Variational Formulation of Elliptic PDEs

Paul J. Atzberger

206D: Finite Element Methods
University of California Santa Barbara
Variational Formulation

Definition

A bilinear form $b(\cdot, \cdot)$ is a mapping $b: V \times V \to \mathbb{R}$ on a linear space V so that the following holds:

1. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

2. b is symmetric so $b(v, w) = b(w, v)$.

An inner-product is a symmetric bilinear form with the additional properties

3. $b(v, v) \geq 0$, $\forall v \in V$.

4. $b(v, v) = 0$, $\iff v \equiv 0$.

Examples:

1. $V = \{ w \mid w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$.
 We define $b(u, v) = \sum_k w_k a_k b_k$.
 When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

2. $V = \mathbb{R}^m$ and $b(x, y) = x \cdot y$ for $x, y \in \mathbb{R}^n$.

3. $V = W^2_k(\Omega)$ with $\Omega \subset \mathbb{R}^n$ with $(u, v)_m = \sum_{|\alpha| \leq m} (\partial^\alpha u, \partial^\alpha v)_{L^2(\Omega)}$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

1. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.
2. b is symmetric so $b(v, w) = b(w, v)$.

An **inner-product** is a symmetric bilinear form with the additional properties:

3. $b(v, v) \geq 0, \forall v \in \mathcal{V}$
4. $b(v, v) = 0, \iff v \equiv 0$.

Examples:

1. $\mathcal{V} = \{ w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$, we define $b(u, v) = \sum_{k} w_k a_k b_k$.
 - When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.
2. $\mathcal{V} = \mathbb{R}^m$ and $b(x, y) = x \cdot y$ for $x, y \in \mathbb{R}^n$.
3. $\mathcal{V} = W^{k, 2}(\Omega)$ with $\Omega \subset \mathbb{R}^n$ with $(u, v)_m = \sum_{|\alpha| \leq m} (\partial^\alpha u, \partial^\alpha v)_{L^2(\Omega)}$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Variational Formulation

Definition

A **bilinear form** \(b(\cdot, \cdot) \) is a mapping \(b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} \) on a linear space \(\mathcal{V} \) so that the following holds:

1. \(b \) is linear in both components, so \(L_v[w] = b(v, w) \) and \(L_w[v] = b(v, w) \) are both linear maps.

 Examples:
 1. \(\mathcal{V} = \{ w | w(x) = \sum_{k=1}^{n' \times n} c_k \phi_k(x) \} \) where \(u = \sum_{k=1}^{n' \times n} a_k \phi_k \), \(v = \sum_{k=1}^{n' \times n} b_k \phi_k \). We define \(b(u, v) = \sum_{k} w_k a_k b_k \).

 When \(w_k > 0 \) and \(\phi_k \) are linearly independent, this is an inner-product.
 2. \(\mathcal{V} = \mathbb{R}^m \) and \(b(x, y) = x \cdot y \) for \(x, y \in \mathbb{R}^n \).
 3. \(\mathcal{V} = W^{m \times 2}(\Omega) \) with \(\Omega \subset \mathbb{R}^n \) where \(\langle u, v \rangle_m = \sum_{|\alpha| \leq m} (\partial^\alpha u, \partial^\alpha v)_{L^2(\Omega)} \).
A **bilinear form** \(b(\cdot, \cdot) \) is a mapping \(b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} \) on a linear space \(\mathcal{V} \) so that the following holds:

i. \(b \) is linear in both components, so \(L_v[w] = b(v, w) \) and \(L_w[v] = b(v, w) \) are both linear maps.

ii. \(b \) is symmetric so \(b(v, w) = b(w, v) \).
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : V \times V \to \mathbb{R}$ on a linear space V so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties
Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0$, $\forall v \in \mathcal{V}$
A **bilinear form** \(b(\cdot, \cdot) \) is a mapping \(b : \mathcal{V} \times \mathcal{V} \to \mathbb{R} \) on a linear space \(\mathcal{V} \) so that the following holds:

i. \(b \) is linear in both components, so \(L_v[w] = b(v, w) \) and \(L_w[v] = b(v, w) \) are both linear maps.

ii. \(b \) is symmetric so \(b(v, w) = b(w, v) \)

An **inner-product** is a symmetric bilinear form with the additional properties

iii. \(b(v, v) \geq 0, \ \forall v \in \mathcal{V} \)

iv. \(b(v, v) = 0, \iff v \equiv 0. \)
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0, \ \forall v \in \mathcal{V}$

iv. $b(v, v) = 0, \iff v \equiv 0$.

Examples:
Variational Formulation

Definition

A **bilinear form** \(b(\cdot, \cdot) \) is a mapping \(b : \mathcal{V} \times \mathcal{V} \to \mathbb{R} \) on a linear space \(\mathcal{V} \) so that the following holds:

i. \(b \) is linear in both components, so \(L_v[w] = b(v, w) \) and \(L_w[v] = b(v, w) \) are both linear maps.

ii. \(b \) is symmetric so \(b(v, w) = b(w, v) \)

An **inner-product** is a symmetric bilinear form with the additional properties

iii. \(b(v, v) \geq 0, \forall v \in \mathcal{V} \)

iv. \(b(v, v) = 0, \iff v \equiv 0 \).

Examples:
Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0$, $\forall v \in \mathcal{V}$

iv. $b(v, v) = 0$, $\iff v \equiv 0$.

Examples:

i. $\mathcal{V} = \{w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0$, $\forall v \in \mathcal{V}$

iv. $b(v, v) = 0 \iff v \equiv 0$.

Examples:

i. $\mathcal{V} = \{ w \mid w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Variational Formulation

Definition

A **bilinear form** \(b(\cdot, \cdot) \) is a mapping \(b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} \) on a linear space \(\mathcal{V} \) so that the following holds:

i. \(b \) is linear in both components, so \(L_v[w] = b(v, w) \) and \(L_w[v] = b(v, w) \) are both linear maps.

ii. \(b \) is symmetric so \(b(v, w) = b(w, v) \)

An **inner-product** is a symmetric bilinear form with the additional properties

iii. \(b(v, v) \geq 0, \quad \forall v \in \mathcal{V} \)

iv. \(b(v, v) = 0, \quad \iff \quad v \equiv 0. \)

Examples:

i. \(\mathcal{V} = \{ w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \} \) where \(u = \sum_{k=1}^{n} a_k \phi_k \), \(v = \sum_{k=1}^{n} b_k \phi_k \) we define \(b(u, v) = \sum_k w_k a_k b_k \).
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0$, $\forall v \in \mathcal{V}$

iv. $b(v, v) = 0$, $\iff v \equiv 0$.

Examples:

i. $\mathcal{V} = \{w|w(x) = \sum_{k=1}^{n} c_k \phi_k(x)\}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$.

When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0, \forall v \in \mathcal{V}$

iv. $b(v, v) = 0, \iff v \equiv 0$.

Examples:

i. $\mathcal{V} = \{ w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$. When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

ii. $\mathcal{V} = \mathbb{R}^m$ and $b(x, y) = x \cdot y$ for $x, y \in \mathbb{R}^n$.
Variational Formulation

Definition

A **bilinear form** \(b(\cdot, \cdot) \) is a mapping \(b : \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R} \) on a linear space \(\mathcal{V} \) so that the following holds:

i. \(b \) is linear in both components, so \(L_v[w] = b(v, w) \) and \(L_w[v] = b(v, w) \) are both linear maps.

ii. \(b \) is symmetric so \(b(v, w) = b(w, v) \)

An **inner-product** is a symmetric bilinear form with the additional properties

iii. \(b(v, v) \geq 0, \forall v \in \mathcal{V} \)

iv. \(b(v, v) = 0, \iff v \equiv 0. \)

Examples:

i. \(\mathcal{V} = \{ w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \} \) where \(u = \sum_{k=1}^{n} a_k \phi_k, \ v = \sum_{k=1}^{n} b_k \phi_k \) we define \(b(u, v) = \sum_k w_k a_k b_k. \)

When \(w_k > 0 \) and \(\phi_k \) are linearly independent this is an inner-product.

ii. \(\mathcal{V} = \mathbb{R}^m \) and \(b(x, y) = x \cdot y \) for \(x, y \in \mathbb{R}^n. \)

iii. \(\mathcal{V} = W_2^k(\Omega) \) with \(\Omega \subset \mathbb{R}^n \)
Variational Formulation

Definition

A **bilinear form** $b(\cdot, \cdot)$ is a mapping $b : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ on a linear space \mathcal{V} so that the following holds:

i. b is linear in both components, so $L_v[w] = b(v, w)$ and $L_w[v] = b(v, w)$ are both linear maps.

ii. b is symmetric so $b(v, w) = b(w, v)$

An **inner-product** is a symmetric bilinear form with the additional properties

iii. $b(v, v) \geq 0$, $\forall v \in \mathcal{V}$

iv. $b(v, v) = 0$, \iff $v \equiv 0$.

Examples:

i. $\mathcal{V} = \{ w | w(x) = \sum_{k=1}^{n} c_k \phi_k(x) \}$ where $u = \sum_{k=1}^{n} a_k \phi_k$, $v = \sum_{k=1}^{n} b_k \phi_k$ we define $b(u, v) = \sum_k w_k a_k b_k$.
 When $w_k > 0$ and ϕ_k are linearly independent this is an inner-product.

ii. $\mathcal{V} = \mathbb{R}^m$ and $b(x, y) = x \cdot y$ for $x, y \in \mathbb{R}^n$.

iii. $\mathcal{V} = W^k_2(\Omega)$ with $\Omega \subset \mathbb{R}^n$ with $(u, v)_m = \sum_{|\alpha| \leq m} (\partial^\alpha u, \partial^\alpha u)_{L^2(\Omega)}$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Definition

A bilinear form \(a(\cdot,\cdot) \) is bounded if there exists \(C < \infty \) so that
\[
|a(v,w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being continuous.

A bilinear form \(a(\cdot,\cdot) \) is coercive on \(V \subset H \) if there exists an \(\alpha > 0 \) so that
\[
a(v,v) \geq \alpha \|v\|_H^2,
\]

Lemma

Consider \(V \subset H \) a linear subspace of a Hilbert space \(H \).

If \(a \) is continuous on \(H \) and coercive on \(V \) then the space \((V,a(\cdot,\cdot)) \) is a Hilbert space.

Proof:

Since \(a(\cdot,\cdot) \) is coercive we have
\[
a(v,v) = 0 \rightarrow v \equiv 0,
\]

so \(a \) is an inner-product and \(\|v\|_E = \sqrt{a(v,v)} \) is a norm.

We just need to show completeness.
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.$$
Definition

A bilinear form \(a(\cdot, \cdot) \) is **bounded** if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.
\]
A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C \|v\|_V \|w\|_V, \, \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.
A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C\|v\|_V\|w\|_V, \ \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset H$ if there exists an α so that
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot) \) is **bounded** if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C\|v\|_V\|w\|_V, \quad \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being **continuous**.

A bilinear form \(a(\cdot, \cdot) \) is **coercive** on \(V \subset \mathcal{H} \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha\|v\|_H^2
\]

Lemma

Consider \(V \subset \mathcal{H} \) a linear subspace of a Hilbert space \(\mathcal{H} \).

If \(a \) is continuous on \(\mathcal{H} \) and coercive on \(V \) then the space \((V, a(\cdot, \cdot))\) is a Hilbert space.

Proof:

Since \(a(\cdot, \cdot) \) is coercive we have

\[
a(v, v) = 0 \rightarrow v \equiv 0,
\]

so \(a \) is an inner-product and \(\|v\|_E = \sqrt{a(v, v)} \) is a norm.

We just need to show completeness.
Definition

A bilinear form \(a(\cdot, \cdot) \) is **bounded** if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being **continuous**.

A bilinear form \(a(\cdot, \cdot) \) is **coercive** on \(V \subset H \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha \|v\|^2_H
\]

Lemma

Consider \(V \subset H \) a linear subspace of a Hilbert space \(H \).
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C\|v\|_V\|w\|_V, \quad \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset H$ if there exists an α so that

$$a(v, v) \geq \alpha\|v\|^2_H$$

Lemma

Consider $V \subset H$ a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C \|v\|_V \|w\|_V, \ \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset \mathcal{H}$ if there exists an α so that

$$a(v, v) \geq \alpha \|v\|_\mathcal{H}^2$$

Lemma

Consider $V \subset \mathcal{H}$ a linear subspace of a Hilbert space \mathcal{H}. If a is continuous on \mathcal{H} and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot) \) is **bounded** if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C\|v\|_V \|w\|_V, \ \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being **continuous**.

A bilinear form \(a(\cdot, \cdot) \) is **coercive** on \(V \subset H \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha \|v\|_H^2
\]

Lemma

Consider \(V \subset H \) a linear subspace of a Hilbert space \(H \). If \(a \) is continuous on \(H \) and coercive on \(V \) then the space \((V, a(\cdot, \cdot)) \) is a Hilbert space.

Proof:

Since \(a(\cdot, \cdot) \) is coercive we have \(a(v, v) = 0 \rightarrow v \equiv 0 \),

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
A bilinear form $a(\cdot, \cdot)$ is \textbf{bounded} if there exists $C < \infty$ so that

$$|a(v, w)| \leq C\|v\|_V\|w\|_V, \ \forall v, w \in V.$$

Since a is linear this is equivalent to being \textbf{continuous}.

A bilinear form $a(\cdot, \cdot)$ is \textbf{coercive} on $V \subset H$ if there exists an α so that

$$a(v, v) \geq \alpha\|v\|_H^2$$

Consider $V \subset H$ a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

\textbf{Proof:}

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v) = 0 \rightarrow v \equiv 0$, so a is an inner-product and $\|v\|_E = \sqrt{a(v, v)}$ is a norm.
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C\|v\|_V\|w\|_V, \quad \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset H$ if there exists an α so that

$$a(v, v) \geq \alpha\|v\|_H^2$$

Lemma

Consider $V \subset H$ a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof:

Since $a(\cdot, \cdot)$ is coercive we have $a(v, v) = 0 \rightarrow v \equiv 0$, so a is an inner-product and $\|v\|_E = \sqrt{a(v, v)}$ is a norm. We just need to show completeness.
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot) \) is \textbf{bounded} if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C\|v\|_V\|w\|_V, \ \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being \textbf{continuous}.

A bilinear form \(a(\cdot, \cdot) \) is \textbf{coercive} on \(V \subset H \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha\|v\|_H^2
\]

Lemma

Consider \(V \subset H \) a linear subspace of a Hilbert space \(H \). If \(a \) is continuous on \(H \) and coercive on \(V \) then the space \((V, a(\cdot, \cdot)) \) is a Hilbert space.

Proof (continued):
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot) \) is \textbf{bounded} if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C\|v\|\|w\|, \ \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being \textbf{continuous}.

A bilinear form \(a(\cdot, \cdot) \) is \textbf{coercive} on \(V \subset H \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha\|v\|_H^2
\]

Lemma

Consider \(V \subset H \) a linear subspace of a Hilbert space \(H \). If \(a \) is continuous on \(H \) and coercive on \(V \) then the space \((V, a(\cdot, \cdot))\) is a Hilbert space.

Proof (continued):

Suppose \(\{v_k\} \) is a Cauchy sequence in \((V, \| \cdot \|_E)\).
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot) \) is **bounded** if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C \|v\|_V \|w\|_V, \ \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being **continuous**.

A bilinear form \(a(\cdot, \cdot) \) is **coercive** on \(V \subset H \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha \|v\|^2_H
\]

Lemma

Consider \(V \subset H \) a linear subspace of a Hilbert space \(H \). If \(a \) is continuous on \(H \) and coercive on \(V \) then the space \((V, a(\cdot, \cdot))\) is a Hilbert space.

Proof (continued):

Suppose \(\{v_k\} \) is a Cauchy sequence in \((V, \| \cdot \|_E)\), then by coercivity \(\{v_k\} \) is also Cauchy in \((H, \| \cdot \|)\).
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C\|v\|_V\|w\|_V, \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset H$ if there exists an α so that

$$a(v, v) \geq \alpha\|v\|^2_H$$

Lemma

Consider $V \subset H$ a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(H, \|\cdot\|)$. By completeness of H there exists a $v \in H$ so $v_n \to v$ in $\|\cdot\|_H$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C \|v\|_V \|w\|_V, \ \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset H$ if there exists an α so that

$$a(v, v) \geq \alpha \|v\|_H^2$$

Lemma

Consider $V \subset H$ a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(H, \|\cdot\|_H)$. By completeness of H there exists a $v \in H$ so $v_n \to v$ in $\|\cdot\|_H$. Since V is closed in H by def. of a subspace we have $v \in V$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot) \) is **bounded** if there exists \(C < \infty \) so that

\[
|a(v, w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.
\]

Since \(a \) is linear this is equivalent to being **continuous**.

A bilinear form \(a(\cdot, \cdot) \) is **coercive** on \(V \subset \mathcal{H} \) if there exists an \(\alpha \) so that

\[
a(v, v) \geq \alpha \|v\|_H^2
\]

Lemma

Consider \(V \subset \mathcal{H} \) a linear subspace of a Hilbert space \(\mathcal{H} \). If \(a \) is continuous on \(\mathcal{H} \) and coercive on \(V \) then the space \((V, a(\cdot, \cdot))\) is a Hilbert space.

Proof (continued):

Suppose \(\{v_k\} \) is a Cauchy sequence in \((V, \|\cdot\|_E)\), then by coercivity \(\{v_k\} \) is also Cauchy in \((\mathcal{H}, \|\cdot\|)\). By completeness of \(\mathcal{H} \) there exists a \(v \in \mathcal{H} \) so \(v_n \to v \) in \(\|\cdot\|_H \). Since \(V \) is closed in \(\mathcal{H} \) by def. of a subspace we have \(v \in V \). Now \(\|v - v_k\|_E \leq c \|v - v_k\|_H \) since \(a \) is bounded,
Variational Formulation

Definition

A bilinear form $a(\cdot, \cdot)$ is **bounded** if there exists $C < \infty$ so that

$$|a(v, w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.$$

Since a is linear this is equivalent to being **continuous**.

A bilinear form $a(\cdot, \cdot)$ is **coercive** on $V \subset H$ if there exists an α so that

$$a(v, v) \geq \alpha \|v\|_H^2.$$

Lemma

Consider $V \subset H$ a linear subspace of a Hilbert space H. If a is continuous on H and coercive on V then the space $(V, a(\cdot, \cdot))$ is a Hilbert space.

Proof (continued):

Suppose $\{v_k\}$ is a Cauchy sequence in $(V, \|\cdot\|_E)$, then by coercivity $\{v_k\}$ is also Cauchy in $(H, \|\cdot\|)$. By completeness of H there exists a $v \in H$ so $v_n \to v$ in $\|\cdot\|_H$. Since V is closed in H by def. of a subspace we have $v \in V$. Now $\|v - v_k\|_E \leq c \|v - v_k\|_H$ since a is bounded, so v_k converges to v in $\|\cdot\|_E$ showing V is complete.
Variational Formulation

Definition

A bilinear form \(a(\cdot, \cdot)\) is **bounded** if there exists \(C < \infty\) so that

\[
|a(v, w)| \leq C \|v\|_V \|w\|_V, \quad \forall v, w \in V.
\]

Since \(a\) is linear this is equivalent to being **continuous**.

A bilinear form \(a(\cdot, \cdot)\) is **coercive** on \(V \subset H\) if there exists an \(\alpha\) so that

\[
a(v, v) \geq \alpha \|v\|^2_H
\]

Lemma

Consider \(V \subset H\) a linear subspace of a Hilbert space \(H\). If \(a\) is continuous on \(H\) and coercive on \(V\) then the space \((V, a(\cdot, \cdot))\) is a Hilbert space.

Proof (continued):

Suppose \(\{v_k\}\) is a Cauchy sequence in \((V, \|\cdot\|_E)\), then by coercivity \(\{v_k\}\) is also Cauchy in \((H, \|\cdot\|)\). By completeness of \(H\) there exists a \(v \in H\) so \(v_n \to v\) in \(\|\cdot\|_H\). Since \(V\) is closed in \(H\) by def. of a subspace we have \(v \in V\). Now \(\|v - v_k\|_E \leq c\|v - v_k\|_H\) since \(a\) is bounded, so \(v_k\) converges to \(v\) in \(\|\cdot\|_E\) showing \(V\) is complete. □
Variational Formulation

Definition

A symmetric variational problem satisfies the following:

i. Given \(F \in V' \), find \(u \) satisfying
\[
(a(u, v)) = F[v], \quad \forall v \in V,
\]
where

ii. \((H, (\cdot, \cdot))\) is a Hilbert space,

iii. \(V \) is a subspace of \(H \),

iv. \(a(\cdot, \cdot) \) is a symmetric bilinear form that is bounded on \(H \) and coercive on \(V \).

Theorem

For the variational problem \((\ast)\), if the conditions ii-iv hold then there exists a unique solution \(u \in V \) solving \((\ast)\).
Definition

A symmetric variational problem satisfies the following

1. Given $F \in V'$, find u satisfying
 \[a(u, v) = F(v), \quad \forall v \in V, \]
 \[(*) \]
2. $(H, (\cdot, \cdot))$ is a Hilbert space,
3. V is a subspace of H,
4. $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on H and coercive on V.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in V$ solving $(*)$.

Paul J. Atzberger, UCSB
http://atzberger.org/
A symmetric variational problem satisfies the following

i. Given $F \in \mathcal{V}'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (*)$$

where
Variational Formulation

Definition

A **symmetric variational problem** satisfies the following:

1. Given $F \in \mathcal{V}'$, find u satisfying
 \[a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (\ast) \]
 where

2. $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space,
Variational Formulation

Definition

A **symmetric variational problem** satisfies the following

i. Given $F \in H'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in H,$$ \hfill (\star)$$

where

ii. $(H, (\cdot, \cdot))$ is a Hilbert space,

iii. V is a subspace of H,
Variational Formulation

Definition

A *symmetric variational problem* satisfies the following

1. Given \(F \in \mathcal{V}' \), find \(u \) satisfying
 \[
 a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (*)
 \]
 where

2. \((\mathcal{H}, (\cdot, \cdot))\) is a Hilbert space,

3. \(\mathcal{V} \) is a subspace of \(\mathcal{H} \),

4. \(a(\cdot, \cdot) \) is a symmetric bilinear form that is bounded on \(\mathcal{H} \) and coercive on \(\mathcal{V} \).
Variational Formulation

Definition

A **symmetric variational problem** satisfies the following

i. Given $F \in \mathcal{V}'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (\ast)$$

where

ii. $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,

iii. \mathcal{V} is a subspace of \mathcal{H},

iv. $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on \mathcal{V}.

Theorem

For the variational problem (\ast), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (\ast).

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Variational Formulation

Definition

A **symmetric variational problem** satisfies the following

i. Given $F \in V'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in V, \quad (\ast)$$

where

ii. $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space,

iii. V is a subspace of $\mathcal{H},$

iv. $a(\cdot, \cdot)$ is a symmetric bilinear form that is bounded on \mathcal{H} and coercive on V.

Theorem

For the variational problem (\ast), if the conditions ii-iv hold then there exists a unique solution $u \in V$ solving (\ast).
Symmetric Variational Problem

Given $F \in \mathcal{V}'$, find u satisfying
\[a(u, v) = F[v], \quad \forall v \in \mathcal{V} \] (*)

ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem (*), if the conditions ii-iv hold then there exists a unique solution $u \in \mathcal{V}$ solving (*).

Proof:
Variational Formulation

Symmetric Variational Problem

Given \(F \in \mathcal{V}' \), find \(u \) satisfying
\[
a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (\ast)
\]

ii. \((\mathcal{H}, (\cdot, \cdot))\) Hilbert space, iii. \(\mathcal{V} \) is a subspace of \(\mathcal{H} \),
iv. \(a \) symmetric, bounded on \(\mathcal{H} \), coercive on \(\mathcal{V} \).

Theorem

For the variational problem \((\ast)\), if the conditions ii-iv hold then there exists a unique solution \(u \in \mathcal{V} \) solving \((\ast)\).

Proof:
The conditions ensure that \(a(\cdot, \cdot) \) is an inner-product on \(\mathcal{V} \) and that \((\mathcal{V}, a(\cdot, \cdot))\) is a Hilbert space.
Variational Formulation

Symmetric Variational Problem

Given $F \in V'$, find u satisfying

$$a(u, v) = F[v], \; \forall v \in V \quad (*)$$

- ii. $(H, (\cdot, \cdot))$ Hilbert space,
- iii. V is a subspace of H,
- iv. a symmetric, bounded on H, coercive on V.

Theorem

For the variational problem $(*)$, if the conditions ii-iv hold then there exists a unique solution $u \in V$ solving $(*)$.

Proof:
The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on V and that $(V, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.
Symmetric Variational Problem

Given $F \in \mathcal{V}'$, find u satisfying
\[a(u, v) = F[v], \quad \forall v \in \mathcal{V} \quad (*) \]

ii. $(\mathcal{H}, (\cdot, \cdot))$ Hilbert space, iii. \mathcal{V} is a subspace of \mathcal{H},
iv. a symmetric, bounded on \mathcal{H}, coercive on \mathcal{V}.

Theorem

For the variational problem $(*)$, if the conditions ii–iv hold then there exists a unique solution $u \in \mathcal{V}$ solving $(*)$.

Proof:
The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on \mathcal{V} and that $(\mathcal{V}, a(\cdot, \cdot))$ is a Hilbert space. By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.
This implies there exists u satisfying $(*)$.
Variational Formulation

Symmetric Variational Problem
Given $F \in V'$, find u satisfying
\[
a(u, v) = F[v], \quad \forall v \in V \quad (\ast)
\]
ii. $(H, (\cdot, \cdot))$ Hilbert space, iii. V is a subspace of H,
iv. a symmetric, bounded on H, coercive on V.

Theorem
For the variational problem (\ast), if the conditions ii-iv hold then there exists a unique solution $u \in V$ solving (\ast).

Proof:
The conditions ensure that $a(\cdot, \cdot)$ is an inner-product on V and that $(V, a(\cdot, \cdot))$ is a Hilbert space.
By Riesz Representation Theorem, all bounded linear functionals have representative u in the inner-product.
This implies there exists u satisfying (\ast). ■
The Ritz-Galerkin Approximation is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h,$$

Theorem

For the Ritz-Galerkin approximation problem $(\ast \ast)$, if the conditions ii-iv hold then there exists a unique solution $u_h \in V_h$ solving $(\ast \ast)$.

Proof:

This follows since $(V_h, a(\cdot, \cdot))$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_h that satisfies $(\ast \ast)$.

\blacksquare
Variational Formulation

Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace \(\mathcal{V}_h \subset \mathcal{V} \) and \(F \in \mathcal{V}' \). The problem is to find \(u_h \in \mathcal{V}_h \) so that

\[
\text{a}(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h,
\]

\[\text{(**)\quad \text{Theorem}}\]

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution \(u_h \in \mathcal{V}_h \) solving (**).

Proof:

This follows since \((\mathcal{V}_h, \text{a}(\cdot, \cdot))\) is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative \(u_h \) that satisfies (**).
The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that
\[
a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (**)
\]
Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (**).$$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).
Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (**)$$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in \mathcal{V}_h$ solving (**).
Variational Formulation

Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace \(\mathcal{V}_h \subset \mathcal{V} \) and \(F \in \mathcal{V}' \). The problem is to find \(u_h \in \mathcal{V}_h \) so that

\[
a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h,
\]

\((**) \)

Theorem

For the Ritz-Galerkin approximation problem (**)\(, \) if the conditions ii-iv hold then there exists a unique solution \(u_h \in \mathcal{V}_h \) solving (**).
Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h, \quad (**)$$

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in V_h$ solving (**).

Proof:
Variational Formulation

Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h,$$

(***)

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in V_h$ solving (**).

Proof:

This follows since $(V_h, a(\cdot, \cdot))$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_h that satisfies (**).
Variational Formulation

Definition

The **Ritz-Galerkin Approximation** is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h,$$

(***)

Theorem

For the Ritz-Galerkin approximation problem (**), if the conditions ii-iv hold then there exists a unique solution $u_h \in V_h$ solving (**).

Proof:

This follows since $(V_h, a(\cdot, \cdot))$ is also a Hilbert space and we can again invoke the Riesz Representation Theorem to obtain representative u_h that satisfies (**). ■
Lemma (Galerkin Orthogonality):

Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in V_h.$$

Proof: Consider

$$a(u, v) = F[v], \quad v \in V$$

$$a(u_h, v) = F[v], \quad v \in V_h$$

Subtracting the equations we have

$$a(u - u_h, v) = 0, \quad v \in V_h.$$

\blacksquare
Lemma (Galerkin Orthogonality):
Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \forall v \in V_h.$$
Lemma (Galerkin Orthogonality):

Let u be solution of ($*$) and u_h the solution of ($**$), then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in \mathcal{V}_h.$$
Lemma (Galerkin Orthogonality):

Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in \mathcal{V}_h.$$

Proof:
Lemma (Galerkin Orthogonality):

Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in V_h.$$

Proof:
Consider
Lemma (Galerkin Orthogonality):

Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in V_h.$$

Proof:
Consider

$$a(u, v) = F[v], \quad v \in V \quad a(u_h, v) = F[v], \quad v \in V_h$$
Lemma (Galerkin Orthogonality):
Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in V_h.$$

Proof:
Consider

$$a(u, v) = F[v], \quad v \in V \quad \quad a(u_h, v) = F[v], \quad v \in V_h$$

Subtracting the equations we have
Lemma (Galerkin Orthogonality):
Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

\[a(u - u_h, v) = 0, \quad \forall v \in V_h. \]

Proof:
Consider

\[a(u, v) = F[v], \quad v \in V \quad \quad \quad a(u_h, v) = F[v], \quad v \in V_h \]

Subtracting the equations we have

\[a(u - u_h, v) = 0, \quad v \in V_h. \]
Lemma (Galerkin Orthogonality):

Let u be solution of (\ast) and u_h the solution of $(\ast\ast)$, then the following orthogonality condition holds

$$a(u - u_h, v) = 0, \quad \forall v \in \mathcal{V}_h.$$

Proof:

Consider

$$a(u, v) = F[v], \quad v \in \mathcal{V}$$

$$a(u_h, v) = F[v], \quad v \in \mathcal{V}_h$$

Subtracting the equations we have

$$a(u - u_h, v) = 0, \quad v \in \mathcal{V}_h.$$
Lemma:

The solution of \((\ast\ast)\) for \(u_h \in V_h\) satisfies
\[
\|u - u_h\|_E = \min_{v \in V_h} \|u - v\|_E.
\]

Lemma (Rayleigh-Ritz Method):
For the symmetric variational problem \((\ast\ast)\) the \(u_h\) minimizes the quadratic energy functional over all \(v \in V_h\) given by
\[
E[v] = a(v, v) - 2F[v].
\]
Lemma:
The solution of \((**)\) for \(u_h \in \mathcal{V}_h\) satisfies \(\|u - u_h\|_E = \min_{v \in \mathcal{V}_h} \|u - v\|_E\).
Lemma:
The solution of (**) for $u_h \in \mathcal{V}_h$ satisfies $\| u - u_h \|_E = \min_{v \in \mathcal{V}_h} \| u - v \|_E$.

Lemma (Rayleigh-Ritz Method):

Paul J. Atzberger, UCSB

http://atzberger.org/
Lemma:

The solution of \((**)\) for \(u_h \in \mathcal{V}_h\) satisfies \(\|u - u_h\|_E = \min_{v \in \mathcal{V}_h} \|u - v\|_E\).

Lemma (Rayleigh-Ritz Method):

For the symmetric variational problem \((**)\) the \(u_h\) minimizes the quadratic energy functional over all \(v \in \mathcal{V}_h\) given by
Lemma:
The solution of (**) for \(u_h \in \mathcal{V}_h \) satisfies \(\| u - u_h \|_E = \min_{v \in \mathcal{V}_h} \| u - v \|_E \).

Lemma (Rayleigh-Ritz Method):
For the symmetric variational problem (**) the \(u_h \) minimizes the quadratic energy functional over all \(v \in \mathcal{V}_h \) given by
\[
E[v] = a(v, v) - 2F[v].
\]
Variational Formulation

Definition

A non-symmetric variational problem satisfies the following:

i. Given $F \in V'$, find u satisfying

\[a(u,v) = F[v], \quad \forall v \in V, \quad (***) \]

where

ii. $(H, (\cdot, \cdot))$ is a Hilbert space,

iii. V is a subspace of H,

iv. $a(\cdot, \cdot)$ is a bilinear form (not-necessarily symmetric)

v. $a(\cdot, \cdot)$ is bounded on H and coercive on V.
A non-symmetric variational problem satisfies the following

\[a(u, v) = F(v), \quad \forall v \in V, \quad (\ast\ast\ast) \]

where

- \(H \) is a Hilbert space,
- \(V \) is a subspace of \(H \),
- \(a(\cdot, \cdot) \) is a bilinear form (not-necessarily symmetric)
- \(a \) is bounded on \(H \) and coercive on \(V \).
Definition

A **non-symmetric variational problem** satisfies the following

i. Given $F \in V'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in V, \quad (***)$$

where
Variational Formulation

Definition

A non-symmetric variational problem satisfies the following

i. Given $F \in \mathcal{V}'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (***)$$

where

ii. $(\mathcal{H}, \cdot, \cdot)$ is a Hilbert space,
Definition

A **non-symmetric variational problem** satisfies the following

i. Given $F \in \mathcal{V}'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (***)$$

where

ii. $(\mathcal{H}, \langle \cdot, \cdot \rangle)$ is a Hilbert space,

iii. \mathcal{V} is a subspace of \mathcal{H},
Variational Formulation

Definition

A **non-symmetric variational problem** satisfies the following

i Given \(F \in \mathcal{V}' \), find \(u \) satisfying

\[
a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (***)
\]

where

ii \((\mathcal{H}, (\cdot, \cdot))\) is a Hilbert space,

iii \(\mathcal{V} \) is a subspace of \(\mathcal{H} \),

iv \(a(\cdot, \cdot) \) is a bilinear form (not-necessarily symmetric)
A non-symmetric variational problem satisfies the following:

i. Given $F \in \mathcal{V}'$, find u satisfying

$$a(u, v) = F[v], \quad \forall v \in \mathcal{V}, \quad (***)$$

where

ii. $(\mathcal{H}, (\cdot, \cdot))$ is a Hilbert space,

iii. \mathcal{V} is a subspace of \mathcal{H},

iv. $a(\cdot, \cdot)$ is a bilinear form (not-necessarily symmetric)

v. a is bounded on \mathcal{H} and coercive on \mathcal{V}.
Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h,$$

(∗∗∗)

We ideally would like to know the following:

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example: Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1],$$

$$u'(0) = u'(1) = 0.$$

A weak formulation is on $V = H^1([0, 1])$, $F[v] = (f, v)$, with

$$a(u, v) = \int_0^1 u' v' + u' v + uv \, dx,$$

which is not symmetric given $u' v$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
The **Galerkin Approximation** is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \forall v \in V_h,$$

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1],$$

$$u'(0) = u'(1) = 0.$$

A weak formulation is on $V = H^1(\[0, 1\]), F[v] = (f, v), \text{ with } a(u, v) = \int_0^1 u'v' + u'v + uv \, dx,$$

which is not symmetric given $u'v$.
Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***$$

We ideally would like to know the following:

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example: Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1],$$

$$u'(0) = u'(1) = 0.$$
Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h, \quad (***)$$

We ideally would like to know the following:

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example: Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1], \quad u'(0) = u'(1) = 0.$$

A weak formulation is on $V = H^1([0, 1])$, $F[v] = (f, v)$, with $a(u, v) = \int_0^1 u'v' + uv\,dx$, which is not symmetric given $u'v$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace \(\mathcal{V}_h \subset \mathcal{V} \) and \(F \in \mathcal{V}' \). The problem is to find \(u_h \in \mathcal{V}_h \) so that

\[
a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***)
\]

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?

Example: Consider PDE

\[-u'' + u' + u = f, \quad x \in [0, 1],
\]

A weak formulation is on \(\mathcal{V} = H^1([0, 1]), \)

\[F[v] = (f, v),\]

with \(a(u, v) = \int_0^1 u'v' + u'v + uv dx \), which is not symmetric given \(u'v \).
Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \ \forall v \in \mathcal{V}_h, \ (***)$$

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?

Example: Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1],$$

A weak formulation is on $\mathcal{V} = H^1([0, 1])$, $F[v] = (f, v)$, with

$$a(u, v) = \int_0^1 u'v' + u'v + uv \, dx,$$

which is not symmetric given $u'v$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***)$$

We ideally would like to know the following:

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, \quad x \in [0,1],$$

with boundary conditions $u'(0) = u'(1) = 0$. A weak formulation is on $\mathcal{V} = H^1([0,1])$, $F[v] = (f, v)$, with $a(u, v) = \int_0^1 u'v' + u'v + uv\,dx$, which is not symmetric given $u'v$.
Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***$$

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1],$$

$$u'(0) = u'(1) = 0.$$

A weak formulation is on $\mathcal{V} = H^1([0, 1])$, $F[v] = (f, v)$, with

$$a(u, v) = \int_0^1 u'v' + u'v + uv \, dx,$$

which is not symmetric given $u'v$.

Paul J. Atzberger, UCSB

http://atzberger.org/
Variational Formulation

Definition

The Galerkin Approximation is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***)$$

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1], \quad u'(0) = u'(1) = 0.$$
Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $\mathcal{V}_h \subset \mathcal{V}$ and $F \in \mathcal{V}'$. The problem is to find $u_h \in \mathcal{V}_h$ so that

$$ a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***) $$

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example:
Consider PDE

$$ -u'' + u' + u = f, \quad x \in [0,1], \quad u'(0) = u'(1) = 0. $$

A weak formulation is on $\mathcal{V} = H^1([0,1]), \quad F[v] = (f, v)$, with
Variational Formulation

Definition

The Gallarkin Approximation is based on a finite-dimensional subspace \(\mathcal{V}_h \subset \mathcal{V} \) and \(F \in \mathcal{V}' \). The problem is to find \(u_h \in \mathcal{V}_h \) so that

\[
a(u_h, v) = F[v], \quad \forall v \in \mathcal{V}_h, \quad (***)
\]

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for \(u_h \) in approximating \(u \)?
3. What conditions might result in non-symmetric bilinear forms?

Example:
Consider PDE

\[-u'' + u' + u = f, \quad x \in [0, 1], \quad u'(0) = u'(1) = 0.\]

A weak formulation is on \(\mathcal{V} = H^1([0, 1]), \quad F[v] = (f, v), \) with

\[
a(u, v) = \int_0^1 u'v' + u'v + uv dx,
\]
Variational Formulation

Definition

The **Galerkin Approximation** is based on a finite-dimensional subspace $V_h \subset V$ and $F \in V'$. The problem is to find $u_h \in V_h$ so that

$$a(u_h, v) = F[v], \quad \forall v \in V_h,$$

(***)

We ideally would like to know the following

1. Does a solution exist? Is the solution unique?
2. What error estimates hold for u_h in approximating u?
3. What conditions might result in non-symmetric bilinear forms?

Example:

Consider PDE

$$-u'' + u' + u = f, \quad x \in [0, 1], \quad u'(0) = u'(1) = 0.$$

A weak formulation is on $V = H^1([0, 1]), \quad F[v] = (f, v)$, with

$$a(u, v) = \int_0^1 u'v' + u'v + uvdx,$$

which is not symmetric given $u'v$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
A contraction map is any mapping T on a function space V that satisfies for some $M < 1$:
\[
\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|.
\]

A fixed point u of T is any function satisfying $u = Tu$.

Lemma (Fix Point Theorem) If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Definition (Contraction Mapping)

A **contraction map** is any mapping T on a function space \mathcal{V} that satisfies for some $M < 1$

$$\|Tv_1 - Tv_2\| \leq M \|v_1 - v_2\|.$$

A **fixed point** u of T is any function satisfying $u = Tu$.

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.
Variational Formulation

Definition (Contraction Mapping)

A **contraction map** is any mapping T on a function space \mathcal{V} that satisfies for some $M < 1$

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|.$$

A **fixed point** u of T is any function satisfying $u = Tu$.

Lemma (Fixed Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Definition (Contraction Mapping)

A **contraction map** is any mapping \(T \) on a function space \(V \) that satisfies for some \(M < 1 \)

\[
\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|.
\]

A **fixed point** \(u \) of \(T \) is any function satisfying
A \textit{contraction map} is any mapping T on a function space V that satisfies for some $M < 1$

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|.$$

A \textit{fixed point} u of T is any function satisfying

$$u = Tu.$$
Definition (Contraction Mapping)

A **contraction map** is any mapping T on a function space V that satisfies for some $M < 1$

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|.$$

A **fixed point** u of T is any function satisfying

$$u = Tu.$$
Variational Formulation

Definition (Contraction Mapping)

A **contraction map** is any mapping T on a function space \mathcal{V} that satisfies for some $M < 1$

\[\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|. \]

A **fixed point** u of T is any function satisfying

\[u = Tu. \]

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence.
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$

where $0 \leq M < 1$.

By the fix-point property

$$\|v_1 - v_2\| \leq M\|v_1 - v_2\|.$$

This implies $\|v_1 - v_2\| = 0 \rightarrow v_1 = v_2$.

We next show existence.
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$
Lemma (Fix Point Theorem)
If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$

where $0 \leq M < 1$.

Paul J. Atzberger, UCSB
http://atzberger.org/
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$

where $0 \leq M < 1$. By the fix-point property
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$

where $0 \leq M < 1$. By the fix-point property

$$\|v_1 - v_2\| \leq M\|v_1 - v_2\|.$$
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$

where $0 \leq M < 1$. By the fix-point property

$$\|v_1 - v_2\| \leq M\|v_1 - v_2\|.$$

This implies $\|v_1 - v_2\| = 0 \rightarrow v_1 = v_2$.
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof:
We show uniqueness first, then existence. Suppose $Tv_1 = v_1$ and $Tv_2 = v_2$, then by the contraction principle

$$\|Tv_1 - Tv_2\| \leq M\|v_1 - v_2\|$$

where $0 \leq M < 1$. By the fix-point property

$$\|v_1 - v_2\| \leq M\|v_1 - v_2\|.$$

This implies $\|v_1 - v_2\| = 0 \rightarrow v_1 = v_2$.

We next show existence.
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):

For a given $v_0 \in V$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1} \|v_1 - v_0\|.$$

For any $N > n$ we have

$$\|v_N - v_n\| \leq \sum_{k=n+1}^{N} M^{k-1} \|v_1 - v_0\| \leq M^{n-1} \|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in V$ so that $v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} Tv_n = T(\lim_{n \to \infty} v_n) = Tv^*$. This establishes existence of a fixed point for T. ■
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):
For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):
For a given $v_0 \in V$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$
\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.
$$
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):
For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.$$

For any $N > n$ we have
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.$$

For any $N > n$ we have

$$\|v_N - v_n\| = \left\| \sum_{k=n+1}^{N} v_k - v_{k-1} \right\|.$$
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):
For a given $v_0 \in V$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.$$

For any $N > n$ we have

$$\|v_N - v_n\| = \left\| \sum_{k=n+1}^{N} v_k - v_{k-1} \right\| \leq \|v_1 - v_0\| \sum_{k=n+1}^{N} M^{k-1}$$.
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):

For a given $v_0 \in V$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.$$

For any $N > n$ we have

$$\|v_N - v_n\| = \left\| \sum_{k=n+1}^{N} v_k - v_{k-1} \right\| \leq \|v_1 - v_0\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^n}{1-M} \|v_1 - v_0\|.$$
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):
For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$
\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.
$$

For any $N > n$ we have

$$
\|v_N - v_n\| = \left\| \sum_{k=n+1}^{N} v_k - v_{k-1} \right\| \leq \|v_1 - v_0\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^n}{1-M}\|v_1 - v_0\| \leq \frac{M^n}{1-M}\|Tv_0 - v_0\|.
$$
Lemma (Fix Point Theorem)
If \(T \) is a contraction map on a Banach space \(\mathcal{V} \) then there exists a unique fixed point \(u \) satisfying \(u = Tu \).

Proof (continued):
For a given \(v_0 \in \mathcal{V} \) define the generated sequence as \(v_{k+1} = Tv_k \). This satisfies
\[
\| v_k - v_{k-1} \| \leq M^{k-1} \| v_1 - v_0 \|.
\]
For any \(N > n \) we have
\[
\| v_N - v_n \| = \left\| \sum_{k=n+1}^{N} v_k - v_{k-1} \right\| \leq \| v_1 - v_0 \| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^n}{1-M} \| v_1 - v_0 \| \leq \frac{M^n}{1-M} \| Tv_0 - v_0 \|.
\]
This shows \(\{v_k\} \) forms a Cauchy sequence and by completeness we have there exists \(v^* \in \mathcal{V} \) so that
Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.$$

For any $N > n$ we have

$$\|v_N - v_n\| = \left\| \sum_{k=n+1}^{N} v_k - v_{k-1} \right\| \leq \|v_1 - v_0\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^n}{1-M} \|v_1 - v_0\| \leq \frac{M^n}{1-M} \|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in \mathcal{V}$ so that

$$v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} Tv_n = T \left(\lim_{n \to \infty} v_n \right) = Tv^*.$$

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Variational Formulation

Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space V then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):

For a given $v_0 \in V$ define the generated sequence as $v_{k+1} = Tv_k$. This satisfies

$$\|v_k - v_{k-1}\| \leq M^{k-1}\|v_1 - v_0\|.$$

For any $N > n$ we have

$$\|v_N - v_n\| = \left\|\sum_{k=n+1}^{N} v_k - v_{k-1}\right\| \leq \|v_1 - v_0\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^n}{1 - M}\|v_1 - v_0\| \leq \frac{M^n}{1 - M}\|Tv_0 - v_0\|.$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in V$ so that

$$v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} Tv_n = T \left(\lim_{n \to \infty} v_n \right) = Tv^*.$$

This establishes existence of a fixed point for T.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Lemma (Fix Point Theorem)

If T is a contraction map on a Banach space \mathcal{V} then there exists a unique fixed point u satisfying $u = Tu$.

Proof (continued):

For a given $v_0 \in \mathcal{V}$ define the generated sequence as $v_{k+1} = T v_k$. This satisfies

$$
\|v_k - v_{k-1}\| \leq M^{k-1} \|v_1 - v_0\|.
$$

For any $N > n$ we have

$$
\|v_N - v_n\| = \left\|\sum_{k=n+1}^{N} v_k - v_{k-1}\right\| \leq \|v_1 - v_0\| \sum_{k=n+1}^{N} M^{k-1} \leq \frac{M^n}{1-M} \|v_1 - v_0\| \leq \frac{M^n}{1-M} \|Tv_0 - v_0\|.
$$

This shows $\{v_k\}$ forms a Cauchy sequence and by completeness we have there exists $v^* \in \mathcal{V}$ so that

$$
v^* = \lim_{n \to \infty} v_n = \lim_{n \to \infty} T v_n = T \left(\lim_{n \to \infty} v_n \right) = Tv^*.
$$

This establishes existence of a fixed point for T. ■
Theorem (Lax-Milgram)

Given a Hilbert space $(V, \langle \cdot, \cdot \rangle)$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in V'$, there exists a unique $u \in V$ so that

$$a(u, v) = F[v], \quad \forall v \in V.$$
Theorem (Lax-Milgram)

Given a Hilbert space $(V, (\cdot, \cdot))$, a continuous, coercive bilinear form $a(\cdot, \cdot)$ (not necessarily symmetric), and $F \in V'$, there exists a unique $u \in V$ so that

$$a(u, v) = F[v], \, \forall v \in V.$$

Significance: This establishes for variational problems the *existence* and *uniqueness* of the solution u.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((\mathcal{V}, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in \mathcal{V}'\), there exists a unique \(u \in \mathcal{V}\) so that

\[a(u, v) = F[v], \quad \forall v \in \mathcal{V}. \]

Significance: This establishes for variational problems the **existence** and **uniqueness** of the solution \(u\).

Implications: Also shows for the Galerkin approximations for the finite-dimensional problems the existence and uniqueness of solution \(u_h\).
Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[a(u, v) = F[v], \quad \forall v \in V. \]

Proof:

Define the operator \(Au\) which has action on a function \(v \in V\) as

\[Au[v] = a(u, v). \]

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm

\[\|Au\|_{V'} \leq C \|u\|_V < \infty, \]

so \(Au \in V'\).

Riesz Representation Theorem implies \(\phi \in V'\) there exists \(\tau\phi \in V\) so that

\[\phi[v] = (\tau\phi, v). \]

The variational problem requires \(u\) such that

\[Au[v] = F[v], \quad \forall v \in V. \]

We show \(\tau Au = \tau F\) in \(V\), which implies solution to the variational problem holds.

We do this using a contraction mapping principle for

\[T[v] := v - \rho(\tau Av - \tau F). \]

The fixed point theorem yields

\[Tu = u - \rho(\tau Au - \tau F) = u. \]

This implies

\[\tau Au - \tau F = 0. \]

We now show that such a \(\rho \neq 0\) exists making \(T\) a contraction map.
Theorem (Lax-Milgram)

Given a Hilbert space \((V, \langle \cdot, \cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[a(u, v) = F[v], \quad \forall v \in V. \]

Proof:
Define the operator \(Au\) which has action on a function \(v \in V\) as \(Au[v] = a(u, v)\).
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, \langle \cdot, \cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof:
Define the operator \(Au\) which has action on a function \(v \in V\) as \(Au[v] = a(u, v)\).
Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{V'} \leq C \|u\|_V < \infty\), so \(Au \in V'\).
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((\mathcal{V}, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in \mathcal{V}'\), there exists a unique \(u \in \mathcal{V}\) so that

\[
a(u, v) = F[v], \quad \forall v \in \mathcal{V}.
\]

Proof:

Define the operator \(Au\) which has action on a function \(v \in \mathcal{V}\) as \(Au[v] = a(u, v)\).

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{\mathcal{V}'} \leq C\|u\|_{\mathcal{V}} < \infty\), so \(Au \in \mathcal{V}'\).

Riesz Representation Theorem implies \(\phi \in \mathcal{V}'\) there exists \(\tau \phi \in \mathcal{V}\) so that \(\phi[v] = (\tau \phi, v)\).
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof:

Define the operator \(Au\) which has action on a function \(v \in V\) as \(Au[v] = a(u, v)\).

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{V'} \leq C\|u\|_V < \infty\), so \(Au \in V'\).

Riesz Representation Theorem implies \(\phi \in V'\) there exists \(\tau \phi \in V\) so that \(\phi[v] = (\tau \phi, v)\).

The variational problem requires \(u\) such that \(Au[v] = F[v], \quad \forall v \in V\).
Theorem (Lax-Milgram)

Given a Hilbert space \((\mathcal{V}, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in \mathcal{V}'\), there exists a unique \(u \in \mathcal{V}\) so that

\[
a(u, v) = F[v], \quad \forall v \in \mathcal{V}.
\]

Proof:
Define the operator \(Au\) which has action on a function \(v \in \mathcal{V}\) as \(Au[v] = a(u, v)\).
Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{\mathcal{V}'} \leq C\|u\|_{\mathcal{V}} < \infty\), so \(Au \in \mathcal{V}'\).
Riesz Representation Theorem implies \(\phi \in \mathcal{V}'\) there exists \(\tau \phi \in \mathcal{V}\) so that \(\phi[v] = (\tau \phi, v)\).
The variational problem requires \(u\) such that \(Au[v] = F[v], \quad \forall v \in \mathcal{V}\).
We show \(\tau Au = \tau F\) in \(\mathcal{V}\), which implies solution to the variational problem holds.
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof:

Define the operator \(Au\) which has action on a function \(v \in V\) as \(Au[v] = a(u, v)\).

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{V'} \leq C\|u\|_V < \infty\), so \(Au \in V'\).

Riesz Representation Theorem implies \(\phi \in V'\) there exists \(\tau \phi \in V\) so that \(\phi[v] = (\tau \phi, v)\).

The variational problem requires \(u\) such that \(Au[v] = F[v], \quad \forall v \in V\).

We show \(\tau Au = \tau F\) in \(V\), which implies solution to the variational problem holds.

We do this using a contraction mapping principle for \(T[v] := v - \rho(\tau Av - \tau F)\).
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof:

Define the operator \(Au\) which has action on a function \(v \in V\) as \(Au[v] = a(u, v)\).

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{V'} \leq C \|u\|_V < \infty\), so \(Au \in V'\).

Riesz Representation Theorem implies \(\phi \in V'\) there exists \(\tau\phi \in V\) so that \(\phi[v] = (\tau\phi, v)\).

The variational problem requires \(u\) such that \(Au[v] = F[v], \quad \forall v \in V\).

We show \(\tau Au = \tau F\) in \(V\), which implies solution to the variational problem holds.

We do this using a contraction mapping principle for \(T[v] := v - \rho(\tau Av - \tau F)\). The fixed point theorem yields \(Tu = u - \rho(\tau Au - \tau F) = u\).
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[a(u, v) = F[v], \quad \forall v \in V. \]

Proof:

Define the operator \(Au\) which has action on a function \(v \in V\) as \(Au[v] = a(u, v)\).

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{V'} \leq C \|u\|_V < \infty\), so \(Au \in V'\).

Riesz Representation Theorem implies \(\phi \in V'\) there exists \(\tau \phi \in V\) so that \(\phi[v] = \langle \tau \phi, v \rangle\).

The variational problem requires \(u\) such that \(Au[v] = F[v], \quad \forall v \in V\).

We show \(\tau Au = \tau F\) in \(V\), which implies solution to the variational problem holds.

We do this using a contraction mapping principle for \(T[v] := v - \rho(\tau Au - \tau F)\). The fixed point theorem yields \(Tu = u - \rho(\tau Au - \tau F) = u\). This implies \(\tau Au - \tau F = 0\).
Theorem (Lax-Milgram)

Given a Hilbert space \((\mathcal{V}, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in \mathcal{V}'\), there exists a unique \(u \in \mathcal{V}\) so that

\[a(u, v) = F[v], \quad \forall v \in \mathcal{V}. \]

Proof:

Define the operator \(Au\) which has action on a function \(v \in \mathcal{V}\) as \(Au[v] = a(u, v)\).

Properties of \(a\) imply \(Au\) is linear, bounded, and has norm \(\|Au\|_{\mathcal{V}'} \leq C\|u\|_{\mathcal{V}} < \infty\), so \(Au \in \mathcal{V}'\).

Riesz Representation Theorem implies \(\phi \in \mathcal{V}'\) there exists \(\tau \phi \in \mathcal{V}\) so that \(\phi[v] = (\tau \phi, v)\).

The variational problem requires \(u\) such that \(Au[v] = F[v], \quad \forall v \in \mathcal{V}\).

We show \(\tau Au = \tau F\) in \(\mathcal{V}\), which implies solution to the variational problem holds.

We do this using a contraction mapping principle for \(T[v] := v - \rho(\tau Au - \tau F)\). The fixed point theorem yields \(Tu = u - \rho(\tau Au - \tau F) = u\). This implies \(\tau Au - \tau F = 0\).

We now show that such a \(\rho \neq 0\) exists making \(T\) a contraction map.
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2.
\]

\[
= \|v_1 - \rho(\tau Av_1)\|^2,
\]

\[
\leq \|v_1\|^2 - 2\rho a(v_1, v) + \rho^2 \|\tau Av_1\|^2,
\]

\[
\leq \|v_1\|^2 - 2\rho a(v_1, v) + \rho^2 C^2 \|v_1\|^2,
\]

\[
(1 - 2\rho a + \rho^2 C^2) \|v_1\|^2,
\]

\[
\leq \|v_1\|^2 - 2\rho a(v_1, v) + \rho^2 C^2 \|v_1\|^2,
\]

\[
(1 - 2\rho a + \rho^2 C^2) \|v_1\|^2.
\]
Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):
For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((\mathcal{V}, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in \mathcal{V}'\), there exists a unique \(u \in \mathcal{V}\) so that

\[a(u, v) = F[v], \quad \forall v \in \mathcal{V}. \]

Proof (continued):

For any \(v_1, v_2 \in \mathcal{V}\), let \(v = v_1 - v_2\), then

\[\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau A v_1 - \tau A v_2)\|^2 \]
Theorem (Lax-Milgram)

Given a Hilbert space \((V, \langle \cdot, \cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2
\]

\[
= \|v - \rho(\tau Av)\|^2, \quad (\tau, A \text{ are linear})
\]
Theorem (Lax-Milgram)

Given a Hilbert space \((\mathcal{V}, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in \mathcal{V}'\), there exists a unique \(u \in \mathcal{V}\) so that

\[
a(u, v) = F[v], \quad \forall v \in \mathcal{V}.
\]

Proof (continued):

For any \(v_1, v_2 \in \mathcal{V}\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2
\]

\[
= \|v - \rho(\tau Av)\|^2, \quad (\tau, A \text{ are linear})
\]

\[
= \|v\|^2 - 2\rho(\tau Av, v) + \rho^2\|\tau Av\|^2
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[a(u, v) = F[v], \, \forall v \in V. \]

Proof (continued):

For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2 \\
= \|v - \rho(\tau Av)\|^2, \text{ (}\tau, A\text{ are linear)} \\
= \|v\|^2 - 2\rho(\tau Av, v) + \rho^2\|\tau Av\|^2 \\
= \|v\|^2 - 2\rho Av[v] + \rho^2 Av[\tau Av], \text{ (definition of } \tau) ,
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[a(u, v) = F[v], \quad \forall v \in V. \]

Proof (continued):

For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2 \\
= \|v - \rho(\tau Av)\|^2, \quad (\tau, A \text{ are linear}) \\
= \|v\|^2 - 2\rho(\tau Av, v) + \rho^2\|\tau Av\|^2 \\
= \|v\|^2 - 2\rho Av[v] + \rho^2 Av[\tau Av], \quad (\text{definition of } \tau) \ , \\
= \|v\|^2 - 2\rho a(v, v) + \rho^2 a(v, \tau Av), \quad (\text{definition of } A) \ ,
\]

Paul J. Atzberger, UCSB

http://atzberger.org/
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[a(u, v) = F[v], \quad \forall v \in V. \]

Proof (continued):

For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2 \\
= \|v - \rho(\tau Av)\|^2, \quad (\tau, A \text{ are linear}) \\
= \|v\|^2 - 2\rho(\tau Av, v) + \rho^2\|\tau Av\|^2 \\
= \|v\|^2 - 2\rho Av[v] + \rho^2 Av[\tau Av], \quad (\text{definition of } \tau) \\
= \|v\|^2 - 2\rho a(v, v) + \rho^2 a(v, \tau Av), \quad (\text{definition of } A) \\
\leq \|v\|^2 - 2\rho\|v\|^2 + \rho^2 C\|v\|\|\tau Av\|, \quad (\text{cocercivity and continuity of } A),
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

For any \(v_1, v_2 \in V\), let \(v = v_1 - v_2\), then

\[
\|Tv_1 - Tv_2\|^2 = \|v_1 - v_2 - \rho(\tau Av_1 - \tau Av_2)\|^2
\]
\[
= \|v - \rho(\tau Av)\|^2, \quad (\tau, A \text{ are linear})
\]
\[
= \|v\|^2 - 2\rho(\tau Av, v) + \rho^2\|\tau Av\|^2
\]
\[
= \|v\|^2 - 2\rho A[v] + \rho^2 A[v], \quad \text{(definition of } \tau \text{),}
\]
\[
= \|v\|^2 - 2\rho a(v, v) + \rho^2 a(v, \tau Av), \quad \text{(definition of } A \text{),}
\]
\[
\leq \|v\|^2 - 2\rho \|v\|^2 + \rho^2 C\|v\|\|\tau Av\|, \quad \text{(coercivity and continuity of } A \text{),}
\]
\[
\leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad \text{(} A \text{ bounded, } \tau \text{ isometric)}
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\parallel Tv_1 - Tv_2 \parallel^2 \\leq (1 - 2\rho \alpha + \rho^2 C^2) \parallel v \parallel^2
\]

(A bounded, \(\tau\) isometric)

\[
= (1 - 2\rho \alpha + \rho^2 C^2) \parallel v_1 - v_2 \parallel^2
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]
Theorem (Lax-Milgram)

Given a Hilbert space \((V,\langle \cdot,\cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot,\cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u,v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]

\[
= (1 - 2\rho \alpha + \rho^2 C^2) \|v_1 - v_2\|^2
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, \langle \cdot, \cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \ \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]

\[
= (1 - 2\rho \alpha + \rho^2 C^2) \|v_1 - v_2\|^2
\]

\[
= M^2 \|v_1 - v_2\|^2.
\]
Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho\alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]
\[
= (1 - 2\rho\alpha + \rho^2 C^2) \|v_1 - v_2\|^2
\]
\[
= M^2 \|v_1 - v_2\|^2.
\]
Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq \left(1 - 2\rho\alpha + \rho^2 C^2\right)\|v\|^2 \quad \text{(A bounded, } \tau \text{ isometric)}
\]

\[
= \left(1 - 2\rho\alpha + \rho^2 C^2\right)\|v_1 - v_2\|^2
\]

\[
= M^2\|v_1 - v_2\|^2.
\]

We need
Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 -Tv_2\|^2 \leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]

\[
= (1 - 2\rho \alpha + \rho^2 C^2) \|v_1 -v_2\|^2
\]

\[
= M^2\|v_1 -v_2\|^2.
\]

We need

\[
1 - 2\rho \alpha + \rho^2 C^2 < 1
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, \langle \cdot, \cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]

\[
= (1 - 2\rho \alpha + \rho^2 C^2) \|v_1 - v_2\|^2
\]

\[
= M^2 \|v_1 - v_2\|^2.
\]

We need

\[
1 - 2\rho \alpha + \rho^2 C^2 < 1 \rightarrow \rho (\rho C^2 - 2\alpha) < 0. \quad (1)
\]
Variational Formulation

Theorem (Lax-Milgram)

Given a Hilbert space \((V, \langle \cdot, \cdot \rangle)\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho\alpha + \rho^2 C^2) \|v\|^2 \quad (A \text{ bounded, } \tau \text{ isometric})
\]

\[
= (1 - 2\rho\alpha + \rho^2 C^2) \|v_1 - v_2\|^2
\]

\[
= M^2 \|v_1 - v_2\|^2.
\]

We need

\[
1 - 2\rho\alpha + \rho^2 C^2 < 1 \rightarrow \rho (\rho C^2 - 2\alpha) < 0.
\]

This is satisfied for \(\rho \in (0, 2\alpha/C^2)\) giving \(M < 1\).
Theorem (Lax-Milgram)

Given a Hilbert space \((V, (\cdot, \cdot))\), a continuous, coercive bilinear form \(a(\cdot, \cdot)\) (not necessarily symmetric), and \(F \in V'\), there exists a unique \(u \in V\) so that

\[
a(u, v) = F[v], \quad \forall v \in V.
\]

Proof (continued):

\[
\|Tv_1 - Tv_2\|^2 \leq (1 - 2\rho \alpha + \rho^2 C^2) \|v\|^2 \quad \text{(A bounded, } \tau \text{ isometric)}
\]
\[
= (1 - 2\rho \alpha + \rho^2 C^2) \|v_1 - v_2\|^2
\]
\[
= M^2 \|v_1 - v_2\|^2.
\]

We need

\[
1 - 2\rho \alpha + \rho^2 C^2 < 1 \rightarrow \rho \left(\rho C^2 - 2\alpha\right) < 0.
\]

This is satisfied for \(\rho \in (0, 2\alpha/C^2)\) giving \(M < 1\). By the contraction principle we obtain the results. ■
Theorem (Céa)
Suppose we have the conditions hold for the variational problems (⋆) or (⋆⋆).
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(*\)) or (\(*\,*\,*\)). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter.

The following error bound holds for the Galerkin approximation

$$
\|u - u_h\|_{V} \leq C \alpha \min_{v \in V_h} \|u - v\|_{V}.
$$

Significance:

This shows the solution u_h obtained from the Galerkin approximation is bounded by all approximations in the space V when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain

$$
a(u - u_h, v) = 0 \quad \forall v \in V_h.
$$

For all $v \in V_h$ we have

$$
\alpha \|u - u_h\|^2_V \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}.
$$
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(\ast\)) or (\(\ast\ast\ast\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq C \alpha \min_{v \in V_h} \|u - v\|_V.
\]

Significance:
This shows the solution \(u_h\) obtained from the Galerkin approximation is bounded by all approximations in the space \(V\) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

\[
a(u - u_h, v) = 0 \quad \forall v \in V_h.
\]

For all \(v \in V_h\) we have

\[
\alpha \|u - u_h\|^2 \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}
\]

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (**). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercivity parameter. The following error bound holds for the Galerkin approximation

$$\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.$$

Significance:

This shows the solution u_h obtained from the Galerkin approximation is bounded by all approximations in the space V when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain $a(u - u_h, v) = 0 \forall v \in V_h$.

For all $v \in V_h$ we have

$$\alpha \|u - u_h\|^2_V \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}.$$
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (**). For the bilinear form \(a(\cdot, \cdot) \), let \(C \) denote the continuity constant in the boundedness condition and \(\alpha \) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \| u - v \|_V.
\]

Significance: This shows the solution \(u_h \) obtain from the Galerkin approximation is bounded by all approximations in the space \(V \) when measuring errors in the Hilbert-space norm.
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (**). For the bilinear form \(a(\cdot, \cdot) \), let \(C \) denote the continuity constant in the boundedness condition and \(\alpha \) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \| u - v \|_V.
\]

Significance: This shows the solution \(u_h \) obtain from the Galerkin approximation is bounded by all approximations in the space \(V \) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(\ast\)) or (\(\ast\ast\ast\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Significance: This shows the solution \(u_h\) obtain from the Galerkin approximation is bounded by all approximations in the space \(V\) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain

\[
a(u - u_h, v) = 0 \quad \forall v \in V_h.
\]

For all \(v \in V_h\) we have

\[
\alpha \|u - u_h\|_V^2 \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}
\]

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(\ast\)) or (\(\ast\ast\ast\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Significance: This shows the solution \(u_h\) obtain from the Galerkin approximation is bounded by all approximations in the space \(V\) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (∗) or (∗∗∗). For the bilinear form \(a(\cdot, \cdot) \), let \(C \) denote the continuity constant in the boundedness condition and \(\alpha \) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \| u - v \|_V.
\]

Significance: This shows the solution \(u_h \) obtain from the Galerkin approximation is bounded by all approximations in the space \(V \) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain

\[
a(u - u_h, v) = 0 \ \forall v \in V_h.
\]
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(*\)) or (\(*\ **\ *\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Significance: This shows the solution \(u_h\) obtain from the Galerkin approximation is bounded by all approximations in the space \(V\) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:

By subtracting the variational problems for the exact and Galerkin approximation we obtain

\[
a(u - u_h, v) = 0 \quad \forall v \in V_h.
\]

For all \(v \in V_h\) we have
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (***). For the bilinear form \(a(\cdot, \cdot) \), let \(C \) denote the continuity constant in the boundedness condition and \(\alpha \) denote the coercivity parameter. The following error bound holds for the Galerkin approximation

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \min_{v \in \mathcal{V}_h} \| u - v \|_V.
\]

Significance: This shows the solution \(u_h \) obtain from the Galerkin approximation is bounded by all approximations in the space \(\mathcal{V} \) when measuring errors in the Hilbert-space norm. This will become the basis for further estimates on the accuracy of Finite Element Methods.

Proof:
By subtracting the variational problems for the exact and Galerkin approximation we obtain

\[
a(u - u_h, v) = 0 \ \forall v \in \mathcal{V}_h.
\]

For all \(v \in \mathcal{V}_h \) we have

\[
\alpha \| u - u_h \|_V^2 \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}
\]
Suppose we have the conditions hold for the variational problems (\(\ast\)) or (\(\ast\ast\ast\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq C \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued):
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (∗) or (∗∗∗). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$
\|u - u_h\|_V \leq C \alpha \min_{\nu \in V_h} \|u - \nu\|_V.
$$

Proof (continued):

$$
\alpha \|u - u_h\|_V^2 \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}
$$
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems \((\ast)\) or \((\ast\ast\ast)\). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued):

\[
\begin{align*}
\alpha \|u - u_h\|^2_V & \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)} \\
& = a(u - u_h, u - v) + a(u - u_h, v - u_h)
\end{align*}
\]
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems \((*)\) or \((***)\). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued):

\[
\alpha \|u - u_h\|_V^2 \leq a(u - u_h, u - u_h) \quad (\text{by coercivity})
\]
\[
= a(u - u_h, u - v) + a(u - u_h, v - u_h)
\]
\[
= a(u - u_h, u - v), \quad (\text{since } v - u_h \in V_h)
\]
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(*\)) or (\(\ast\ast\ast\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued):

\[
\alpha \|u - u_h\|^2_V \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}
\]
\[
= a(u - u_h, u - v) + a(u - u_h, v - u_h)
\]
\[
= a(u - u_h, u - v), \quad \text{(since } v - u_h \in V_h\text{)}
\]
\[
\leq C \|u - u_h\|_V \|u - v\|_V \quad \text{(by continuity)}.
\]
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (**). For the bilinear form \(a(\cdot, \cdot) \), let \(C \) denote the continuity constant in the boundedness condition and \(\alpha \) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\| u - u_h \|_{\mathcal{V}} \leq \frac{C}{\alpha} \min_{v \in \mathcal{V}_h} \| u - v \|_{\mathcal{V}} .
\]

Proof (continued):

\[
\alpha \| u - u_h \|_{\mathcal{V}}^2 \leq a(u - u_h, u - u_h) \quad \text{(by coercivity)}
\]
\[
= a(u - u_h, u - v) + a(u - u_h, v - u_h)
\]
\[
= a(u - u_h, u - v), \quad \text{(since } v - u_h \in \mathcal{V}_h \text{)}
\]
\[
\leq C \| u - u_h \|_{\mathcal{V}} \| u - v \|_{\mathcal{V}} \quad \text{(by continuity)} .
\]

By dividing through we obtain for all \(v \in \mathcal{V}_h \)
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems \((\ast)\) or \((\ast \ast \ast)\). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued):

\[
\begin{align*}
\alpha \|u - u_h\|_V^2 & \leq a(u - u_h, u - u_h) \text{ (by coercivity)} \\
& = a(u - u_h, u - v) + a(u - u_h, v - u_h) \\
& = a(u - u_h, u - v), \quad \text{(since } v - u_h \in V_h) \\
& \leq C \|u - u_h\|_V \|u - v\|_V \quad \text{(by continuity)}.
\end{align*}
\]

By dividing through we obtain for all \(v \in V_h\)

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \|u - v\|_V.
\]
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (*) or (**). For the bilinear form \(a(\cdot, \cdot) \), let \(C \) denote the continuity constant in the boundedness condition and \(\alpha \) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \| u - v \|_V.
\]

Proof (continued):

By dividing through we obtain for all \(v \in V_h \)

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \| u - v \|_V.
\]

This implies (since \(V_h \) is closed)

\[
\| u - u_h \|_V \leq \frac{C}{\alpha} \inf_{v \in V_h} \| u - v \|_V = \frac{C}{\alpha} \min_{v \in V_h} \| u - v \|_V.
\]
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (∗) or (∗∗∗). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u - u_h\|_V \leq C \frac{\alpha}{\min_{v \in V_h} \|u - v\|_V}.$$

Proof (continued): By dividing through we obtain for all $v \in V_h$

$$\|u - u_h\|_V \leq C \frac{\alpha}{\min_{v \in V_h} \|u - v\|_V}.$$
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(\ast\)) or (\(\ast\ast\ast\)). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq C \alpha \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued): By dividing through we obtain for all \(v \in V_h\)

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \|u - v\|_V.
\]
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems \((*)\) or \((***)\). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq C \frac{\alpha}{\min_{v \in V_h} \|u - v\|_V}.
\]

Proof (continued): By dividing through we obtain for all \(v \in V_h\)

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \|u - v\|_V.
\]

This implies (since \(V_h\) is closed)
Theorem (Céa)

Suppose we have the conditions hold for the variational problems (\(*\)) or (\(*\ast\ast\ast\)). For the bilinear form $a(\cdot, \cdot)$, let C denote the continuity constant in the boundedness condition and α denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

$$\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.$$

Proof (continued): By dividing through we obtain for all $v \in V_h$

$$\|u - u_h\|_V \leq \frac{C}{\alpha} \|u - v\|_V.$$

This implies (since V_h is closed)

$$\|u - u_h\|_V \leq \frac{C}{\alpha} \inf_{v \in V_h} \|u - v\|_V = \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.$$
Variational Formulation

Theorem (Céa)

Suppose we have the conditions hold for the variational problems \((\ast)\) or \((\ast\ast\ast)\). For the bilinear form \(a(\cdot, \cdot)\), let \(C\) denote the continuity constant in the boundedness condition and \(\alpha\) denote the coercitivity parameter. The following error bound holds for the Galerkin approximation

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

Proof (continued): By dividing through we obtain for all \(v \in V_h\)

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \|u - v\|_V.
\]

This implies (since \(V_h\) is closed)

\[
\|u - u_h\|_V \leq \frac{C}{\alpha} \inf_{v \in V_h} \|u - v\|_V = \frac{C}{\alpha} \min_{v \in V_h} \|u - v\|_V.
\]

\[\blacksquare\]