iota_1(A) := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \]
\[\iota_2(A) := \frac{1}{2}(\text{trace}(A)^2 - \text{trace}(A^2)) = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3, \]
\[\iota_3(A) := \det(A) = \lambda_1\lambda_2\lambda_3. \]

Provides convenient way to model many isotropic materials.

Paul J. Atzberger, UCSB

[Finite Element Methods](http://atzberger.org/)
Isotropic Materials

A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \forall Q \in O^3. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).
Isotropic Materials

A material is **isotropic** if

\[
\hat{T}(F) = \hat{T}(FQ), \quad \forall Q \in \mathbb{O}_+^3.
\]

This is equivalent to

\[
\hat{T}(F) = \hat{T}(FF^T).
\]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ\) is important (not same as \(QF\)).

Invariants: The material responses depend only on *invariants* of the matrix \(A = FF^T\) (also of \(A^T = F^T F\)).
Elasticity Theory

Isotropic Materials

A material is isotropic if

\[\hat{T}(F) = \hat{T}(FQ), \ \forall Q \in O^3. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on invariants of the matrix \(A = FF^T \) (also of \(A^T = F^T F \)). We define the triple invariants \(\iota_A = (\iota_1(A), \iota_1(A), \iota_3(A)) \) as coefficients of
Elasticity Theory

Isotropic Materials

A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \ \forall Q \in O^3. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on *invariants* of the matrix \(A = FF^T \) (also of \(A^T = F^T F \)). We define the triple invariants \(\iota_A = (\iota_1(A), \iota_1(A), \iota_3(A)) \) as coefficients of

\[\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A). \]
Isotropic Materials

A material is isotropic if

\[\hat{T}(F) = \hat{T}(FQ), \quad \forall Q \in O_3^+. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on invariants of the matrix \(A = FF^T \) (also of \(A^T = F^T F \)). We define the triple invariants \(\iota_A = (\iota_1(A), \iota_1(A), \iota_3(A)) \) as coefficients of

\[\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A). \]

Invariants can be expressed as
Elasticity Theory

Isotropic Materials

A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \ \forall Q \in \mathbb{O}_3^+. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on *invariants* of the matrix \(A = FF^T \) (also of \(A^T = F^T F \)).

We define the triple invariants \(\iota_A = (\iota_1(A), \iota_2(A), \iota_3(A)) \) as coefficients of

\[
\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).
\]

Invariants can be expressed as

\[
\iota_1(A) := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3,
\]
Elasticity Theory

Isotropic Materials

A material is isotropic if

$$\hat{T}(F) = \hat{T}(FQ), \ \forall Q \in O_3^+.$$

This is equivalent to

$$\hat{T}(F) = \hat{T}(FF^T).$$

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on invariants of the matrix $A = FF^T$ (also of $A^T = F^TF$). We define the triple invariants $\iota_A = (\iota_1(A), \iota_1(A), \iota_3(A))$ as coefficients of

$$\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).$$

Invariants can be expressed as

$$\iota_1(A) := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3,$$

$$\iota_2(A) := \frac{1}{2} \left(\text{trace}(A)^2 - \text{trace}(A^2) \right) = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3,$$

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \forall Q \in O_3^+. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on *invariants* of the matrix \(A = FF^T \) (also of \(A^T = F^T F \)). We define the triple invariants \(\iota_A = (\iota_1(A), \iota_2(A), \iota_3(A)) \) as coefficients of

\[\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A). \]

Invariants can be expressed as

\[\begin{align*}
\iota_1(A) & := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \\
\iota_2(A) & := \frac{1}{2} \left(\text{trace}(A)^2 - \text{trace}(A^2) \right) = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3, \\
\iota_3(A) & := \det(A) = \lambda_1\lambda_2\lambda_3.
\end{align*} \]
A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \quad \forall Q \in \mathbb{O}_3. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order FQ is important (not same as QF).

Invariants: The material responses depend only on *invariants* of the matrix $A = FF^T$ (also of $A^T = F^T F$).

We define the triple invariants $\iota_A = (\iota_1(A), \iota_2(A), \iota_3(A))$ as coefficients of

\[
\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).
\]

Invariants can be expressed as

\[
\begin{align*}
\iota_1(A) &:= \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \\
\iota_2(A) &:= \frac{1}{2} \left(\text{trace}(A)^2 - \text{trace}(A^2)\right) = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3, \\
\iota_3(A) &:= \det(A) = \lambda_1\lambda_2\lambda_3.
\end{align*}
\]

Provides convenient way to model many isotropic materials.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
A material is **isotropic** if

\[\hat{T}(F) = \hat{T}(FQ), \quad \forall Q \in O^3. \]

This is equivalent to

\[\hat{T}(F) = \hat{T}(FF^T). \]

Significance: Isotropic materials have the same properties in all directions remaining the same when rotating the reference body. Note the order \(FQ \) is important (not same as \(QF \)).

Invariants: The material responses depend only on *invariants* of the matrix \(A = FF^T \) (also of \(A^T = F^T F \)). We define the triple invariants \(\iota_A = (\iota_1(A), \iota_1(A), \iota_3(A)) \) as coefficients of

\[
\det(\lambda I - A) = \lambda^3 - \iota_1(A)\lambda^2 + \iota_2(A)\lambda - \iota_3(A).
\]

Invariants can be expressed as

\[
\begin{align*}
\iota_1(A) & := \text{trace}(A) = \lambda_1 + \lambda_2 + \lambda_3, \\
\iota_2(A) & := \frac{1}{2} \left(\text{trace}(A)^2 - \text{trace}(A^2) \right) = \lambda_1\lambda_2 + \lambda_1\lambda_3 + \lambda_2\lambda_3, \\
\iota_3(A) & := \det(A) = \lambda_1\lambda_2\lambda_3.
\end{align*}
\]

Provides convenient way to model many isotropic materials.
The response function $\hat{T}^{3} \to S^{3}$ is objective and isotropic if and only if it has the form $\hat{T}(F) = \bar{T}(FF^T)$ with $\bar{T} : S^3 \to S^3$.

The ι_B denotes the triple of invariants of $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Significance: Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.
Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}^3_+ \rightarrow \mathbb{S}^3$ is *objective* and *isotropic* if and only if it has the form $\hat{T}(F) = \bar{T}(FF^T)$ with

$$
\bar{T}(B) = \beta_0 (\iota B) I + \beta_1 (\iota B) B + \beta_2 (\iota B) B^2.
$$

The ιB denotes the triple of invariants of $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Significance: Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.
The response function $\hat{T} : M^3_+ \to S^3$ is \textit{objective} and \textit{isotropic} if and only if it has the form $\hat{T}(F) = \bar{T}(FF^T)$ with

$$\bar{T} : S^3_+ \to S^3$$
Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is \textit{objective} and \textit{isotropic} if and only if it has the form $\hat{T}(F) = \bar{T}(FF^T)$ with

$$\bar{T} : \mathbb{S}^3_+ \to \mathbb{S}^3 \quad \bar{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$
Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is objective and isotropic if and only if it has the form $\hat{T}(F) = \bar{T}(FF^T)$ with

$$\bar{T} : \mathbb{S}^3_+ \to \mathbb{S}^3$$

$$\bar{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

The ι_B denotes the triple of invariants of $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Elasticity Theory
Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}_+^3 \to \mathbb{S}^3$ is \textit{objective} and \textit{isotropic} if and only if it has the form $\hat{T}(F) = \bar{T}(FF^T)$ with

$$\bar{T} : \mathbb{S}^3_\geq \to \mathbb{S}^3$$

$$\bar{T}(B) = \beta_0(\iota_B) I + \beta_1(\iota_B) B + \beta_2(\iota_B) B^2.$$

The ι_B denotes the triple of invariants of $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

\textbf{Significance} Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.
Rivlin-Ericksen (RE) Theorem

The response function $\hat{T} : \mathbb{M}^3_+ \to \mathbb{S}^3$ is objective and isotropic if and only if it has the form $\hat{T}(F) = \tilde{T}(FF^T)$ with

$$
\tilde{T} : \mathbb{S}^3_+ \to \mathbb{S}^3 \\
\tilde{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.
$$

The ι_B denotes the triple of invariants of $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$.

Significance Characterizes the conditions under which constitutive laws are frame-indifferent and isotropic.
The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$$

$$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.$$

The $\gamma_i = \gamma_i(\iota C)$ are functions of the triple of invariants ιC.

Proof: We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^3 - \iota_1 (B^2) B + \iota_2 (B) B - \iota_3 I = 0.$$

By the RE Theorem we have

$$\bar{T}(B) = \beta_0 (\iota B) I + \beta_1 (\iota B) B + \beta_2 (\iota B) B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\bar{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3.$$

Multiply on left by $\det(F) F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$.

We use invariance to choose frame with $FF^T = B$. ■
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi) \\
\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
$$

The $\gamma_i = \gamma_i(\iota C)$ are functions of the triple of invariants ιC.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$:

$$
B^3 - \iota_1 (B) B^2 + \iota_2 (B) B - \iota_3 (B) I = 0.
$$

By the RE Theorem we have

$$
\bar{T}(B) = \beta_0 (\iota B) I + \beta_1 (\iota B) B + \beta_2 (\iota B) B^2.
$$

By the CH formula, we can eliminate the I to obtain

$$
\bar{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3.
$$

Multiply on left by $\text{det}(F) F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$.

We use invariance to choose frame with $FF^T = B$.

\blacksquare
Corollary to RE
The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla\phi^T \nabla\phi)$$

Proof:
We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$B^3 - \iota_1 (B) B^2 + \iota_2 (B) B - \iota_3 (B) I = 0$.

By the RE Theorem we have

$\bar{T}(B) = \beta_0 (\iota B) I + \beta_1 (\iota B) B + \beta_2 (\iota B) B^2$.

By the CH formula, we can eliminate the I to obtain

$\bar{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3$.

Multiply on left by $\text{det}(F) F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$.

We use invariance to choose frame with $FF^T = B$. ■
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

\[
\begin{align*}
\Sigma(F) &= \tilde{\Sigma}(\nabla \phi^T \nabla \phi) \\
\tilde{\Sigma}(C) &= \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
\end{align*}
\]
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

\[
\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)
\]

\[
\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
\]

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$$
$$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$$
$$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:
We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$$
$$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:
We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.$$
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$

$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$.

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0$.

By the RE Theorem we have
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)
$$

$$
\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$
B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.
$$

By the RE Theorem we have

$$
\tilde{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.
$$
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)
$$

$$
\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:
We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$
B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.
$$

By the RE Theorem we have

$$
\tilde{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.
$$

By the CH formula, we can eliminate the I to obtain
Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$$
$$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.$$

The $\gamma_i = \gamma_i(\iota C)$ are functions of the triple of invariants ιC.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.$$

By the RE Theorem we have

$$\tilde{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\tilde{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3.$$
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)
$$

$$
\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$
B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.
$$

By the RE Theorem we have

$$
\tilde{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.
$$

By the CH formula, we can eliminate the I to obtain

$$
\tilde{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3.
$$

Multiply on left by $\det(F)F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$\Sigma(F) = \tilde{\Sigma}(\nabla \phi^T \nabla \phi)$$
$$\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2.$$

The $\gamma_i = \gamma_i(\iota_C)$ are functions of the triple of invariants ι_C.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$B^3 - \iota_1(B)B^2 + \iota_2(B)B - \iota_3(B)I = 0.$$

By the RE Theorem we have

$$\tilde{T}(B) = \beta_0(\iota_B)I + \beta_1(\iota_B)B + \beta_2(\iota_B)B^2.$$

By the CH formula, we can eliminate the I to obtain

$$\tilde{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3.$$

Multiply on left by $\det(F)F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^T F$. We use invariance to choose frame with $FF^T = B$. ■
Elasticity Theory

Corollary to RE

The second Piola-Kirchhoff stress tensor Σ is objective and isotropic iff

$$
\begin{align*}
\Sigma(F) &= \tilde{\Sigma}(\nabla \phi^T \nabla \phi) \\
\tilde{\Sigma}(C) &= \gamma_0 I + \gamma_1 C + \gamma_2 C^2.
\end{align*}
$$

The $\gamma_i = \gamma_i(t_C)$ are functions of the triple of invariants t_C.

Proof:

We use the Cayley-Hamilton formula for $B = \text{diag}(\lambda_1, \lambda_2, \lambda_3)$

$$
B^3 - \nu_1(B)B^2 + \nu_2(B)B - \nu_3(B)I = 0.
$$

By the RE Theorem we have

$$
\tilde{T}(B) = \beta_0(t_B)I + \beta_1(t_B)B + \beta_2(t_B)B^2.
$$

By the CH formula, we can eliminate the I to obtain

$$
\tilde{T}(B) = \tilde{\beta}_1 B + \tilde{\beta}_2 B^2 + \tilde{\beta}_3 B^3.
$$

Multiply on left by $\det(F)F^{-1}$ and on right by F^{-T} to reformulate as $\hat{\Sigma}$ with Cauchy-Green tensor $C = F^TF$.

We use invariance to choose frame with $FF^T = B$. ■
For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that \(\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E) \), as \(E \to 0 \).

Proof (sketch): From definition of \(\iota_j(E) \) we have \(\iota_1(E) \) contributes in the expressions.

From \(C = I + 2E \), \(C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E),
\gamma_1(E) = a_1 + O(E),
\gamma_2(E) = a_2 + O(E).
\]

This yields \(\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E)I + (2a_1 + 4a_2)E + o(E) \).

Using \(\iota_1(E) = \text{trace}(E) \) the result follows.

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E \).

Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhhoff material.

Remark: \(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants: \(\lambda \) change in density and \(\mu \) shear modulus.
Linear Material Laws

Theorem

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Proof (sketch):

From definition of \(\iota_{ij}(A) \) we have \(\iota_{1j}(E) = O(E_j) \). From smoothness of \(\gamma_i \), we have only \(\iota_{1j}(E) \) contributes in the expressions. From \(C = I + 2E \), \(C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_{1j}(E) + o(E), \\
\gamma_1(E) = a_1 + O(E), \\
\gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_{1j}(E)I + (2a_1 + 4a_2)E + o(E).
\]

Using \(\iota_{1j}(E) = \text{trace}(E) \) the result follows.

Significance:

Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark:

Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law:

\[
\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E.
\]

Valid for small deformations, but if valid all deformations, called St. Venant-Kirchhoff material.

Remark

\(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants: \(\lambda \) change in density and \(\mu \) shear modulus.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \). Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E),
\]

as \(E \to 0 \).

Proof (sketch):

From definition of \(\nu_j(A) \) we have \(\nu_1(E) = O(E_j) \).

From smoothness of \(\gamma_i \), we have only \(\nu_1(E) \) contributes in the expressions.

From \(C = I + 2E \), \(C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \nu_1(E) + o(E),
\]

\[
\gamma_1(E) = a_1 + O(E),
\]

\[
\gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2) I + b_1 \nu_1(E) I + (2a_1 + 4a_2) E + o(E).
\]

Using \(\nu_1(E) = \text{trace}(E) \) the result follows.

\[\blacksquare\]

Significance:

Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark:

Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law:

\(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E \).

Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhoff material.

Remark

\(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants:

\(\lambda \) change in density and \(\mu \) shear modulus.
Linear Material Laws

Theorem

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):
From definition of \(\nu_j(E) \) we have \(\nu_1(E) \) contributes in the expressions.

From \(C = I + 2E \), \(C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \nu_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \nu_1(E)I + (2a_1 + 4a_2)E + o(E).
\]

Using \(\nu_1(E) = \text{trace}(E) \) the result follows.

Significance:
Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark:
Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law:
\(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).

Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhoff material.

Remark
\(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants: \(\lambda \) change in density and \(\mu \) shear modulus.
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\nu_j(E) \) we have \(\nu_j(E) = O(E^j) \).

From smoothness of \(\gamma_i \), we have only \(\nu_1(E) \) contributes in the expressions.

From \(C = I + 2E \), \(C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \nu_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]

This yields \(\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \nu_1(E)I + (2a_1 + 4a_2)E + o(E) \).

Using \(\nu_1(E) = \text{trace}(E) \) the result follows.

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).

Valid for small deformations, but if valid all deformations, called St. Venant-Kirchhoff material.

Remark: \(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants: \(\lambda \) change in density and \(\mu \) shear modulus.
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that
\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^i) \).
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions.

Remark:

Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law:

\(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).

Valid for small deformations, but if valid all deformations, called St. Venant-Kirchhoff material.

Remark

\(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants:

- \(\lambda \): change in density
- \(\mu \): shear modulus.
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):

From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^j)$. From smoothness of γ_i, we have only $\iota_1(E)$ contributes in the expressions. From $C = I + 2E$, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1\iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\gamma_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E)I + (2a_1 + 4a_2)E + o(E).
\]
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \). Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2) I + b_1 \iota_1(E) I + (2a_1 + 4a_2) E + o(E).
\]

Using \(\iota_1(E) = \text{trace}(E) \) the result follows.
Linear Material Laws

Theorem

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as} \ E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\gamma_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\begin{align*}
\gamma_0(E) &= a_0 + b_1 \iota_1(E) + o(E), \\
\gamma_1(E) &= a_1 + O(E), \\
\gamma_2(E) &= a_2 + O(E).
\end{align*}
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E)I + (2a_1 + 4a_2)E + o(E).
\]

Using \(\iota_1(E) = \text{trace}(E) \) the result follows. \(\blacksquare \)
Linear Material Laws

Theorem

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \). Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that
\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \quad \text{as} \ E \rightarrow 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as
\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]
This yields
\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E)I + (2a_1 + 4a_2)E + o(E).
\]
Using \(\iota_1(E) = \text{trace}(E) \) the result follows. ■

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame' constants.

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E \). Valid for small deformations, but if valid all deformations, called St. Venant-Kirkhoff material.

Remark: \(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame' constants: \(\lambda \) change in density and \(\mu \) shear modulus.
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).
Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(\text{\emph{E}}) \), then there exists constants \(\pi, \lambda, \mu \) so that
\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \text{ as } E \to 0.
\]

Proof (sketch):
From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as
\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]
This yields
\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E) I + (2a_1 + 4a_2)E + o(E).
\]

Using \(\iota_1(E) = \text{trace}(E) \) the result follows. ■

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.
Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame’ constants.
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):
From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E)I + (2a_1 + 4a_2)E + o(E).
\]

Using \(\iota_1(E) = \text{trace}(E) \) the result follows.

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame’ constants.

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).
Linear Material Laws

Theorem

For an *objective isotropic* material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^j) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions. From \(C = I + 2E, \ C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \quad \gamma_1(E) = a_1 + O(E), \quad \gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2) I + b_1 \iota_1(E)I + (2a_1 + 4a_2) E + o(E).
\]

Using \(\iota_1(E) = \text{trace}(E) \) the result follows. ■

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called *Lame’ constants*.

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E. \)

Valid for small deformations, but if valid all deformations, called *St. Venant-Kirchhoff material*.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Proof (sketch):

From definition of \(\iota_j(A) \) we have \(\iota_j(E) = O(E^i) \). From smoothness of \(\gamma_i \), we have only \(\iota_1(E) \) contributes in the expressions. From \(C = I + 2E, \; C^2 = I + 4E + o(E) \), to obtain leading order we expand as

\[
\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E), \; \gamma_1(E) = a_1 + O(E), \; \gamma_2(E) = a_2 + O(E).
\]

This yields

\[
\tilde{\Sigma}(C) = (a_0 + a_1 + a_2)I + b_1 \iota_1(E)I + (2a_1 + 4a_2)E + o(E).
\]

Using \(\iota_1(E) = \text{trace}(E) \) the result follows. ■

Significance: Gives general constitutive relation expressed in terms of strain \(E \) when deformations are small.

Remark: Typically, \(C = I \) with unstressed conditions so that \(\pi = 0 \). The \(\lambda \) and \(\mu \) are called Lame’ constants.

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).

Valid for small deformations, but if valid all deformations, called St. Venant-Kirchhoff material.

Remark trace(\(\epsilon \)) \(\approx \) div(\(u \)) for incompressibility. Lame’ constants: \(\lambda \) change in density and \(\mu \) shear modulus.
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that $\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E)$, as $E \to 0$.

Proof (sketch):
From definition of $\iota_j(A)$ we have $\iota_j(E) = O(E^i)$. From smoothness of γ_i, we have only $\iota_1(E)$ contributes in the expressions. From $C = I + 2E$, $C^2 = I + 4E + o(E)$, to obtain leading order we expand as $\gamma_0(E) = a_0 + b_1 \iota_1(E) + o(E)$, $\gamma_1(E) = a_1 + O(E)$, $\gamma_2(E) = a_2 + O(E)$. This yields $\tilde{\Sigma}(C) = (a_0 + a_1 + a_2) I + b_1 \iota_1(E) I + (2a_1 + 4a_2) E + o(E)$.

Using $\iota_1(E) = \text{trace}(E)$ the result follows. ■

Significance: Gives general constitutive relation expressed in terms of strain E when deformations are small.

Remark: Typically, $C = I$ with unstressed conditions so that $\pi = 0$. The λ and μ are called Lame’ constants.

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E$.

Valid for small deformations, but if valid all deformations, called St. Venant-Kirchhoff material.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame’ constants: λ change in density and μ shear modulus.
For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\nu_j(E)$, then there exists constants π, λ, μ so that

$$\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \text{ as } E \to 0.$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E$.

Remark: $\text{trace}(\epsilon) \approx \text{div}(u)$ for incompressibility. Lame' constants: λ change in density and μ shear modulus.
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \quad \text{as} \ E \to 0.
\]

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E \).

Remark trace(\(\epsilon \)) \(\approx \) div(\(u \)) for incompressibility. Lame’ constants: \(\lambda \) change in density and \(\mu \) shear modulus.
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).

Remark \(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame’ constants: \(\lambda \) change in density and \(\mu \) shear modulus.

Mechanics: Other parameters are used to characterize elasticity.
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E. \)

Remark \(\text{trace}(\varepsilon) \approx \text{div}(u) \) for incompressibility. Lame’ constants: \(\lambda \) change in density and \(\mu \) shear modulus.

Mechanics: Other parameters are used to characterize elasticity

\[
\nu = \frac{\lambda}{2(\lambda+\mu)}, \quad \text{Poisson ratio}
\]

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\nu_j(E)$, then there exists constants π, λ, μ so that

$$\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \text{ as } E \to 0.$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E$.

Remark trace(ϵ) \approx div(u) for incompressibility. Lame’ constants: λ change in density and μ shear modulus.

Mechanics: Other parameters are used to characterize elasticity

$$\nu = \frac{\lambda}{2(\lambda + \mu)}, \text{ Poisson ratio}$$
$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, \text{ Young’s modulus}$$
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that

$$\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \text{ as } E \to 0.$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E$.

Remark $\text{trace}(\epsilon) \approx \text{div}(u)$ for incompressibility. Lame’ constants: λ change in density and μ shear modulus.

Mechanics: Other parameters are used to characterize elasticity

$$\nu = \frac{\lambda}{2(\lambda + \mu)}, \quad \text{Poisson ratio}$$
$$\lambda = \frac{E}{(1+\nu)(1-2\nu)}, \quad \text{Lame’ compressibility}$$

$$E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, \quad \text{Young’s modulus}$$
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form $\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2$. Suppose that γ_i are continuously differentiable functions of $\iota_j(E)$, then there exists constants π, λ, μ so that

$$\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.$$

Hookean Material Law: $\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E$.

Remark $\text{trace}(\epsilon) \approx \text{div}(u)$ for incompressibility. Lame’ constants: λ change in density and μ shear modulus.

Mechanics: Other parameters are used to characterize elasticity

$$\nu = \frac{E}{2(\lambda+\mu)\nu}, \quad \text{Poisson ratio} \quad \quad \quad E = \frac{\mu(3\lambda+2\mu)}{\lambda+\mu}, \quad \text{Young's modulus}$$

$$\lambda = \frac{\lambda}{(1+\nu)(1-2\nu)}, \quad \text{Lame’ compressibility} \quad \quad \quad \mu = \frac{E}{2(1+\nu)}, \quad \text{Lame’ shear modulus}.$$
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \). Suppose that \(\gamma_i \) are continuously differentiable functions of \(\nu_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E) I + 2\mu E + o(E), \quad \text{as} \ E \to 0.
\]

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E) I + 2\mu E \).

Remark \(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame’ constants: \(\lambda \) change in density and \(\mu \) shear modulus.

Mechanics: Other parameters are used to characterize elasticity

\[
\nu = \frac{\lambda}{2(\lambda + \mu)}, \quad \text{Poisson ratio} \quad E = \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu}, \quad \text{Young’s modulus} \quad \mu = \frac{E}{2(1+\nu)}, \quad \text{Lame’ shear modulus}.
\]

From considerations in the physics, we have \(\lambda > 0, \mu > 0 \) and \(E > 0, 0 < \nu < \frac{1}{2} \).
Linear Material Laws

Theorem

For an objective isotropic material the second Piola-Kirchhoff stress is of form \(\tilde{\Sigma}(C) = \gamma_0 I + \gamma_1 C + \gamma_2 C^2 \).

Suppose that \(\gamma_i \) are continuously differentiable functions of \(\iota_j(E) \), then there exists constants \(\pi, \lambda, \mu \) so that

\[
\tilde{\Sigma}(C) = \tilde{\Sigma}(I + 2E) = -\pi I + \lambda \text{trace}(E)I + 2\mu E + o(E), \quad \text{as } E \to 0.
\]

Hookean Material Law: \(\tilde{\Sigma}(I + 2E) = \lambda \text{trace}(E)I + 2\mu E \).

Remark \(\text{trace}(\epsilon) \approx \text{div}(u) \) for incompressibility. Lame’ constants: \(\lambda \) change in density and \(\mu \) shear modulus.

Mechanics: Other parameters are used to characterize elasticity

\[
\begin{align*}
\nu &= \frac{\lambda}{2(\lambda + \mu)} , \quad \text{Poisson ratio} \\
\lambda &= \frac{E \nu}{(1+\nu)(1-2\nu)} , \quad \text{Lame’ compressibility} \\
E &= \frac{\mu(3\lambda + 2\mu)}{\lambda + \mu} , \quad \text{Young’s modulus} \\
\mu &= \frac{E}{2(1+\nu)} , \quad \text{Lame’ shear modulus}.
\end{align*}
\]

From considerations in the physics, we have \(\lambda > 0, \mu > 0 \) and \(E > 0, 0 < \nu < \frac{1}{2} \).

Remark: For small deformations, if we replace linearization in \(E \) with linearization in \(\epsilon \) approach is called geometrically linear theory.
Hyperelastic Materials

Definition

A hyperelastic material is characterized by the existence of an energy functional $\hat{W}: \Omega \times M_3^+ \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in M_3^+.$$

Equilibrium state of an elastic body:

$$-\text{div} \hat{T}(x, \nabla \varphi(x)) = f(x), \quad x \in \Omega$$

$$\hat{T}(x, \nabla \varphi(x)) = g(x), \quad x \in \Gamma_1$$

$$\varphi(x) = \varphi(x_0), \quad x \in \Gamma_0.$$

Variational principle:

If $f = \text{grad} F$, $g = \text{grad} G$, we have a variational principle with the functional

$$I[\psi] = \int_{\Omega} (\hat{W}(x, \nabla \psi(x)) - F(\psi(x))) \, dx + \int_{\Gamma_1} G(\psi(x)) \, dx.$$

We require that ψ satisfies the boundary conditions on Γ_1, Γ_0 and local injectivity $\det(\nabla \psi(x)) > 0$.

Remark: Results in saddle-point problems.
A hyperelastic materials is characterized by the existence of an energy functional $\hat{W} : \Omega \times M_3^+ \to \mathbb{R}$ so that
A hyperelastic material is characterized by the existence of an energy functional $\hat{W} : \Omega \times M_+^3 \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in M_+^3.$$
A hyperelastic materials is characterized by the existence of an energy functional \(\hat{W} : \Omega \times \mathbb{M}_3^+ \rightarrow \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in \mathbb{M}_3^+.
\]

Equilibrium state of an elastic body:
Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W} : \Omega \times \mathbb{M}_+^3 \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in \mathbb{M}_+^3.$$

Equilibrium state of an elastic body:

$$-\text{div} \hat{T}(x, \nabla \phi(x)) = f(x), \quad x \in \Omega$$
A hyperelastic materials is characterized by the existence of an energy functional $\hat{W} : \Omega \times M_+^3 \to \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \ \forall x \in \Omega, F \in M_+^3.$$

Equilibrium state of an elastic body:

$$-\text{div} \hat{T}(x, \nabla \phi(x)) = f(x), \ x \in \Omega$$
$$\hat{T}(x, \nabla \phi(x)) = g(x), \ x \in \Gamma_1$$
Hyperelastic Materials

Definition

A *hyperelastic materials* is characterized by the existence of an energy functional $\hat{W}: \Omega \times \mathbb{M}_+^3 \to \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in \mathbb{M}_+^3.$$

Equilibrium state of an elastic body:

$$-\text{div} \hat{T}(x, \nabla \phi(x)) = f(x), \quad x \in \Omega$$

$$\hat{T}(x, \nabla \phi(x)) = g(x), \quad x \in \Gamma_1$$

$$\phi(x) = \phi(x_0), \quad x \in \Gamma_0.$$
Hyperelastic Materials

Definition

A **hyperelastic materials** is characterized by the existence of an energy functional \(\hat{W} : \Omega \times \mathbb{M}_+^3 \rightarrow \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in \mathbb{M}_+^3.
\]

Equilibrium state of an elastic body:

\[
-\text{div} \hat{T}(x, \nabla \phi(x)) = f(x), \quad x \in \Omega \\
\hat{T}(x, \nabla \phi(x)) = g(x), \quad x \in \Gamma_1 \\
\phi(x) = \phi(x_0), \quad x \in \Gamma_0.
\]

Variational principle: If \(f = \text{grad} \mathcal{F}, g = \text{grad} \mathcal{G} \), we have a variational principle with the functional
Hyperelastic Materials

Definition

A *hyperelastic materials* is characterized by the existence of an energy functional \(\hat{W} : \Omega \times \mathbb{M}^3_+ \to \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, \; F \in \mathbb{M}^3_+.
\]

Equilibrium state of an elastic body:

\[
\begin{align*}
-\text{div} \, \hat{T}(x, \nabla \phi(x)) &= f(x), \quad x \in \Omega \\
\hat{T}(x, \nabla \phi(x)) &= g(x), \quad x \in \Gamma_1 \\
\phi(x) &= \phi(x_0), \quad x \in \Gamma_0.
\end{align*}
\]

Variational principle: If \(f = \text{grad} \, \mathcal{F}, g = \text{grad} \, \mathcal{G} \), we have a variational principle with the functional

\[
I[\psi] = \int_\Omega \left(\hat{W}(x, \nabla \psi(x)) - \mathcal{F}(\psi(x)) \right) \, dx + \int_{\Gamma_1} \mathcal{G}(\psi(x)) \, dx.
\]
A hyperelastic material is characterized by the existence of an energy functional $\hat{W} : \Omega \times \mathbb{M}_+^3 \to \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \ \forall x \in \Omega, F \in \mathbb{M}_+^3.$$

Equilibrium state of an elastic body:

$$-\text{div} \hat{T}(x, \nabla \phi(x)) = f(x), \quad x \in \Omega$$
$$\hat{T}(x, \nabla \phi(x)) = g(x), \quad x \in \Gamma_1$$
$$\phi(x) = \phi(x_0), \quad x \in \Gamma_0.$$

Variational principle: If $f = \text{grad} \mathcal{F}, g = \text{grad} \mathcal{G}$, we have a variational principle with the functional

$$I[\psi] = \int_{\Omega} \left(\hat{W}(x, \nabla \psi(x)) - \mathcal{F}(\psi(x)) \right) dx + \int_{\Gamma_1} \mathcal{G}(\psi(x)) dx.$$

We require that ψ satisfies the boundary conditions on Γ_1, Γ_0 and local injectivity $\det(\nabla \psi(x)) > 0$.
Definition

A hyperelastic material is characterized by the existence of an energy functional $\hat{\mathcal{W}} : \Omega \times \mathbb{M}_3^+ \to \mathbb{R}$ so that

$$
\hat{T}(x, F) = \frac{\partial \hat{\mathcal{W}}}{\partial F}(x, F), \ \forall x \in \Omega, \ F \in \mathbb{M}_3^+.
$$

Equilibrium state of an elastic body:

$$
\begin{align*}
-\text{div} \hat{T}(x, \nabla \phi(x)) &= f(x), \quad x \in \Omega \\
\hat{T}(x, \nabla \phi(x)) &= g(x), \quad x \in \Gamma_1 \\
\phi(x) &= \phi(x_0), \quad x \in \Gamma_0.
\end{align*}
$$

Variational principle: If $f = \text{grad} \mathcal{F}, g = \text{grad} \mathcal{G}$, we have a variational principle with the functional

$$
I[\psi] = \int_{\Omega} \left(\hat{\mathcal{W}}(x, \nabla \psi(x)) - \mathcal{F}(\psi(x)) \right) dx + \int_{\Gamma_1} \mathcal{G}(\psi(x)) dx.
$$

We require that ψ satisfies the boundary conditions on Γ_1, Γ_0 and local injectivity $\det(\nabla \psi(x)) > 0$.

Remark: Results in saddle-point problems.
Hyperelastic Materials

Definition

A *hyperelastic materials* is characterized by the existence of an energy functional \(\hat{W} : \Omega \times \mathbb{M}^3_+ \to \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \ \forall x \in \Omega, F \in \mathbb{M}^3_+.
\]
A hyperelastic material is characterized by the existence of an energy functional $\hat{W} : \Omega \times M_+^3 \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in M_+^3.$$

Objective Material: The $\hat{W}(x, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as
A *hyperelastic materials* is characterized by the existence of an energy functional $\hat{\mathcal{W}} : \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{\mathcal{W}}}{\partial F}(x, F), \; \forall x \in \Omega, \; F \in \mathbb{M}^3_+.$$

Objective Material: The $\hat{\mathcal{W}}(x, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{\mathcal{W}}(x, F) = \tilde{\mathcal{W}}(x, F^T F), \; \tilde{\Xi}(x, C) = 2\frac{\partial \tilde{\mathcal{W}}(x, C)}{\partial C}, \; \forall C \in \mathbb{S}^3_>.$$
A hyperelastic material is characterized by the existence of an energy functional \(\hat{W} : \Omega \times M_+^3 \to \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, \, F \in M_+^3.
\]

Objective Material: The \(\hat{W}(x, \cdot) \) is function only of Cauchy-Green Tensor \(C = F^T F \) as

\[
\hat{W}(x, F) = \tilde{W}(x, F^T F), \quad \tilde{\Sigma}(x, C) = 2 \frac{\partial \tilde{W}(x, C)}{\partial C}, \quad \forall C \in \mathbb{S}_3^>.
\]

Isotropic Materials:
Hyperelastic Materials

Definition

A **hyperelastic materials** is characterized by the existence of an energy functional $\hat{W} : \Omega \times \mathbb{M}_3^+ \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \ \forall x \in \Omega, F \in \mathbb{M}_3^+. \tag{1}$$

Objective Material: The $\hat{W}(x, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(x, F) = \tilde{W}(x, F^T F), \ \tilde{\Sigma}(x, C) = 2 \frac{\partial \tilde{W}(x, C)}{\partial C}, \ \forall C \in S^3_+. \tag{2}$$

Isotropic Materials:

$$\hat{W}(x, F) = \tilde{W}(x, FQ), \ \forall F \in \mathbb{M}^3_+, \ Q \in O_3^+. \tag{3}$$
A *hyperelastic materials* is characterized by the existence of an energy functional \(\hat{W} : \Omega \times M_3^+ \rightarrow \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in M_3^+.
\]

Objective Material: The \(\hat{W}(x, \cdot) \) is function only of Cauchy-Green Tensor \(C = F^T F \) as

\[
\hat{W}(x, F) = \tilde{W}(x, F^T F), \quad \tilde{\Sigma}(x, C) = 2 \frac{\partial \tilde{W}(x, C)}{\partial C}, \quad \forall C \in S^3_+.
\]

Isotropic Materials:

\[
\hat{W}(x, F) = \tilde{W}(x, FQ), \quad \forall F \in M_3^+, Q \in O_3^+.
\]

Isotropic Materials (small deformations):
Hyperelastic Materials

Definition

A hyperelastic material is characterized by the existence of an energy functional \(\hat{W} : \Omega \times \mathbb{M}^3 \rightarrow \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in \mathbb{M}^3_+.
\]

Objective Material: The \(\hat{W}(x, \cdot) \) is function only of Cauchy-Green Tensor \(C = F^T F \) as

\[
\hat{W}(x, F) = \tilde{W}(x, F^T F), \quad \Sigma(x, C) = 2 \frac{\partial \tilde{W}(x, C)}{\partial C}, \quad \forall C \in \mathbb{S}^3_+.
\]

Isotropic Materials:

\[
\hat{W}(x, F) = \tilde{W}(x, FQ), \quad \forall F \in \mathbb{M}^3_+, \quad Q \in \mathbb{O}^3_+.
\]

Isotropic Materials (small deformations):

\[
\tilde{W}(x, C) = \frac{\lambda}{2} (\text{trace}E)^2 + \mu E : E + o(E^2),
\]
Hyperelastic Materials

Definition

A *hyperelastic materials* is characterized by the existence of an energy functional $\hat{W} : \Omega \times \mathbb{M}_+^3 \to \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \forall x \in \Omega, F \in \mathbb{M}_+^3.$$

Objective Material: The $\hat{W}(x, \cdot)$ is function only of Cauchy-Green Tensor $C = F^T F$ as

$$\hat{W}(x, F) = \tilde{W}(x, F^T F), \quad \tilde{\Sigma}(x, C) = 2 \frac{\partial \tilde{W}(x, C)}{\partial C}, \quad \forall C \in \mathbb{S}_+^3.$$

Isotropic Materials:

$$\hat{W}(x, F) = \tilde{W}(x, FQ), \quad \forall F \in \mathbb{M}_+^3, \quad Q \in \mathbb{O}_+^3.$$

Isotropic Materials (small deformations):

$$\tilde{W}(x, C) = \frac{\lambda}{2} (\text{trace}E)^2 + \mu E : E + o(E^2),$$

where $C = I + 2E$, $A : B = \sum_{ij} A_{ij} B_{ij} = \text{trace}(A^T B)$.
A hyperelastic materials is characterized by the existence of an energy functional $\hat{W} : \Omega \times \mathbb{M}_+^3 \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \ \forall x \in \Omega, F \in \mathbb{M}_+^3.$$
Hyperelastic Materials

Definition

A *hyperelastic materials* is characterized by the existence of an energy functional $\hat{\mathcal{W}} : \Omega \times \mathbb{M}^3_+ \to \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{\mathcal{W}}}{\partial F}(x, F), \ \forall x \in \Omega, F \in \mathbb{M}^3_+.$$

St. Venant-Kirchhoff Materials:

$\hat{\mathcal{W}}(x, F) = \lambda \left(\text{trace} \ F \right)^2 + \mu F : F = \lambda \left(\text{trace} \ F \right)^2 + \mu \text{trace} C.$

$\hat{\mathcal{W}}(x, C) = \frac{1}{2} \mu (\text{trace}(C - I) + 2 \beta (\text{det} C - \beta)/\beta - 1), \text{where} \ \beta = \frac{2 \nu}{1 - 2 \nu}.$
Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional \(\hat{W} : \Omega \times \mathbb{M}_+^3 \to \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in \mathbb{M}_+^3.
\]

St. Venant-Kirchhoff Materials:

\[
\tilde{W}(x, F) = \frac{\lambda}{2} (\text{trace} F)^2 + \mu : F = \frac{\lambda}{2} (\text{trace} F)^2 + \mu \text{trace} C.
\]
A hyperelastic material is characterized by the existence of an energy functional \(\hat{W} : \Omega \times M^3_+ \rightarrow \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \ \forall x \in \Omega, \ F \in M^3_+.
\]

St. Venant-Kirchhoff Materials:

\[
\tilde{W}(x, F) = \frac{\lambda}{2} (\text{trace} F)^2 + \mu F : F = \frac{\lambda}{2} (\text{trace} F)^2 + \mu \text{trace} C.
\]

Neo-Hookean Materials:
Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional \(\hat{W} : \Omega \times M_3^+ \to \mathbb{R} \) so that

\[
\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, \quad F \in M_3^+.
\]

St. Venant-Kirchhoff Materials:

\[
\tilde{W}(x, F) = \frac{\lambda}{2} \left(\text{trace}F \right)^2 + \mu F : F = \frac{\lambda}{2} \left(\text{trace}F \right)^2 + \mu \text{trace}C.
\]

Neo-Hookean Materials:

\[
\tilde{W}(x, C) = \frac{1}{2} \mu \left(\text{trace}(C - I) + \frac{2}{\beta} \left((\det C)^{-\beta/2} - 1 \right) \right),
\]
Hyperelastic Materials

Definition

A hyperelastic materials is characterized by the existence of an energy functional $\hat{W} : \Omega \times M^3_+ \rightarrow \mathbb{R}$ so that

$$\hat{T}(x, F) = \frac{\partial \hat{W}}{\partial F}(x, F), \quad \forall x \in \Omega, F \in M^3_+. $$

St. Venant-Kirchhoff Materials:

$$\tilde{W}(x, F) = \frac{\lambda}{2} (\text{trace} F)^2 + \mu F : F = \frac{\lambda}{2} (\text{trace} F)^2 + \mu \text{trace} C.$$

Neo-Hookean Materials:

$$\tilde{W}(x, C) = \frac{1}{2} \mu (\text{trace}(C - I)) + \frac{2}{\beta} \left((\text{det}\ C)^{-\beta/2} - 1\right),$$

where $\beta = 2\nu / 1 - 2\nu$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Linear Elasticity Theory

Assumptions:
Will restrict to case of small deformations for linearized isotropic materials.
Do not have to distinguish between stress tensors in this case.

Notation:
We use σ instead of Σ and ϵ instead of E.

Variational Problem
\[\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon: \sigma - f \cdot u \right) \, dV + \int_{\Gamma} g \cdot u \, dA. \]
The tensor product $\epsilon: \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations
The strain and displacement are related by
\[\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad \epsilon = \epsilon(u) = \nabla(s) \cdot u. \]
The stress is related by the constitutive relation
\[\epsilon = 1 + \nu E \sigma - \nu E \text{trace}(\sigma) I. \]
Assumptions: Will restrict to case of small deformations for linearized isotropic materials.
Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case.
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

\[
\Pi := \int_{\Omega} \frac{1}{2} \epsilon:\sigma - f \cdot u \, dV + \int_{\Gamma} g \cdot u \, dA
\]

Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by
\[
\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad \epsilon = \epsilon(u) = \nabla u
\]

The stress is related by the constitutive relation
\[
\epsilon = 1 + \nu E \sigma - \nu E \text{trace}(\sigma) I
\]
Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$
\Pi := \int_\Omega \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV + \int_{\Gamma_1} g \cdot u dA,
$$

The tensor product $\epsilon : \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$
\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right),
$$

$\epsilon = \epsilon(u) = \nabla s u$.

The stress is related by the constitutive relation

$$
\epsilon = 1 + \nu E \sigma - \nu E \text{trace}(\sigma) I.
$$
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

\[\Pi := \int_\Omega \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x. \]

The tensor product $\epsilon : \sigma = \epsilon_{ij}\sigma_{ij}$. Note, the σ, ϵ, u are not independent here.
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad \epsilon = \epsilon(u) = \nabla^{(s)} u.$$
Linear Elasticity Theory

Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad \epsilon = \epsilon(u) = \nabla^{(s)} u.$$

The stress is related by the constitutive relation
Assumptions: Will restrict to case of small deformations for linearized isotropic materials. Do not have to distinguish between stress tensors in this case. **Notation:** We use σ instead of Σ and ϵ instead of E.

Variational Problem

$$\Pi := \int_{\Omega} \left(\frac{1}{2} \epsilon : \sigma - f \cdot u \right) dV_x + \int_{\Gamma_1} g \cdot u dA_x.$$

The tensor product $\epsilon : \sigma = \epsilon_{ij} \sigma_{ij}$. Note, the σ, ϵ, u are not independent here.

Kinematic Equations

The strain and displacement are related by

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \quad \epsilon = \epsilon(u) = \nabla^{(s)} u.$$

The stress is related by the constitutive relation

$$\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I.$$
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

\[\epsilon = 1 + \nu \frac{E}{\sigma} - \nu \frac{E}{\text{trace}(\sigma)} I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \[I[\psi]. \]

Need to specify \(\hat{W}, F, G. \)

We use that \(\text{trace}(\epsilon) = \frac{(1 - 2\nu)}{E} \text{trace}(\sigma), \) and solving for \(\sigma \) we have

\[\sigma = E \left(1 + \nu \right) \left(\epsilon + \nu \frac{1}{2} - 2\nu \frac{\text{trace}(\epsilon)}{I} \right). \]

We also can use that \(\epsilon : I = \text{trace}(\epsilon) \) so that

\[\frac{1}{2} \sigma : \epsilon = \frac{1}{2} \left(\lambda \text{trace}(\epsilon) I + 2\mu \epsilon \right) : \epsilon = \lambda \left(\text{trace}(\epsilon) \right)^2 + \mu \epsilon : \epsilon. \]

This corresponds to the energy functional \(\hat{W}(x, F) \) for St. Venant-Kirchhoff materials.

Remark: This leads to a mixed formulation of weak problem.

Formulations: There are at least three distinct approaches in the literature:

(i) Displacement Formulation,
(ii) Mixed Hellinger and Reissner,
(iii) Mixed Hu and Washizu.
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma)I. \]
The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1+\nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \).

Remark: This leads to a mixed formulation of the weak problem.

Formulations: There are at least three distinct approaches in the literature:

(i) Displacement Formulation,

(ii) Mixed Hellinger and Reissner,

(iii) Mixed Hu and Washizu.
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma)I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \). Need to specify \(\hat{W}, \mathcal{F}, \mathcal{G} \).

We use that \(\text{trace}(\epsilon) = \frac{(1 - 2\nu)}{E} \text{trace}(\sigma) \), and solving for \(\sigma \) we have
The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma)I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \). Need to specify \(\hat{W}, \mathcal{F}, \mathcal{G} \).

We use that \(\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma) \), and solving for \(\sigma \) we have

\[\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon)I \right). \]
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify $\hat{W}, \mathcal{F}, \mathcal{G}$.

We use that $\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma)$, and solving for σ we have

$$\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon)I \right).$$

We also can use that $\epsilon : I = \text{trace}(\epsilon)$ so that
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \). Need to specify \(\hat{W}, F, G \).

We use that \(\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma) \), and solving for \(\sigma \) we have

\[\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon) I \right). \]

We also can use that \(\epsilon : I = \text{trace}(\epsilon) \) so that

\[\frac{1}{2} \sigma : \epsilon = \frac{1}{2} \left(\lambda \text{trace}(\epsilon) I + 2\mu \epsilon \right) : \epsilon = \frac{\lambda}{2} \left(\text{trace}(\epsilon) \right)^2 + \mu \epsilon : \epsilon. \]
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1 + \nu}{E} \sigma - \nu \frac{E}{E} \text{trace}(\sigma)I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \). Need to specify \(\hat{W}, \mathcal{F}, G \).

We use that \(\text{trace}(\epsilon) = \frac{(1 - 2\nu)}{E} \text{trace}(\sigma) \), and solving for \(\sigma \) we have

\[\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon)I \right). \]

We also can use that \(\epsilon : I = \text{trace}(\epsilon) \) so that

\[\frac{1}{2} \sigma : \epsilon = \frac{1}{2} (\lambda \text{trace}(\epsilon)I + 2\mu \epsilon) : \epsilon = \frac{\lambda}{2} (\text{trace}(\epsilon))^2 + \mu \epsilon : \epsilon. \]

This corresponds to the energy functional \(\hat{W}(x, F) \) for St. Venant-Kirchhoff materials.
The stress and strain are related by the constitutive relation

\[\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \). Need to specify \(\hat{W}, F, G \).

We use that \(\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma) \), and solving for \(\sigma \) we have

\[\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon) I \right). \]

We also can use that \(\epsilon : I = \text{trace}(\epsilon) \) so that

\[\frac{1}{2} \sigma : \epsilon = \frac{1}{2} \left(\lambda \text{trace}(\epsilon) I + 2\mu \epsilon \right) : \epsilon = \frac{\lambda}{2} (\text{trace}(\epsilon))^2 + \mu \epsilon : \epsilon. \]

This corresponds to the energy functional \(\hat{W}(x, F) \) for *St. Venant-Kirchhoff materials*.

Remark: This leads to a mixed formulation of weak problem.
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify \hat{W}, F, G.

We use that $\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma)$, and solving for σ we have

$$\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = \text{trace}(\epsilon)$ so that

$$\frac{1}{2} \sigma : \epsilon = \frac{1}{2} \left(\lambda \text{trace}(\epsilon) I + 2\mu \epsilon \right) : \epsilon = \frac{\lambda}{2} (\text{trace}(\epsilon))^2 + \mu \epsilon : \epsilon.$$

This corresponds to the energy functional $\hat{W}(x, F)$ for St. Venant-Kirchhoff materials.

Remark: This leads to a mixed formulation of weak problem.

Formulations: There are at least three distinct approaches in the literature:
The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1 + \nu}{E} \sigma - \nu \frac{E}{E} \text{trace}(\sigma)I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify \hat{W}, F, G.

We use that $\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma)$, and solving for σ we have

$$\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon)I \right).$$

We also can use that $\epsilon : I = \text{trace}(\epsilon)$ so that

$$\frac{1}{2} \sigma : \epsilon = \frac{1}{2} \left(\lambda \text{trace}(\epsilon)I + 2\mu \epsilon \right) : \epsilon = \frac{\lambda}{2} \left(\text{trace}(\epsilon) \right)^2 + \mu \epsilon : \epsilon.$$

This corresponds to the energy functional $\hat{W}(x, F)$ for St. Venant-Kirchhoff materials.

Remark: This leads to a mixed formulation of weak problem.

Formulations: There are at least three distinct approaches in the literature:

(i) **Displacement Formulation**,

(ii) **Mixed Hellinger and Reissner**, and

(iii) **Mixed Hu and Washizu**.
Linear Elasticity Theory

The stress and strain are related by the constitutive relation

$$\epsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma) I.$$

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by $I[\psi]$. Need to specify \hat{W}, F, G.

We use that $\text{trace}(\epsilon) = (1 - 2\nu)/E \text{trace}(\sigma)$, and solving for σ we have

$$\sigma = \frac{E}{1 + \nu} \left(\epsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\epsilon) I \right).$$

We also can use that $\epsilon : I = \text{trace}(\epsilon)$ so that

$$\frac{1}{2} \sigma : \epsilon = \frac{1}{2} \left(\lambda \text{trace}(\epsilon) I + 2\mu \epsilon \right) : \epsilon = \frac{\lambda}{2} (\text{trace}(\epsilon))^2 + \mu \epsilon : \epsilon.$$

This corresponds to the energy functional $\hat{W}(x, F)$ for St. Venant-Kirchhoff materials.

Remark: This leads to a mixed formulation of weak problem.

Formulations: There are at least three distinct approaches in the literature:

(i) Displacement Formulation, (ii) Mixed Hellinger and Reissner, and

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
The stress and strain are related by the constitutive relation

\[\varepsilon = \frac{1 + \nu}{E} \sigma - \frac{\nu}{E} \text{trace}(\sigma)I. \]

Aim: We would like to formulate the mechanics in terms of the hyperelastic theory and equilibrium conditions given by \(I[\psi] \). Need to specify \(\hat{W}, \mathcal{F}, \mathcal{G} \).

We use that \(\text{trace}(\varepsilon) = (1 - 2\nu)/E \text{trace}(\sigma) \), and solving for \(\sigma \) we have

\[\sigma = \frac{E}{1 + \nu} \left(\varepsilon + \frac{\nu}{1 - 2\nu} \text{trace}(\varepsilon)I \right). \]

We also can use that \(\varepsilon : I = \text{trace}(\varepsilon) \) so that

\[\frac{1}{2} \sigma : \varepsilon = \frac{1}{2} (\lambda \text{trace}(\varepsilon)I + 2\mu\varepsilon) : \varepsilon = \frac{\lambda}{2} (\text{trace}(\varepsilon))^2 + \mu\varepsilon : \varepsilon. \]

This corresponds to the energy functional \(\hat{W}(x, F) \) for St. Venant-Kirchhoff materials.

Remark: This leads to a mixed formulation of weak problem.

Formulations: There are at least three distinct approaches in the literature:

1. *Displacement Formulation*,
2. *Mixed Hellinger and Reissner*, and
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} (\mu \epsilon[v] : \epsilon[v] + \lambda (\text{div}(v))^2 - f \cdot v) \, dV + \int_{\Gamma_1} g \cdot v \, dA \rightarrow \min \]

This is obtained by eliminating \(\sigma \) using \(\sigma = C \epsilon \), where

\[
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{bmatrix} = E(1 + \nu)(1 - 2\nu) \begin{bmatrix}
1 & -\nu & -\nu & -\nu & 0 & -\nu \\
-\nu & 1 & -\nu & 0 & 1 & -\nu \\
-\nu & -\nu & 1 & 1 - 2\nu & 0 & 1 - 2\nu \\
-\nu & 0 & 1 - 2\nu & 1 & 1 - 2\nu & 0 \\
0 & 1 & -\nu & -\nu & 1 & -\nu \\
-\nu & -\nu & 1 - 2\nu & 0 & -\nu & 1
\end{bmatrix} \begin{bmatrix}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{23}
\end{bmatrix}.
\]

The variational principle above is obtained from this with notation \(\epsilon = \nabla(s) v \) and

\[
\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \nabla(s) v : C \nabla(s) v - f \cdot v \right) \, dV + \int_{\Gamma_1} g \cdot v \, dA.
\]
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \rightarrow \text{min} \]
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_\Omega \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \text{min} \]

This is obtained by eliminating \(\sigma \) using \(\sigma = C\varepsilon \), where
The variational principle above is obtained from this with notation $\epsilon = \nabla s v$ and

$$\Pi[v] = \int_{\Omega} \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \min$$

This is obtained by eliminating σ using $\sigma = C \epsilon$, where

$$\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{bmatrix} = \frac{E}{(1 + \nu)(1 - 2\nu)}
\begin{bmatrix}
1 - \nu & \nu & \nu \\
\nu & 1 - \nu & \nu \\
\nu & \nu & 1 - \nu \\
0 & 1 - 2\nu & 1 - 2\nu \\
0 & 1 - 2\nu & 1 - 2\nu \\
\end{bmatrix}
\begin{bmatrix}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{23}
\end{bmatrix}.$$
Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(\nu))^2 - f \cdot \nu \right) \text{d}V_x + \int_{\Gamma_1} g \cdot \nu \text{d}A_x \rightarrow \min \]

This is obtained by eliminating \(\sigma \) using \(\sigma = C\varepsilon \), where

\[\begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{12} \\ \sigma_{13} \\ \sigma_{23} \end{bmatrix} = \frac{E}{(1+\nu)(1-2\nu)} \begin{bmatrix} 1-\nu & \nu & \nu \\ \nu & 1-\nu & \nu \\ \nu & \nu & 1-\nu \\ 0 & 1-2\nu & 0 \\ 0 & 1-2\nu & 1-2\nu \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \varepsilon_{12} \\ \varepsilon_{13} \\ \varepsilon_{23} \end{bmatrix}. \]

The variational principle above is obtained from this with notation \(\varepsilon = \nabla^{(s)} \nu \) and
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \min \]

This is obtained by eliminating \(\sigma \) using \(\sigma = C \epsilon \), where

\[
\begin{bmatrix}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{12} \\
\sigma_{13} \\
\sigma_{23}
\end{bmatrix} = \frac{E}{(1 + \nu)(1 - 2\nu)} \begin{bmatrix}
1 - \nu & \nu & \nu \\
\nu & 1 - \nu & \nu \\
\nu & \nu & 1 - \nu \\
0 & 1 - 2\nu & 1 - 2\nu \\
0 & 1 - 2\nu & 1 - 2\nu
\end{bmatrix} \begin{bmatrix}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{12} \\
\epsilon_{13} \\
\epsilon_{23}
\end{bmatrix}.
\]

The variational principle above is obtained from this with notation \(\epsilon = \nabla^{(s)} v \) and

\[\Pi[v] = \int_{\Omega} \left(\frac{1}{2} \nabla^{(s)} v : C \nabla^{(s)} v - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x. \]
Displacement Formulation

Variational Principle for Displacement Formulation

$$
\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV + \int_{\Gamma_1} g \cdot v dA \rightarrow \min
$$

St. Venant-Kirchhoff Materials:

The weak formulation specializes to

$$
2 \mu (\nabla (s) u, \nabla (s) v)_{0} + \lambda (\text{div } u, \text{div } v)_{0} = (f, v)_{0} - (g, v)_{\Gamma_1}, \forall v \in H^1 \Gamma
$$
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \min \]

The minimization is performed on the space
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) \, dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \rightarrow \min \]

The minimization is performed on the space

\[H^1_I := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]
Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} \left(\text{div}(v) \right)^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \rightarrow \min \]

The minimization is performed on the space

\[H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:
Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) \, dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \rightarrow \text{min}$$

The minimization is performed on the space

$$H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \}$$

Weak Formulation:

$$\int_{\Omega} \nabla^{(s)}u : C \nabla^{(s)}v \, dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_x, \quad \forall v \in H^1_{\Gamma}.$$
Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) \, dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \to \text{min} \]

The minimization is performed on the space

\[H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:

\[\int_{\Omega} \nabla^{(s)} u : C \nabla^{(s)} v \, dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_x, \quad \forall v \in H^1_{\Gamma}. \]

By introducing \(L - 2 \) inner-product notation, we can express as
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_\Omega \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \to \min \]

The minimization is performed on the space

\[H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:

\[\int_\Omega \nabla^{(s)} u : C \nabla^{(s)} v \, dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v \, dA_x, \quad \forall v \in H^1_\Gamma. \]

By introducing \(L - 2 \) inner-product notation, we can express as

\[(\nabla^{(s)} u, C \nabla^{(s)} v)_0 = (f, v)_0 - (g, v)_{\Gamma,0}, \quad \forall v \in H^1_\Gamma. \]
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[\nu] = \int_{\Omega} \left(\mu \epsilon[\nu] : \epsilon[\nu] + \frac{\lambda}{2} (\text{div}(\nu))^2 - f \cdot \nu \right) \, dV_x + \int_{\Gamma_1} g \cdot \nu \, dA_x \to \min \]

The minimization is performed on the space

\[H^1_\Gamma := \{ \nu \in H^1(\Omega)^3 : \nu(\mathbf{x}) = 0, \forall \mathbf{x} \in \Gamma_0 \} \]

Weak Formulation:

\[\int_{\Omega} \nabla^{(s)} u : C \nabla^{(s)} v \, dV_x = (f, \nu)_0 - \int_{\Gamma_1} g \cdot \nu \, dA_x, \ \forall \nu \in H^1_\Gamma. \]

By introducing \(L^2 \) inner-product notation, we can express as

\[(\nabla^{(s)} u, C \nabla^{(s)} v)_0 = (f, \nu)_0 - (g, \nu)_{\Gamma,0}, \ \forall \nu \in H^1_\Gamma. \]

St. Venant-Kirchhoff Materials: The weak formulation specializes to
Variational Principle for Displacement Formulation

\[\Pi[v] = \int_\Omega \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \min \]

The minimization is performed on the space

\[H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:

\[\int_\Omega \nabla^{(s)} u : C \nabla^{(s)} v dV_x = (f, v)_0 - \int_{\Gamma_1} g \cdot v dA_x, \quad \forall v \in H^1_{\Gamma}. \]

By introducing \(L - 2 \) inner-product notation, we can express as

\[(\nabla^{(s)} u, C \nabla^{(s)} v)_0 = (f, v)_0 - (g, v)_{\Gamma, 0}, \quad \forall v \in H^1_{\Gamma}. \]

St. Venant-Kirchhoff Materials: The weak formulation specializes to

\[2\mu (\nabla^{(s)} u, \nabla^{(s)} v)_0 + \lambda (\text{div} u, \text{div} v)_0 = (f, v)_0 - (g, v)_{\Gamma, 0}, \quad \forall v \in H^1_{\Gamma}. \]
Variational Principle for Displacement Formulation

\[\Pi[\nu] = \int_{\Omega} \left(\mu \varepsilon[\nu] : \varepsilon[\nu] + \frac{\lambda}{2} (\text{div}(\nu))^2 - f \cdot \nu \right) dV_x + \int_{\Gamma_1} g \cdot \nu \, dA_x \rightarrow \min \]
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_\Omega \left(\mu [v] : [v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \text{min} \]

The minimization is performed on the space
Displacement Formulation

Variational Principle for Displacement Formulation

\[
\Pi[v] = \int_{\Omega} \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) \, dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \to \text{min}
\]

The minimization is performed on the space

\[
H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \}
\]
Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) \, dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \rightarrow \min \]

The minimization is performed on the space

\[H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \epsilon[v] : \epsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v dA_x \rightarrow \text{min} \]

The minimization is performed on the space

\[H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:

St. Venant-Kirchhoff Materials: The weak formulation specializes to

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Displacement Formulation

Variational Principle for Displacement Formulation

\[\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(v))^2 - f \cdot v \right) dV_x + \int_{\Gamma_1} g \cdot v \, dA_x \rightarrow \min \]

The minimization is performed on the space

\[H^1_{\Gamma} := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:
St. Venant-Kirchhoff Materials: The weak formulation specializes to

\[2\mu (\nabla^{(s)} u, \nabla^{(s)} v)_0 + \lambda (\text{div} u, \text{div} v)_0 = (f, v)_0 - (g, v)_{\Gamma,0}, \ \forall v \in H^1_{\Gamma}. \]

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Displacement Formulation

Variational Principle for Displacement Formulation

$$\Pi[v] = \int_{\Omega} \left(\mu \varepsilon[v] : \varepsilon[v] + \frac{\lambda}{2} (\text{div}(\varepsilon))^{2} - f \cdot \varepsilon \right) dV + \int_{\Gamma_1} g \cdot \varepsilon dA \rightarrow \text{min}$$

The minimization is performed on the space

$$H^1_\Gamma := \{v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0\}$$

Weak Formulation:
St. Venant-Kirchhoff Materials: The weak formulation specializes to

$$2\mu(\nabla^{(s)} u, \nabla^{(s)} v)_0 + \lambda(\text{div} u, \text{div} v)_0 = (f, v)_0 - (g, v)_{\Gamma, 0}, \forall v \in H^1_\Gamma.$$

Strong Form Elliptic PDEs: For the St. Venant-Kirchhoff we have
The minimization is performed on the space

\[H^1_\Gamma := \{ v \in H^1(\Omega)^3 : v(x) = 0, \forall x \in \Gamma_0 \} \]

Weak Formulation:
St. Venant-Kirchhoff Materials: The weak formulation specializes to

\[2\mu (\nabla^{(s)} u, \nabla^{(s)} v)_0 + \lambda (\text{div} u, \text{div} v)_0 = (f, v)_0 - (g, v)_{\Gamma, 0}, \quad \forall v \in H^1_\Gamma. \]

Strong Form Elliptic PDEs: For the St. Venant-Kirchhoff we have

\[
\begin{align*}
-2\mu \text{div} \varepsilon(u) - \lambda \text{grad div} u &= f, \quad x \in \Omega, \\
\text{div} u &= 0, \quad x \in \Gamma_0, \\
\sigma(u) \cdot n &= g \quad x \in \Gamma_1.
\end{align*}
\]
Weak Formulation (Hellinger and Reissner):

\[\begin{align*}
(C^{-1}\sigma - \nabla (s u), \tau)_{0} &= 0, \\
-(\sigma, \nabla (s v))_{0} &= -(f, v)_{0} + \int_{\Gamma_1} g \cdot v \, dx,
\end{align*} \]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C \nabla (s u) \in L^2(\Omega) \).

Strong Form Elliptic PDEs:

\[\begin{align*}
\text{div } \sigma &= -f, \\
\sigma &= C \nabla (s u), \\
u &= 0, \\
\sigma \cdot n &= g.
\end{align*} \]

Weak Formulation II:

We find it helpful later to organize the weak problem as

\[\begin{align*}
X &= L^2(\Omega), \\
M &= H^1_{\Gamma}(\Omega), \\
a(\sigma, \tau) &= (C^{-1}\sigma, \tau)_{0}, \\
b(\tau, v) &= -(\tau, \nabla (s v))_{0}.
\end{align*}\]

As mixed method on spaces \((X, M)\), we consider as

\[\begin{align*}
X &= H(\text{div}, \Omega), \\
M &= L^2(\Omega), \\
a(\sigma, \tau) &= (C^{-1}\sigma, \tau)_{0}, \\
b(\tau, v) &= (\text{div } \sigma, v)_{0}.
\end{align*}\]
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\begin{align*}
(C^{-1} \sigma - \nabla^{(s)} u, \tau)_{0} &= 0, & \forall \tau \in L_2(\Omega), \\
-(\sigma, \nabla^{(s)} v)_{0} &= -(f, v)_{0} + \int_{\Gamma_1} g \cdot v dx, & \forall v \in H^1_\Gamma(\Omega).
\end{align*}
\]
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\begin{align*}
(C^{-1} \sigma - \nabla^{(s)} u, \tau)_0 &= 0, \quad \forall \tau \in L_2(\Omega), \\
-(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_\Gamma(\Omega).
\end{align*}
\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C \nabla^{(s)} u \in L_2 \).
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\left(C^{-1} \sigma - \nabla^{(s)} u, \tau \right)_0 = 0, \quad \forall \tau \in L^2(\Omega),
\]

\[
-(\sigma, \nabla^{(s)} v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_G(\Omega).
\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C \nabla^{(s)} u \in L^2 \).

Strong Form Elliptic PDEs:
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\left(C^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 = 0, \quad \forall \tau \in L_2(\Omega),
\]
\[
-(\sigma, \nabla^{(s)}v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot vdx, \quad \forall v \in H^1_\Gamma(\Omega).
\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C\nabla^{(s)}u \in L_2 \).

Strong Form Elliptic PDEs:

\[
\begin{align*}
\text{div } \sigma &= -f, & x \in \Omega, \\
\sigma &= C\nabla^{(s)}u, & x \in \Omega, \\
u &= 0, & x \in \Gamma_0, \\
\sigma \cdot n &= g, & x \in \Gamma_1.
\end{align*}
\]
Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\left(C^{-1}\sigma - \nabla^{(s)}u, \tau \right)_0 = 0, \quad \forall \tau \in L_2(\Omega),
\]

\[-(\sigma, \nabla^{(s)}v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_\Gamma(\Omega).\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C\nabla^{(s)}u \in L_2 \).

Strong Form Elliptic PDEs:

\[
\begin{align*}
\text{div}\ \sigma &= -f, \quad x \in \Omega, \\
\sigma &= C\nabla^{(s)}u, \quad x \in \Omega, \\
u &= 0, \quad x \in \Gamma_0, \\
\sigma \cdot n &= g, \quad x \in \Gamma_1.
\end{align*}
\]

Weak Formulation II:
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\left(C^{-1} \sigma - \nabla^{(s)} u, \tau \right)_0 = 0, \quad \forall \tau \in L_2(\Omega),
\]

\[-(\sigma, \nabla^{(s)} v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_{\Gamma}(\Omega).\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C \nabla^{(s)} u \in L_2 \).

Strong Form Elliptic PDEs:

\[
\begin{align*}
\text{div} \, \sigma &= -f, & x & \in \Omega, \\
\sigma &= C \nabla^{(s)} u, & x & \in \Omega, \\
u &= 0, & x & \in \Gamma_0, \\
\sigma \cdot n &= g, & x & \in \Gamma_1.
\end{align*}
\]

Weak Formulation II: We find it helpful later to organize the weak problem as
Hellinger and Reissner Mixed Method Formulation

Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\begin{align*}
\left(C^{-1}\sigma - \nabla^{(s)} u, \tau \right)_0 &= 0, & \forall \tau \in L_2(\Omega), \\
-(\sigma, \nabla^{(s)} v)_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v \, dx, & \forall v \in H^1_\Gamma(\Omega).
\end{align*}
\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C\nabla^{(s)} u \in L_2 \).

Strong Form Elliptic PDEs:

\[
\begin{align*}
\text{div} \sigma &= -f, & x \in \Omega, \\
\sigma &= C\nabla^{(s)} u, & x \in \Omega, \\
u &= 0, & x \in \Gamma_0, \\
\sigma \cdot n &= g, & x \in \Gamma_1.
\end{align*}
\]

Weak Formulation II: We find it helpful later to organize the weak problem as

\[
\begin{align*}
X &= L_2(\Omega), & M &= H^1_\Gamma(\Omega) \\
a(\sigma, \tau) &= (C^{-1}\sigma, \tau)_0, & b(\tau, v) &= -(\tau, \nabla^{(s)} v)_0.
\end{align*}
\]
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

\[
\left(C^{-1} \sigma - \nabla^{(s)} u, \tau \right)_0 = 0, \quad \forall \tau \in L_2(\Omega), \\
\left(\sigma, \nabla^{(s)} v \right)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v \, dx, \quad \forall v \in H^1_\Gamma(\Omega).
\]

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C \nabla^{(s)} u \in L_2 \).

Strong Form Elliptic PDEs:

\[
\begin{align*}
\text{div} \, \sigma &= -f, \quad x \in \Omega, \\
\sigma &= C \nabla^{(s)} u, \quad x \in \Omega, \\
u &= 0, \quad x \in \Gamma_0, \\
\sigma \cdot n &= g, \quad x \in \Gamma_1.
\end{align*}
\]

Weak Formulation II: We find it helpful later to organize the weak problem as

\[
X = L_2(\Omega), \quad M = H^1_\Gamma(\Omega) \\
a(\sigma, \tau) = (C^{-1} \sigma, \tau)_0, \quad b(\tau, v) = -(\tau, \nabla^{(s)} v)_0.
\]

As mixed method on spaces \((X, M)\), we consider as
Weak Formulation (Hellinger and Reissner): Displacement and stresses unknowns (strains eliminated),

$$
\left(C^{-1}\sigma - \nabla^{(s)}u, \tau\right)_0 = 0, \quad \forall \tau \in L_2(\Omega),
$$

$$
-(\sigma, \nabla^{(s)}v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_\Gamma(\Omega).
$$

This is related to the Displacement Formulation by using solution \(u \) to define \(\sigma := C\nabla^{(s)}u \in L_2 \).

Strong Form Elliptic PDEs:

\[
\begin{align*}
\text{div } \sigma &= -f, \quad x \in \Omega, \\
\sigma &= C\nabla^{(s)}u, \quad x \in \Omega, \\
u &= 0, \quad x \in \Gamma_0, \\
\sigma \cdot n &= g, \quad x \in \Gamma_1.
\end{align*}
\]

Weak Formulation II: We find it helpful later to organize the weak problem as

$$
X = L_2(\Omega), \quad M = H^1_\Gamma(\Omega)
$$

$$
\begin{align*}
a(\sigma, \tau) &= (C^{-1}\sigma, \tau)_0, \\
b(\tau, v) &= -(\tau, \nabla^{(s)}v)_0.
\end{align*}
$$

As mixed method on spaces \((X, M)\), we consider as

$$
X = H(\text{div}, \Omega), \quad M = L_2(\Omega)
$$

$$
\begin{align*}
a(\sigma, \tau) &= (C^{-1}\sigma, \tau)_0, \\
b(\tau, v) &= (\text{div } \sigma, v)_0.
\end{align*}
$$
Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu):

\[(C \epsilon - \sigma, \eta)_0 = 0, \quad \forall \eta \in L^2(\Omega),\]

\[(\epsilon - \nabla (s) u, \tau)_0 = 0, \quad \forall \tau \in L^2(\Omega),\]

\[-(\sigma, \nabla (s) v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v \, dx, \quad \forall v \in H^1_{\Gamma}(\Omega).\]

Weak Formulation II:

We find it helpful later to organize the weak problem as

\[X = L^2(\Omega) \times L^2(\Omega),\]

\[M = H^1_{\Gamma}(\Omega),\]

\[a(\epsilon, \sigma, \eta, \tau) = (C \epsilon, \eta)_0,\]

\[b(\eta, \tau, v) = (\tau, \nabla (s) v - \epsilon)_0.\]

Allow typically more accurate calculation of stresses since represented directly as degrees of freedom.

Paul J. Atzberger, UCSB

 Finite Element Methods
http://atzberger.org/
Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.
Weak Formulation (Hu and Washizu): All variables remain in the equations.

\[
(C\epsilon - \sigma, \eta)_0 = 0, \quad \forall \eta \in L^2(\Omega),
\]
\[
(\epsilon - \nabla^{(s)} u, \tau)_0 = 0, \quad \forall \tau \in L^2(\Omega),
\]
\[
-(\sigma, \nabla^{(s)} v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_1(\Omega).
\]
Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

\[(C\epsilon - \sigma, \eta)_0 = 0, \quad \forall \eta \in L_2(\Omega),\]
\[(\epsilon - \nabla^{(s)} u, \tau)_0 = 0, \quad \forall \tau \in L_2(\Omega),\]
\[-(\sigma, \nabla^{(s)} v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v \, dx, \quad \forall v \in H^1_\Gamma(\Omega).\]

Weak Formulation II:

We find it helpful later to organize the weak problem as
\[X = L_2(\Omega) \times L_2(\Omega),\]
\[M = H_1^\Gamma(\Omega),\]
\[a(\epsilon, \sigma, \eta, \tau) = (C\epsilon, \eta)_0,\]
\[b(\eta, \tau, v) = (\tau, \nabla^{(s)} v - \epsilon)_0.\]

Allow typically more accurate calculation of stresses since represented directly as degrees of freedom.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Weak Formulation (Hu and Washizu): All variables remain in the equations.

\[
(C\epsilon - \sigma, \eta)_0 = 0, \quad \forall \eta \in L_2(\Omega),
\]
\[
(\epsilon - \nabla^{(s)} u, \tau)_0 = 0, \quad \forall \tau \in L_2(\Omega),
\]
\[
-(\sigma, \nabla^{(s)} v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v \, dx, \quad \forall v \in H_1^1(\Omega).
\]

Weak Formulation II: We find it helpful later to organize the weak problem as
Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

\[(C\epsilon - \sigma, \eta)_0 = 0, \quad \forall \eta \in L^2(\Omega), \]
\[(\epsilon - \nabla^{(s)} u, \tau)_0 = 0, \quad \forall \tau \in L^2(\Omega), \]
\[-(\sigma, \nabla^{(s)} v)_0 = -(f, v)_0 + \int_{\Gamma_1} g \cdot v dx, \quad \forall v \in H^1_\Gamma(\Omega). \]

Weak Formulation II: We find it helpful later to organize the weak problem as

\[X = L^2(\Omega) \times L^2(\Omega), \quad M = H^1_\Gamma(\Omega)\]
\[a(\epsilon, \sigma, \eta, \tau) = (C, \epsilon, \eta)_0, \quad b(\eta, \tau, v) = (\tau, \nabla^{(s)} v - \epsilon)_0. \]
Hu and Washizu Mixed Method Formulation

Weak Formulation (Hu and Washizu): All variables remain in the equations.

\[
\begin{align*}
(C\varepsilon - \sigma, \eta)_0 &= 0, \quad \forall \eta \in L_2(\Omega), \\
(\varepsilon - \nabla^s(u, \tau))_0 &= 0, \quad \forall \tau \in L_2(\Omega), \\
-(\sigma, \nabla^s(v))_0 &= -(f, v)_0 + \int_{\Gamma_1} g \cdot v \text{d}x, \quad \forall v \in H^1_G(\Omega).
\end{align*}
\]

Weak Formulation II: We find it helpful later to organize the weak problem as

\[
\begin{align*}
X &= L_2(\Omega) \times L_2(\Omega), \quad M = H^1_G(\Omega) \\
a(\varepsilon, \sigma, \eta, \tau) &= (C, \varepsilon, \eta)_0, \quad b(\eta, \tau, \nu) = (\tau, \nabla^s\nu - \varepsilon)_0.
\end{align*}
\]

Allow typically more accurate calculation of stresses since represented directly as degrees of freedom.
Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx + \|v\|_0^2 \geq c \|v\|_1^2, \quad \forall v \in H^1_\Omega.$$

Korn’s Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx \geq c' \|v\|_1^1, \quad \forall v \in H^1_{\Gamma_0}(\Omega).$$

Here, $H^1_{\Gamma_0}(\Omega)$ is the closure of $\{v \in C^\infty : v(x) = 0, \forall x \in \Gamma_0\}$ with respect to norm $\|\cdot\|_1$. Useful in establishing that variational problems involving strain are elliptic.
Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary,

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx + \|v\|_{L^2}^2 \geq c(\varepsilon) \|v\|_{H^1(\Omega)}^2, \quad \forall v \in H^1(\Omega).$$

Here, $H^1(\Omega)$ is the space of functions whose first derivatives are square-integrable, and $H^1(\Omega)$ is the closure of the space of smooth functions vanishing on the boundary Γ_0 with respect to the norm $\|\cdot\|_{H^1(\Omega)}$.

Korn’s Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure.

Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx \geq c' \|v\|_{H^{1/2}(\Gamma_0)}^2, \quad \forall v \in H^{1/2}(\Gamma_0)(\Omega).$$

Useful in establishing that variational problems involving strain are elliptic.
Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) \, dx + \|v\|_{L^2(\Omega)}^2 \geq c \|v\|_{H^1(\Omega)}^2,$$

$\forall v \in H^1(\Omega)$.
Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$
\int_{\Omega} \epsilon(\mathbf{v}) : \epsilon(\mathbf{v}) \, d\mathbf{x} + \|\mathbf{v}\|_0^2 \geq c \|\mathbf{v}\|_1^2, \quad \forall \mathbf{v} \in H^1(\Omega)^d.
$$
Displacement Formulation

Korn’s First Inequality

For \(\Omega \) an open bounded set in \(\mathbb{R}^d \) with piecewise smooth boundary, there exists a number \(c = c(\Omega) > 0 \) so that

\[
\int_\Omega \varepsilon(v) : \varepsilon(v) \, dx + \|v\|_0^2 \geq c\|v\|_1^2, \quad \forall v \in H^1(\Omega)^d.
\]

Korn’s Second Inequality

For \(\Omega \subset \mathbb{R}^3 \) be an open bounded set in \(\mathbb{R}^d \) with piecewise smooth boundary and \(\Gamma_0 \subset \partial \Omega \) have positive two-dimensional measure. Then there exists a positive number \(c' = c'(\Omega, \Gamma_0) \) so that

\[
\int_\Omega \varepsilon(v) : \varepsilon(v) \, dx \geq c'\|v\|_{\Gamma}^1, \quad \forall v \in H^1(\Gamma_0)^d.
\]

Here, \(H^1(\Gamma_0)^d \) is the closure of \(\{v \in C^\infty : v(x) = 0, \forall x \in \Gamma_0\} \) with respect to norm \(\|\cdot\|_{\Gamma}^1 \).

Useful in establishing that variational problems involving strain are elliptic.
Displacement Formulation

Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx + \|v\|^2_0 \geq c \|v\|_{1,1}^2, \quad \forall v \in H^1(\Omega)^d.$$

Korn’s Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary

Here, $H^1_{\Gamma}(\Omega)$ is the closure of $\{v \in C^\infty : v(x) = 0, \forall x \in \Gamma_0\}$ with respect to norm $\|\cdot\|_{1,1}$.

Useful in establishing that variational problems involving strain are elliptic.
Displacement Formulation

Korn’s First Inequality
For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx + \|v\|_0^2 \geq c\|v\|_1^2, \quad \forall v \in H^1(\Omega)^d.$$

Korn’s Second Inequality
For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure.
Displacement Formulation

Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$
\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx + \|v\|_0^2 \geq c\|v\|_1^2, \quad \forall v \in H^1(\Omega)^d.
$$

Korn’s Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial\Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$
\text{Useful in establishing that variational problems involving strain are elliptic.}
$$
Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) \, dx + \|v\|_0^2 \geq c\|v\|_1^2, \quad \forall v \in H^1(\Omega)^d.$$

Korn’s Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \epsilon(v) : \epsilon(v) \, dx \geq c'\|v\|_1^1, \quad \forall v \in H^1_\Gamma(\Omega).$$
Displacement Formulation

Korn’s First Inequality

For \(\Omega \) an open bounded set in \(\mathbb{R}^d \) with piecewise smooth boundary, there exists a number \(c = c(\Omega) > 0 \) so that

\[
\int_{\Omega} \epsilon(v) : \epsilon(v) \, dx + \|v\|_0^2 \geq c\|v\|_1^2, \quad \forall v \in H^1(\Omega)^d.
\]

Korn’s Second Inequality

For \(\Omega \subset \mathbb{R}^3 \) be an open bounded set in \(\mathbb{R}^d \) with piecewise smooth boundary and \(\Gamma_0 \subset \partial \Omega \) have positive two-dimensional measure. Then there exists a positive number \(c' = c'(\Omega, \Gamma_0) \) so that

\[
\int_{\Omega} \epsilon(v) : \epsilon(v) \, dx \geq c'\|v\|_1^1, \quad \forall v \in H^1_\Gamma(\Omega).
\]

Here, \(H^1_\Gamma(\Omega) \) is the closure of \(\{ v \in C^\infty : v(x) = 0, \; \forall x \in \Gamma_0 \} \) with respect to norm \(\| \cdot \|_1 \).
Korn’s First Inequality

For Ω an open bounded set in \mathbb{R}^d with piecewise smooth boundary, there exists a number $c = c(\Omega) > 0$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx + \|v\|_0^2 \geq c\|v\|_1^2, \quad \forall v \in H^1(\Omega)^d.$$

Korn’s Second Inequality

For $\Omega \subset \mathbb{R}^3$ be an open bounded set in \mathbb{R}^d with piecewise smooth boundary and $\Gamma_0 \subset \partial \Omega$ have positive two-dimensional measure. Then there exists a positive number $c' = c'(\Omega, \Gamma_0)$ so that

$$\int_{\Omega} \varepsilon(v) : \varepsilon(v) \, dx \geq c'\|v\|_1^1, \quad \forall v \in H^1_{\Gamma}(\Omega).$$

Here, $H^1_{\Gamma}(\Omega)$ is the closure of $\{v \in C^\infty : v(x) = 0, \quad \forall x \in \Gamma_0\}$ with respect to norm $\| \cdot \|_1$.

Useful in establishing that variational problems involving strain are elliptic.
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution. This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities. The Lax-Milgram Theorem then gives the well-posedness of the variational problem. There are results establishing conditions for well-posedness for the other formulations. These typically involve analysis establishing the Babuska-Brezzi inf-sup conditions hold (discussed with mixed method theory).
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution. This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities. The Lax-Milgram Theorem then gives the well-posedness of the variational problem. There are results establishing conditions for well-posedness for the other formulations. These typically involve analysis establishing the Babuska-Brezzi inf-sup conditions hold (discussed with mixed method theory).
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure.

Then the variational problem of linear elasticity has exactly one solution. This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities. The Lax-Milgram Theorem then gives the well-posedness of the variational problem. There are results establishing conditions for well-posedness for the other formulations. These typically involve analysis establishing the Babuska-Brezzi inf-sup conditions hold (discussed with mixed method theory).
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem.
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution. This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution. This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.

There are results establishing conditions for well-posedness for the other formulations.
Existence Theorem (Displacement Formulation)

Let $\Omega \subset \mathbb{R}^3$ be a domain with piecewise smooth boundary, and Γ_0 has positive two-dimensional measure. Then the variational problem of linear elasticity has exactly one solution.

This follows by establishing the coercivity condition for the bilinear form in the variational problem. For the weak displacement formulation this is done using the Korn Inequalities.

The Lax-Milgram Theorem then gives the well-posedness of the variational problem.

There are results establishing conditions for well-posedness for the other formulations. These typically involve analysis establishing the Babuska-Brezzi inf-sup conditions hold (discussed with mixed method theory).
Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties. Consider a nearly incompressible material, which corresponds to Lamé constants with $\lambda \gg \mu$.

In the displacement formulation on $v \in H^1_\Gamma$, we have

$$a(u, v) := \lambda (\text{div} u, \text{div} v) + 2\mu (\epsilon(u), \epsilon(v)) \leq a(v, v) \leq C \|v\|_2^2,$$

with $\alpha \leq \mu$ and $C \geq \lambda + 2\mu$.

Recall, in Céa's Lemma we obtained bound with C/α which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space. This manifests typically with displacements much smaller than expected, referred to as locking effects.

In the nearly incompressible regime, referred to as volume locking or Poisson locking.
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.
Normly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties. Consider a nearly incompressible material, which corresponds to Lamé’ constants with \(\lambda \gg \mu \).

In the displacement formulation on \(v \in H^1_\Gamma \), we have

\[
a(u, v) := \lambda (\text{div} u, \text{div} v)_0 + 2\mu (\epsilon(u), \epsilon(v))_0, \quad \rightarrow \alpha \|v\|_2^2 \leq a(v, v) \leq C \|v\|_2^2,
\]

with \(\alpha \leq \mu \) and \(C \geq \lambda + 2\mu \). Recall, in Céa’s Lemma we obtained bound with \(C/\alpha \) which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space. Manifests typically with displacements much smaller than expected, referred to as locking effects. In the nearly incompressible regime, referred to as volume locking or Poisson locking.
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]
Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1 \), we have
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties. Consider a nearly \textbf{incompressible} material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1 \), we have

\[a(u, v) := \lambda(\text{div } u, \text{div } v)_0 + 2\mu(\varepsilon(u), \varepsilon(v))_0, \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C\|v\|_1^2, \quad \text{with } \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu. \]
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame' constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1 \), we have

\[a(u, v) := \lambda (\text{div} u, \text{div} v) + 2\mu (\epsilon(u), \epsilon(v)), \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu. \]

Recall, in Céa’s Lemma we obtained bound with \(C/\alpha \) which suggests large pre-factors in incompressible limit.
Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly **incompressible** material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1_\Gamma \), we have

\[
a(u, v) := \lambda (\text{div} \, u, \text{div} \, v)_0 + 2\mu (\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C\|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \quad \text{and} \quad C \geq \lambda + 2\mu.
\]

Recall, in Céa’s Lemma we obtained bound with \(C/\alpha \) which suggests large pre-factors in incompressible limit.

In practice, results in errors in the solution much larger than the approximation error of the finite element space.
Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties. Consider a nearly **incompressible** material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1_1 \), we have

\[
a(u, v) := \lambda(\text{div } u, \text{div } v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \quad \text{and} \quad C \geq \lambda + 2\mu.
\]

Recall, in Céa’s Lemma we obtained bound with \(C/\alpha \) which suggests large pre-factors in incompressible limit. In practice, results in errors in the solution much larger than the approximation error of the finite element space. Manifests typically with displacements much smaller than expected, referred to as **locking effects**.
Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lamé’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1_T \), we have

\[a(u, v) := \lambda (\text{div} \, u, \text{div} \, v)_0 + 2\mu (\varepsilon(u), \varepsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \quad \text{and} \quad C \geq \lambda + 2\mu. \]

Recall, in Céa’s Lemma we obtained bound with \(C/\alpha \) which suggests large pre-factors in incompressible limit.

In practice, results in errors in the solution much larger than the approximation error of the finite element space.

Manifests typically with displacements much smaller than expected, referred to as locking effects.

In the nearly incompressible regime, referred to as volume locking or Poisson locking.
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1_\Gamma \), we have

\[
a(u, v) := \lambda (\nabla u, \nabla v)_0 + 2\mu (\varepsilon(u), \varepsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.
\]
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1_f \), we have

\[a(u, v) := \lambda (\text{div } u, \text{div } v)_0 + 2\mu (\varepsilon(u), \varepsilon(v))_0, \quad \rightarrow \quad \alpha \| v \|_1^2 \leq a(v, v) \leq C \| v \|_1^2, \quad \text{with} \quad \alpha \leq \mu \quad \text{and} \quad C \geq \lambda + 2\mu. \]

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let \(p := \lambda \text{div } u, \)
Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly **incompressible** material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1 \), we have

\[
a(u, v) := \lambda (\text{div} u, \text{div} v)_0 + 2\mu (\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \quad \text{and} \quad C \geq \lambda + 2\mu.
\]

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let \(p := \lambda \text{div} u \),

\[
2\mu (\epsilon(u), \epsilon(v))_0 + (\text{div} u, p)_0 = \langle \ell, v \rangle, \quad \forall v \in H^1_F(\Omega),
\]

\[
(\text{div} u, q)_0 - \lambda^{-1} (p, q)_0 = 0, \quad \forall q \in L^2(\Omega).
\]
Locking Phenomena

Nearly Incompressible Materials

Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame’ constants with

\[\lambda \gg \mu. \]

In the displacement formulation on \(v \in H^1 \), we have

\[
a(u, v) := \lambda(\text{div } u, \text{div } v)_0 + 2\mu(\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C \|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \quad \text{and} \quad C \geq \lambda + 2\mu.
\]

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let \(p := \lambda \text{div } u \),

\[
2\mu(\epsilon(u), \epsilon(v))_0 + (\text{div } u, p)_0 = \langle \ell, v \rangle, \quad \forall v \in H^1_T(\Omega),
\]

\[
(\text{div } u, q)_0 - \lambda^{-1}(p, q)_0 = 0, \quad \forall q \in L^2(\Omega).
\]

Can be shown this gives a stable problem and well-defined in the limit \(\lambda \to \infty \).
Mixed methods can have trouble approximating responses in some regimes of material properties.

Consider a nearly incompressible material, which corresponds to Lame’ constants with \(\lambda \gg \mu \).

In the displacement formulation on \(v \in H^1_\Gamma \), we have

\[
a(u, v) := \lambda (\text{div } u, \text{div } v)_0 + 2\mu (\epsilon(u), \epsilon(v))_0, \quad \rightarrow \quad \alpha \|v\|_1^2 \leq a(v, v) \leq C\|v\|_1^2, \quad \text{with} \quad \alpha \leq \mu \text{ and } C \geq \lambda + 2\mu.
\]

Remedy: One approach is to reformulate as a mixed method to obtain saddle-point problem. Let \(p := \lambda \text{div } u, \)

\[
2\mu (\epsilon(u), \epsilon(v))_0 + (\text{div } u, p)_0 = \langle \ell, v \rangle, \quad \forall v \in H^1_\Gamma(\Omega),
\]

\[
(\text{div } u, q)_0 - \lambda^{-1}(p, q)_0 = 0, \quad \forall q \in L^2(\Omega).
\]

Can be shown this gives a stable problem and well-defined in the limit \(\lambda \to \infty \).

Discretization: Choose appropriate finite element spaces for the mixed method (discussed in other lecture).