Finite Element Spaces

Paul J. Atzberger

206D: Finite Element Methods
University of California Santa Barbara
Definition

Consider

An element domain \(K \subseteq \mathbb{R}^n \) that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii The shape functions \(P \) consist of a finite-dimensional space of functions on \(K \).

iii The nodal variables \(N = \{N_1, N_2, \ldots, N_k\} \) are any basis of the dual space \(P' \).

A finite element is the triple \((K, P, N)\).

This definition of FEM is due to Ciarlet. Sometimes also denoted by \((T, \Pi, \Sigma)\).

Definition

For a finite element \((K, P, N)\), the nodal basis \(\{\phi_i\}_{i=1}^k \) of \(P \) is the collection of functions for which \(N_i(\phi_j) = \delta_{ij} \).

Example: Consider the finite element with \(K = [0, 1] \) and \(P \) with linear polynomial basis with \(N = \{N_1, N_2\} \), where \(N_1(v) = v(0) \) and \(N_2(v) = v(1) \).

Then \(\phi_1(x) = 1 - x \) and \(\phi_2(x) = x \).
Definition

Consider

1. An **element domain** is a set $K \subseteq \mathbb{R}^n$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

Example:

Consider the finite element with $K = [0, 1]$ and P with linear polynomial basis with $N = \{N_1, N_2\}$, where $N_1(v) = v(0)$ and $N_2(v) = v(1)$. Then $\phi_1(x) = 1 - x$ and $\phi_2(x) = x$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Consider

i An **element domain** is a set $K \subseteq \mathbb{R}^n$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii The **shape functions** \mathcal{P} consist of a finite-dimensional space of functions on K.

Example: Consider the finite element with $K = [0, 1]$ and \mathcal{P} with linear polynomial basis with $N = \{N_1, N_2\}$, where $N_1(v) = v(0)$ and $N_2(v) = v(1)$.

Then $\phi_1(x) = 1 - x$ and $\phi_2(x) = x$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Definition

Consider

i An **element domain** is a set \(K \subseteq \mathbb{R}^n \) that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii The **shape functions** \(P \) consist of a finite-dimensional space of functions on \(K \).

iii The **nodal variables** \(\mathcal{N} = \{N_1, N_2, \ldots, N_k\} \) are any basis of the dual space \(P' \).
Finite Elements

Definition

Consider

i. An **element domain** is a set $K \subseteq \mathbb{R}^n$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii. The **shape functions** \mathcal{P} consist of a finite-dimensional space of functions on K.

iii. The **nodal variables** $\mathcal{N} = \{N_1, N_2, \ldots, N_k\}$ are any basis of the dual space \mathcal{P}'.

A **finite element** is the triple $(K, \mathcal{P}, \mathcal{N})$.
Consider

i. An **element domain** is a set \(K \subseteq \mathbb{R}^n \) that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii. The **shape functions** \(\mathcal{P} \) consist of a finite-dimensional space of functions on \(K \).

iii. The **nodal variables** \(\mathcal{N} = \{ N_1, N_2, \ldots, N_k \} \) are any basis of the dual space \(\mathcal{P}' \).

A finite element is the triple \((K, \mathcal{P}, \mathcal{N})\).

This definition of FEM is due to Ciarlet. Sometimes also denoted by \((\mathcal{T}, \Pi, \Sigma)\).
Finite Elements

Definition

Consider

i. An **element domain** is a set $K \subseteq \mathbb{R}^n$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii. The **shape functions** \mathcal{P} consist of a finite-dimensional space of functions on K.

iii. The **nodal variables** $\mathcal{N} = \{N_1, N_2, \ldots, N_k\}$ are any basis of the dual space \mathcal{P}'.

A **finite element** is the triple $(K, \mathcal{P}, \mathcal{N})$.

This definition of FEM is due to Ciarlet. Sometimes also denoted by $(\mathcal{T}, \Pi, \Sigma)$.

Definition

For a finite element $(K, \mathcal{P}, \mathcal{N})$, the **nodal basis** $\{\phi_i\}_{i=1}^k$ of \mathcal{P} is the collection of functions for which $N_i(\phi_j) = \delta_{ij}$.
Definition

Consider

i. An **element domain** is a set \(K \subseteq \mathbb{R}^n \) that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii. The **shape functions** \(P \) consist of a finite-dimensional space of functions on \(K \).

iii. The **nodal variables** \(N = \{N_1, N_2, \ldots, N_k\} \) are any basis of the dual space \(P' \).

A **finite element** is the triple \((K, P, N)\).

This definition of FEM is due to Ciarlet. Sometimes also denoted by \((T, \Pi, \Sigma)\).

Definition

For a finite element \((K, P, N)\), the **nodal basis** \(\{\phi_i\}_{i=1}^k \) of \(P \) is the collection of functions for which \(N_i(\phi_j) = \delta_{ij} \).

Example: Consider the finite element with \(K = [0, 1] \) and \(P \) with linear polynomial basis with \(N = \{N_1, N_2\} \), where \(N_1(\nu) = \nu(0) \) and \(N_2(\nu) = \nu(1) \).
Definition

Consider

i. An element domain is a set $K \subseteq \mathbb{R}^n$ that is a bounded closed set with non-empty interior and piece-wise smooth boundary.

ii. The shape functions \mathcal{P} consist of a finite-dimensional space of functions on K.

iii. The nodal variables $\mathcal{N} = \{N_1, N_2, \ldots, N_k\}$ are any basis of the dual space \mathcal{P}'.

A finite element is the triple $(K, \mathcal{P}, \mathcal{N})$.

This definition of FEM is due to Ciarlet. Sometimes also denoted by $(\mathcal{T}, \Pi, \Sigma)$.

Definition

For a finite element $(K, \mathcal{P}, \mathcal{N})$, the nodal basis $\{\phi_i\}_{i=1}^k$ of \mathcal{P} is the collection of functions for which $N_i(\phi_j) = \delta_{ij}$.

Example: Consider the finite element with $K = [0, 1]$ and \mathcal{P} with linear polynomial basis with $\mathcal{N} = \{N_1, N_2\}$, where $N_1(v) = v(0)$ and $N_2(v) = v(1)$. Then $\phi_1(x) = 1 - x$ and $\phi_2(x) = x$.
Definition

The nodal variables \mathcal{N} are said to **determine** members of \mathcal{P} if for $\psi \in \mathcal{P}$ we have $N(\psi) = 0 \ \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

Lemma

The following statements are equivalent

i. For $v \in \mathcal{P}$ with $N_i(v) = 0$, $\forall i$, then $v \equiv 0$.

ii. The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for \mathcal{P}'.

Proof:

Suppose $\{\phi_i\}$ are a basis for \mathcal{P}. The $\{N_i\}$ are basis for \mathcal{P}' iff for any $L \in \mathcal{P}'$ we have $L = \alpha_1 N_1 + \ldots + \alpha_d N_d$ and $L \equiv 0$ implies $\alpha_i = 0$.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/
Finite Elements

Definition

The nodal variables N are said to determine members of \mathcal{P} if for $\psi \in \mathcal{P}$ we have $N(\psi) = 0 \ \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$.
The nodal variables N are said to **determine** members of P if for $\psi \in P$ we have $N(\psi) = 0 \forall N \in N$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in P$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i$, $\forall i$, then $\psi_1 \equiv \psi_2$.
Definition

The nodal variables N are said to determine members of P if for $\psi \in P$ we have $N(\psi) = 0 \ \forall N \in N$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in P$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i, \ \forall i$, then $\psi_1 \equiv \psi_2$.

Lemma

The following statements are equivalent
Definition

The nodal variables N are said to determine members of P if for $\psi \in P$ we have $N(\psi) = 0 \ \forall N \in N$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in P$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i, \ \forall i$, then $\psi_1 \equiv \psi_2$.

Lemma

The following statements are equivalent

1. For $v \in P$ with $N_i(v) = 0, \ \forall i$, then $v \equiv 0$.
Definition
The nodal variables N are said to determine members of \mathcal{P} if for $\psi \in \mathcal{P}$ we have $N(\psi) = 0 \ \forall N \in N$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i, \ \forall i$, then $\psi_1 \equiv \psi_2$.

Lemma
The following statements are equivalent

i For $\nu \in \mathcal{P}$ with $N_i(\nu) = 0, \ \forall i$, then $\nu \equiv 0$.

ii The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for \mathcal{P}'.
Definition

The nodal variables \mathcal{N} are said to **determine** members of \mathcal{P} if for $\psi \in \mathcal{P}$ we have $N(\psi) = 0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i$, $\forall i$, then $\psi_1 \equiv \psi_2$.

Lemma

The following statements are equivalent

i. For $\nu \in \mathcal{P}$ with $N_i(\nu) = 0$, $\forall i$, then $\nu \equiv 0$.

ii. The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for $\mathcal{P'}$.

Proof:
Definition

The nodal variables N are said to **determine** members of P if for $\psi \in P$ we have $N(\psi) = 0 \ \forall N \in N$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in P$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i, \ \forall i$, then $\psi_1 \equiv \psi_2$.

Lemma

The following statements are equivalent

i For $\nu \in P$ with $N_i(\nu) = 0, \ \forall i$, then $\nu \equiv 0$.

ii The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for P'.

Proof: Suppose $\{\phi_i\}$ are a basis for P.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Finite Elements

Definition

The nodal variables \(\mathcal{N} \) are said to **determine** members of \(\mathcal{P} \) if for \(\psi \in \mathcal{P} \) we have \(N(\psi) = 0 \ \forall N \in \mathcal{N} \) implies \(\psi \equiv 0 \).

This means that knowledge of \(a_i = N_i(\psi) \) is sufficient to distinguish the member \(\psi \in \mathcal{P} \). This follows since for \(b_i = N_i(\psi_1) \) and \(c_i = N_i(\psi_2) \), if \(b_i = c_i, \ \forall i \), then \(\psi_1 \equiv \psi_2 \).

Lemma

The following statements are equivalent

i. For \(\nu \in \mathcal{P} \) with \(N_i(\nu) = 0, \ \forall i \), then \(\nu \equiv 0 \).

ii. The collection \(\{ N_1, N_2, \ldots, N_k \} \) is a basis for \(\mathcal{P}' \).

Proof: Suppose \(\{ \phi_i \} \) are a basis for \(\mathcal{P} \). The \(\{ N_i \} \) are basis for \(\mathcal{P}' \) iff for any \(L \in \mathcal{P}' \) we have

\[
L = \alpha_1 N_1 + \ldots + \alpha_d N_d
\]
Finite Elements

Definition

The nodal variables \mathcal{N} are said to determine members of \mathcal{P} if for $\psi \in \mathcal{P}$ we have $N(\psi) = 0 \forall N \in \mathcal{N}$ implies $\psi \equiv 0$.

This means that knowledge of $a_i = N_i(\psi)$ is sufficient to distinguish the member $\psi \in \mathcal{P}$. This follows since for $b_i = N_i(\psi_1)$ and $c_i = N_i(\psi_2)$, if $b_i = c_i, \forall i$, then $\psi_1 \equiv \psi_2$.

Lemma

The following statements are equivalent

i For $\nu \in \mathcal{P}$ with $N_i(\nu) = 0, \forall i$, then $\nu \equiv 0$.

ii The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for \mathcal{P}'.

Proof: Suppose $\{\phi_i\}$ are a basis for \mathcal{P}. The $\{N_i\}$ are basis for \mathcal{P}' iff for any $L \in \mathcal{P}'$ we have

$$L = \alpha_1 N_1 + \ldots + \alpha_d N_d$$

and $L \equiv 0$ implies $\alpha_i = 0$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Lemma

The following statements are equivalent

i. For $v \in \mathcal{P}$ with $N_i(v) = 0$, $\forall i$, then $v \equiv 0$.

ii. The collection \{N_1, N_2, \ldots, N_k\} is a basis for \mathcal{P}'.

Proof:
Lemma

The following statements are equivalent

i. For \(v \in \mathcal{P} \) with \(N_i(v) = 0 \), \(\forall i \), then \(v \equiv 0 \).

ii. The collection \(\{N_1, N_2, \ldots, N_k\} \) is a basis for \(\mathcal{P}' \).

Proof: Finding the \(\alpha_i \) of \(L = \alpha_1 N_1 + \ldots + \alpha_d N_d \) is equivalent to finding solution to

\[
L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).
\]
Lemma

The following statements are equivalent

i For $\nu \in \mathcal{P}$ with $N_i(\nu) = 0$, $\forall i$, then $\nu \equiv 0$.

ii The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for \mathcal{P}'.

Proof: Finding the α_i of $L = \alpha_1 N_1 + \ldots + \alpha_d N_d$ is equivalent to finding solution to

$$L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).$$

Let matrix $B_{ij} = N_j(\phi_i)$, then above corresponds to solving $B\alpha = y$, where $y_i = L(\phi_i)$,
Lemma

The following statements are equivalent

i For \(v \in \mathcal{P} \) with \(N_i(v) = 0, \forall i \), then \(v \equiv 0 \).

ii The collection \(\{N_1, N_2, \ldots, N_k\} \) is a basis for \(\mathcal{P}' \).

Proof: Finding the \(\alpha_i \) of \(L = \alpha_1 N_1 + \ldots + \alpha_d N_d \) is equivalent to finding solution to

\[
L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).
\]

Let matrix \(B_{ij} = N_j(\phi_i) \), then above corresponds to solving \(B\alpha = y \), where \(y_i = L(\phi_i) \), so

\((i) \iff B\) is invertible.\]
Lemma

The following statements are equivalent

i For $v \in P$ with $N_i(v) = 0$, $\forall i$, then $v \equiv 0$.

ii The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for P'.

Proof: Finding the α_i of $L = \alpha_1 N_1 + \ldots + \alpha_d N_d$ is equivalent to finding solution to

$$L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).$$

Let matrix $B_{ij} = N_j(\phi_i)$, then above corresponds to solving $B\alpha = y$, where $y_i = L(\phi_i)$, so

(ii) \iff B is invertible.

Consider $v \in P$ with $v = \sum_j \beta_j \phi_j$.
Lemma

The following statements are equivalent

i For \(v \in \mathcal{P} \) with \(N_i(v) = 0, \forall i \), then \(v \equiv 0 \).

ii The collection \(\{N_1, N_2, \ldots, N_k\} \) is a basis for \(\mathcal{P}' \).

Proof: Finding the \(\alpha_i \) of \(L = \alpha_1 N_1 + \ldots + \alpha_d N_d \) is equivalent to finding solution to

\[
L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).
\]

Let matrix \(B_{ij} = N_j(\phi_i) \), then above corresponds to solving \(B\alpha = y \), where \(y_i = L(\phi_i) \), so

(ii) \(\iff \) \(B \) is invertible.

Consider \(v \in \mathcal{P} \) with \(v = \sum j \beta_j \phi_j \). If \(N_i(v) = 0 \), then \(\sum j \beta_j N_j(\phi_i) = 0 \).
Lemma
The following statements are equivalent

i For \(v \in \mathcal{P} \) with \(N_i(v) = 0, \forall i \), then \(v \equiv 0 \).

ii The collection \(\{N_1, N_2, \ldots, N_k\} \) is a basis for \(\mathcal{P}' \).

Proof: Finding the \(\alpha_i \) of \(L = \alpha_1 N_1 + \ldots + \alpha_d N_d \) is equivalent to finding solution to

\[
L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).
\]

Let matrix \(B_{ij} = N_j(\phi_i) \), then above corresponds to solving \(B\alpha = y \), where \(y_i = L(\phi_i) \), so

\(\text{(ii)} \iff B \) is invertible.

Consider \(v \in \mathcal{P} \) with \(v = \sum_j \beta_j \phi_j \). If \(N_i(v) = 0 \), then \(\sum_j \beta_j N_j(\phi_i) = 0 \). The \(v \equiv 0 \) if \(\beta_j = 0 \).
Lemma

The following statements are equivalent

i. For \(v \in \mathcal{P} \) with \(N_i(v) = 0, \forall i \), then \(v \equiv 0 \).

ii. The collection \(\{N_1, N_2, \ldots, N_k\} \) is a basis for \(\mathcal{P}' \).

Proof: Finding the \(\alpha_i \) of \(L = \alpha_1 N_1 + \ldots + \alpha_d N_d \) is equivalent to finding solution to

\[
L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).
\]

Let matrix \(B_{ij} = N_j(\phi_i) \), then above corresponds to solving \(B\alpha = y \), where \(y_i = L(\phi_i) \), so (ii) \(\iff \) \(B \) is invertible.

Consider \(v \in \mathcal{P} \) with \(v = \sum_j \beta_j \phi_j \). If \(N_i(v) = 0 \), then \(\sum_j \beta_j N_j(\phi_i) = 0 \). The \(v \equiv 0 \) if \(\beta_j = 0 \).

Let matrix \(C_{ij} = N_i(\phi_j) \), \(x_j = \beta_j \), then above corresponds to \(C x = 0 \Rightarrow x = 0 \),
Lemma

The following statements are equivalent

i For $v \in \mathcal{P}$ with $N_i(v) = 0$, $\forall i$, then $v \equiv 0$.

ii The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for \mathcal{P}'.

Proof: Finding the α_i of $L = \alpha_1 N_1 + \ldots + \alpha_d N_d$ is equivalent to finding solution to

$$L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).$$

Let matrix $B_{ij} = N_j(\phi_i)$, then above corresponds to solving $B\alpha = y$, where $y_i = L(\phi_i)$, so

(ii) \iff B is invertible.

Consider $v \in \mathcal{P}$ with $v = \sum_j \beta_j \phi_j$. If $N_i(v) = 0$, then $\sum_j \beta_j N_j(\phi_i) = 0$. The $v \equiv 0$ if $\beta_j = 0$.

Let matrix $C_{ij} = N_i(\phi_j)$, $x_j = \beta_j$, then above corresponds to $Cx = 0 \Rightarrow x = 0$, so

(i) \iff C is invertible.
Lemma

The following statements are equivalent

i For \(v \in \mathcal{P} \) with \(N_i(v) = 0 \), \(\forall i \), then \(v \equiv 0 \).

ii The collection \(\{N_1, N_2, \ldots, N_k\} \) is a basis for \(\mathcal{P}' \).

Proof: Finding the \(\alpha_i \) of \(L = \alpha_1 N_1 + \ldots + \alpha_d N_d \) is equivalent to finding solution to

\[
L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).
\]

Let matrix \(B_{ij} = N_j(\phi_i) \), then above corresponds to solving \(B\alpha = y \), where \(y_i = L(\phi_i) \), so

(ii) \(\iff \) \(B \) is invertible.

Consider \(v \in \mathcal{P} \) with \(v = \sum_j \beta_j \phi_j \). If \(N_i(v) = 0 \), then \(\sum_j \beta_j N_j(\phi_i) = 0 \). The \(v \equiv 0 \) if \(\beta_j = 0 \).

Let matrix \(C_{ij} = N_i(\phi_j) \), \(x_j = \beta_j \), then above corresponds to \(Cx = 0 \Rightarrow x = 0 \), so

(i) \(\iff \) \(C \) is invertible.

The \(C = B^T \) so it follows (i) \(\iff \) (ii).
The following statements are equivalent

1. For $\nu \in \mathcal{P}$ with $N_i(\nu) = 0$, $\forall i$, then $\nu \equiv 0$.
2. The collection $\{N_1, N_2, \ldots, N_k\}$ is a basis for \mathcal{P}'.

Proof: Finding the α_i of $L = \alpha_1 N_1 + \ldots + \alpha_d N_d$ is equivalent to finding solution to

$$L(\phi_i) = \alpha_1 N_1(\phi_i) + \ldots + \alpha_d N_d(\phi_i).$$

Let matrix $B_{ij} = N_j(\phi_i)$, then above corresponds to solving $B\alpha = y$, where $y_i = L(\phi_i)$, so

(ii) $\iff B$ is invertible.

Consider $\nu \in \mathcal{P}$ with $\nu = \sum_j \beta_j \phi_j$. If $N_i(\nu) = 0$, then $\sum_j \beta_j N_j(\phi_i) = 0$. The $\nu \equiv 0$ if $\beta_j = 0$.

Let matrix $C_{ij} = N_i(\phi_j)$, $x_j = \beta_j$, then above corresponds to $Cx = 0 \Rightarrow x = 0$, so

(i) $\iff C$ is invertible.

The $C = B^T$ so it follows (i) \iff (ii). ■
Finite Elements

Definition

Conforming Finite Elements are those that generate a space S with $S \subset V$. The generated space S is a subspace of the V used for the weak formulation.
Definition

Conforming Finite Elements are those that generate a space \(S \) with \(S \subseteq V \). The generated space \(S \) is a subspace of the \(V \) used for the weak formulation.

Definition

We call **admissible** a partition of \(\Omega \) into \(T = \{ T_1, T_2, \ldots, T_M \} \) into triangular or quadrilateral elements if

1. The \(T_i \) form a partition \(\Omega = \bigcup_{i=1}^{M} T_i \).
2. For \(i \neq j \) the \(T_i \cap T_j \) only intersect along an edge or vertex.
Conforming Finite Elements are those that generate a space S with $S \subset \mathcal{V}$. The generated space S is a subspace of the \mathcal{V} used for the weak formulation.

We call admissible a partition of Ω into $T = \{T_1, T_2, \ldots, T_M\}$ into triangular or quadrilateral elements if

1. The T_i form a partition $\Omega = \bigcup_{i=1}^{M} T_i$.

Definition

Conforming Finite Elements are those that generate a space S with $S \subset \mathcal{V}$. The generated space S is a subspace of the \mathcal{V} used for the weak formulation.

Definition

We call **admissible** a partition of Ω into $T = \{ T_1, T_2, \ldots, T_M \}$ into triangular or quadrilateral elements if

1. The T_i form a partition $\overline{\Omega} = \bigcup_{i=1}^{M} T_i$.
2. For $i \neq j$ the $T_i \cap T_j$ only intersect along an edge or vertex.
Definition

Conforming Finite Elements are those that generate a space S with $S \subset \mathcal{V}$. The generated space S is a subspace of the \mathcal{V} used for the weak formulation.

Definition

We call **admissible** a partition of Ω into $\mathcal{T} = \{T_1, T_2, \ldots, T_M\}$ into triangular or quadrilateral elements if

1. The T_i form a partition $\overline{\Omega} = \bigcup_{i=1}^{M} T_i$.
2. For $i \neq j$ the $T_i \cap T_j$ only intersect along an edge or vertex.

[Diagram of admissible and inadmissible triangulations]
Finite Elements

Theorem

For a bounded domain \(\Omega \), admissible partition, and \(k \geq 1 \), a piecewise infinitely differentiable function \(v : \overline{\Omega} \rightarrow \mathbb{R} \) belongs to \(H^k(\Omega) \) if and only if \(v \in C^{k-1}(\overline{\Omega}) \).
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:
Theorem

For a bounded domain Ω, admissible partition, and \(k \geq 1 \), a piecewise infinitely differentiable function \(v : \overline{\Omega} \rightarrow \mathbb{R} \) belongs to \(H^k(\Omega) \) if and only if \(v \in C^{k-1}(\overline{\Omega}) \).

Proof: We show this for the case \(k = 1 \), and for simplicity \(\mathbb{R}^2 \).
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\Omega)$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k - 1)$-order derivative functions.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k-1)$-order derivative functions. (\leftrightarrow)
For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\Omega)$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k-1)$-order derivative functions. (\Leftarrow) For $v \in C^0(\Omega)$, let $\mathcal{T} = \{ T_j \}_{j=1}^M$ be the partition corresponding to the piecewise infinite differentiability property of v.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem
For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \Omega \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\Omega)$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k - 1)$-order derivative functions. (\Leftarrow) For $v \in C^0(\Omega)$, let $\mathcal{T} = \{ T_j \}_{j=1}^M$ be the partition corresponding to the piecewise infinite differentiability property of v. For $i = 1, 2$, let $w_i = \partial_i v(x)$ in interior $x \in \mathring{T}_j$ for each j.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k-1)$-order derivative functions. (\Leftarrow) For $v \in C^0(\Omega)$, let $\mathcal{T} = \{ T_j \}_{j=1}^M$ be the partition corresponding to the piecewise infinite differentiability property of v. For $i = 1, 2$, let $w_i = \partial_i v(x)$ in interior $x \in \mathring{T}_j$ for each j. We claim the w_i is a weak derivative of v, since $\forall \phi \in C_0^\infty(\Omega)$

$$(w_i, \phi)_0 = \int_\Omega w_i \phi dx = \sum_j \int_{T_j} \phi \partial_i v dx = \sum_j \left(\int_{\partial T_j} \phi v dx - \int_{T_j} v \partial_i \phi dx \right) = -(v, \partial_i \phi)_0.$$
Finite Elements

Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k - 1)$-order derivative functions. (\Leftarrow) For $v \in C^0(\overline{\Omega})$, let $\mathcal{T} = \{ T_j \}_{j=1}^M$ be the partition corresponding to the piecewise infinite differentiability property of v. For $i = 1, 2$, let $w_i = \partial_i v(x)$ in interior $x \in \hat{T}_j$ for each j.

We claim the w_i is a weak derivative of v, since $\forall \phi \in C^\infty_0(\Omega)$

\[
(w_i, \phi)_0 = \int_{\Omega} w_i \phi \, dx = \sum_j \int_{T_j} \phi \partial_i v \, dx = \sum_j \left(\int_{\partial T_j} \phi v \, d\mathbf{x} - \int_{T_j} v \partial_i \phi \, dx \right) = -(v, \partial_i \phi)_0.
\]

The boundary term vanishes since $\phi(x) = 0$ for $x \in \partial \Omega$ and internal boundary terms cancel.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof: We show this for the case $k = 1$, and for simplicity \mathbb{R}^2. The result follows for larger derivatives by applying the result to the $(k - 1)$-order derivative functions. (\Leftarrow) For $v \in C^0(\Omega)$, let $\mathcal{T} = \{ T_j \}_{j=1}^M$ be the partition corresponding to the piecewise infinite differentiability property of v. For $i = 1, 2$, let $w_i = \partial_i v(x)$ in interior $x \in \mathring{T}_j$ for each j.

We claim the w_i is a weak derivative of v, since $\forall \phi \in C^\infty_0(\Omega)$

$$(w_i, \phi)_0 = \int_{\Omega} w_i \phi \, dx = \sum_j \int_{T_j} \phi \partial_i v \, dx = \sum_j \left(\int_{\partial T_j} \phi v \, d\mathbf{x} - \int_{T_j} v \partial_i \phi \, dx \right) = -(v, \partial_i \phi)_0.$$

The boundary term vanishes since $\phi(x) = 0$ for $x \in \partial\Omega$ and internal boundary terms cancel.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:
For a bounded domain \(\Omega \), admissible partition, and \(k \geq 1 \), a piecewise infinitely differentiable function \(v : \overline{\Omega} \to \mathbb{R} \) belongs to \(H^k(\Omega) \) if and only if \(v \in C^{k-1}(\overline{\Omega}) \).

Proof:

\((\Rightarrow) \)
Finite Elements

Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:

(\Rightarrow) Let $v \in H^1(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the y-axis as interval $[y_1 - \delta, y_2 + \delta]$, $\delta > 0$.

Finite Elements

Theorem

For a bounded domain \(\Omega \), admissible partition, and \(k \geq 1 \), a piecewise infinitely differentiable function \(v : \overline{\Omega} \to \mathbb{R} \) belongs to \(H^k(\Omega) \) if and only if \(v \in C^{k-1}(\overline{\Omega}) \).

Proof:

(\(\Rightarrow \)) Let \(v \in H^1(\Omega) \). Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the \(y \)-axis as interval \([y_1 - \delta, y_2 + \delta]\), \(\delta > 0 \).

Consider the auxiliary function

\[
\Psi(x) := \int_{y_1}^{y_2} v(x, y) dy.
\]
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:

(\Rightarrow) Let $v \in H^1(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the y-axis as interval $[y_1 - \delta, y_2 + \delta]$, $\delta > 0$. Consider the auxiliary function

$$
\Psi(x) := \int_{y_1}^{y_2} v(x, y) dy.
$$

If $v \in C^\infty(\Omega)$, it would follow from Cauchy-Schwartz that
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:

(\Rightarrow) Let $v \in H^1(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the y-axis as interval $[y_1 - \delta, y_2 + \delta]$, $\delta > 0$.

Consider the auxiliary function

$$
\Psi(x) := \int_{y_1}^{y_2} v(x, y)dy.
$$

If $v \in C^\infty(\Omega)$, it would follow from Cauchy-Swartz that

$$
|\Psi(x_2) - \Psi(x_1)|^2 = \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} \partial_1 v dx dy \right|^2 \leq \int_{x_1}^{x_2} \int_{y_1}^{y_2} 1^2 dx dy \cdot |v|_{1,\Omega}^2 \leq |x_2 - x_1| \cdot |y_2 - y_1| \cdot |v|_{1,\Omega}^2.
$$

Since $C^\infty \cap H^1(\Omega)$ is dense the above bound also holds for general $v \in H^1(\Omega)$.

This means the function $\Psi(x)$ is continuous, in particular at $x = 0$. Since y_1, y_2 can be chosen arbitrary with $y_1 < y_2$, Ψ can only be continuous if v is continuous at the edge, $\Rightarrow v \in C^0$.

\blacksquare

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:

(\Rightarrow) Let $v \in H^1(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the y-axis as interval $[y_1 - \delta, y_2 + \delta]$, $\delta > 0$.

Consider the auxiliary function

$$\Psi(x) := \int_{y_1}^{y_2} v(x, y) dy.$$

If $v \in C^\infty(\Omega)$, it would follow from Cauchy-Swartz that

$$\left| \Psi(x_2) - \Psi(x_1) \right|^2 = \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} \partial_1 v dx dy \right|^2 \leq \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} 1^2 dx dy \right| \cdot |v|_{1,\Omega}^2 \leq |x_2 - x_1| \cdot |y_2 - y_1| \cdot |v|_{1,\Omega}^2.$$

Since $C^\infty \cap H^1(\Omega)$ is dense the above bound also holds for general $v \in H^1(\Omega)$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:

(\Rightarrow) Let $v \in H^1(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the y-axis as interval $[y_1 - \delta, y_2 + \delta]$, $\delta > 0$.

Consider the auxiliary function

$$
\Psi(x) := \int_{y_1}^{y_2} v(x, y) dy.
$$

If $v \in C^\infty(\Omega)$, it would follow from Cauchy-Schwartz that

$$
|\Psi(x_2) - \Psi(x_1)|^2 = \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} \partial_1 v dx dy \right|^2 \leq \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} 1^2 dx dy \right| \cdot |v|_{1,\Omega}^2 \leq |x_2 - x_1| \cdot |y_2 - y_1| \cdot |v|_{1,\Omega}^2.
$$

Since $C^\infty \cap H^1(\Omega)$ is dense the above bound also holds for general $v \in H^1(\Omega)$.

This means the function $\Psi(x)$ is continuous, in particular at $x = 0$. Since y_1, y_2 can be chosen arbitrary with $y_1 < y_2$, Ψ can only be continuous if v is continuous at the edge, $\Rightarrow v \in C^0$.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Proof:

(\Rightarrow) Let $v \in H^1(\Omega)$. Consider a neighborhood of an edge and use coordinates based on rotation so the edge lies along the y-axis as interval $[y_1 - \delta, y_2 + \delta]$, $\delta > 0$. Consider the auxiliary function

$$
\Psi(x) := \int_{y_1}^{y_2} v(x, y)\,dy.
$$

If $v \in C^\infty(\Omega)$, it would follow from Cauchy-Swartz that

$$
|\Psi(x_2) - \Psi(x_1)|^2 = \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} \partial_1 v dx dy \right|^2 \leq \left| \int_{x_1}^{x_2} \int_{y_1}^{y_2} 1^2 dx dy \right| \cdot |v|_{1,\Omega}^2 \leq |x_2 - x_1| \cdot |y_2 - y_1| \cdot |v|_{1,\Omega}^2.
$$

Since $C^\infty \cap H^1(\Omega)$ is dense the above bound also holds for general $v \in H^1(\Omega)$. This means the function $\Psi(x)$ is continuous, in particular at $x = 0$. Since y_1, y_2 can be chosen arbitrary with $y_1 < y_2$, Ψ can only be continuous if v is continuous at the edge, $\Rightarrow v \in C^0$. \blacksquare
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\Omega)$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives C^{k-1} across edges, we obtain conforming elements for $V = H^k(\Omega)$.

Example: While hat-functions are only C^0, they provide elements conforming to $V = H^1(\Omega)$. Allows for approximating in weak form second-order PDEs.

Example: Elements with C^1-regularity across edges are sufficient to conform to $V = H^2(\Omega)$. Allows for approximating in weak form fourth-order PDEs.
Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \rightarrow \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\Omega)$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives C^{k-1} across edges, we obtain conforming elements for $V = H^k(\Omega)$.

Example: While hat-functions are only C^0, they provide elements conforming to $V = H^1(\Omega)$. Allows for approximating in weak form second-order PDEs.

Example: Elements with C^1-regularity across edges are sufficient to conform to $V = H^2(\Omega)$. Allows for approximating in weak form fourth-order PDEs.
Finite Elements

Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\Omega)$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives C^{k-1} across edges, we obtain conforming elements for $V = H^k(\Omega)$.

Example: While hat-functions are only C^0, they provide elements conforming to $V = H^1(\Omega)$. Allows for approximating in weak form second-order PDEs.
Finite Elements

Theorem

For a bounded domain Ω, admissible partition, and $k \geq 1$, a piecewise infinitely differentiable function $v : \overline{\Omega} \to \mathbb{R}$ belongs to $H^k(\Omega)$ if and only if $v \in C^{k-1}(\overline{\Omega})$.

Significance: This shows that provided our elements are smooth piecewise and have derivatives C^{k-1} across edges, we obtain conforming elements for $\mathcal{V} = H^k(\Omega)$.

Example: While hat-functions are only C^0, they provide elements conforming to $\mathcal{V} = H^1(\Omega)$. Allows for approximating in weak form second-order PDEs.

Example: Elements with C^1-regularity across edges are sufficient to conform to $\mathcal{V} = H^2(\Omega)$. Allows for approximating in weak form fourth-order PDEs.
Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called regular if all the elements are congruent (same type and shape).

The space of polynomials of degree t with $x \in \mathbb{R}^n$ is denoted by $P_t = \{ u | u(x) = \sum |\alpha| \leq t c_\alpha x^\alpha \}$.

Elements with complete polynomials refers to shape spaces using all polynomials with degree $\leq t$.

Conforming finite elements are those that generate function spaces contained in the Sobolev space of the weak formulation.

Other shape spaces, partition types, and non-conforming finite elements are also possible.
Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).
Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called **regular** if all the elements are congruent (same type and shape).
Practical Methods: A Few Considerations

Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called **regular** if all the elements are congruent (same type and shape).

The **space of polynomials of degree** t with $x \in \mathbb{R}^n$ is denoted by
Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called **regular** if all the elements are congruent (same type and shape).

The **space of polynomials of degree** t with $x \in \mathbb{R}^n$ is denoted by

$$\mathcal{P}_t = \left\{ u \mid u(x) = \sum_{|\alpha| \leq t} c_\alpha x^\alpha \right\}.$$
Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called **regular** if all the elements are congruent (same type and shape).

The **space of polynomials of degree** t with $x \in \mathbb{R}^n$ is denoted by

$$
\mathcal{P}_t = \left\{ u \mid u(x) = \sum_{|\alpha| \leq t} c_\alpha x^\alpha \right\}.
$$

Elements with **complete polynomials** refers to shape spaces using all polynomials with degree $\leq t$.
Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called **regular** if all the elements are congruent (same type and shape).

The **space of polynomials of degree** t with $x \in \mathbb{R}^n$ is denoted by

$$
\mathcal{P}_t = \left\{ u \mid u(x) = \sum_{|\alpha| \leq t} c_\alpha x^\alpha \right\}.
$$

Elements with **complete polynomials** refers to shape spaces using all polynomials with degree $\leq t$.

Conforming finite elements are those that generate function spaces contained in the Sobolev space of the weak formulation.
Definitions

Two elements are **congruent** if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called **regular** if all the elements are congruent (same type and shape).

The **space of polynomials of degree** t with $x \in \mathbb{R}^n$ is denoted by

$$
\mathcal{P}_t = \left\{ u \mid u(x) = \sum_{|\alpha| \leq t} c_\alpha x^\alpha \right\}.
$$

Elements with **complete polynomials** refers to shape spaces using all polynomials with degree $\leq t$.

Conforming finite elements are those that generate function spaces contained in the Sobolev space of the weak formulation.

Other shape spaces, partition types, and non-conforming finite elements are also possible.
Consider partition of the domain into triangular elements \mathcal{T}.
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with $z_1, z_2, \ldots, z_s, s = 1 + 2 + \cdots + (t+1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation $p(z_i) = f(z_i), 1 \leq i \leq s$.

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for t.

Let p_1 be the univariate Lagrange polynomial interpolating the $t+1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial for these points with $p_2(z_i) = (f(z_i) - p_1(z_i))/y_i, 1 \leq i \leq s-(t+1)$.

The polynomial $q(x, y) = p_1(x) + yp_2(x, y)$ interpolates all points. Uniqueness as exercise (use holds for degree $t-1$). ■
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted.

For every $f \in C^0(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation $p(z_i) = f(z_i)$, $1 \leq i \leq s$.

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t-1$ holds, we prove it holds for t.

Let p_1 be the univariate Lagrange polynomial interpolating the $t+1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial for these points with $p_2(z_i) = (f(z_i) - p_1(z_i))/y_i$, $1 \leq i \leq s-(t+1)$.

The polynomial $q(x,y) = p_1(x) + yp_2(x,y)$ interpolates all points. Uniqueness as exercise (use holds for degree $t-1$).

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Consider partition of the domain into triangular elements \(T \).

Lemma

Consider triangle \(T \) with \(z_1, z_2, \ldots, z_s, s = 1 + 2 + \cdots (t + 1) \) nodes lying on the lines depicted. For every \(f \in C(T) \) there is a unique polynomial \(p \) of degree \(\leq t \) satisfying interpolation

\[
p(z_i) = f(z_i), \quad 1 \leq i \leq s.
\]

Proof: We proceed by induction. Clearly, in the case of \(t = 0 \) when \(s = 1 \) we have interpolation by the constant polynomials. Now if the interpolation for \(t-1 \) holds, we prove it holds for \(t \).

Let \(p_1 \) be the univariate Lagrange polynomial interpolating the \(t+1 \) points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let \(p_2 \) be the interpolating polynomial for these points with \(p_2(z_i) = (f(z_i) - p_1(z_i))/y_i, \quad 1 \leq i \leq s - (t+1) \).

The polynomial \(q(x, y) = p_1(x) + yp_2(x, y) \) interpolates all points. Uniqueness as exercise (use holds for degree \(t-1 \)).

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \ 1 \leq i \leq s.$$

Proof:

We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t - 1$ holds, we prove it holds for t.

Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial for these points with

$$p_2(z_i) = \left(f(z_i) - p_1(z_i)\right) / y_i,$$

$1 \leq i \leq s - (t + 1)$.

The polynomial $q(x, y) = p_1(x) + yp_2(x, y)$ interpolates all points. Uniqueness as exercise (use holds for degree $t - 1$).

\[\blacksquare\]
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction.

- Linear triangular element M_0^1
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_1$, $\dim \Pi_{\text{ref}} = 3$

- Quadratic triangular element M_0^2
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_2$, $\dim \Pi_{\text{ref}} = 6$

- Cubic triangular element M_0^3
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 10$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials.
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t - 1$ holds, we prove it holds for t.

Linear triangular element M_0^1

$$u \in C^0(\Omega)$$

$$\Pi_{\text{ref}} = P_1, \quad \dim \Pi_{\text{ref}} = 3$$

Quadratic triangular element M_0^2

$$u \in C^0(\Omega)$$

$$\Pi_{\text{ref}} = P_2, \quad \dim \Pi_{\text{ref}} = 6$$

Cubic triangular element M_0^3

$$u \in C^0(\Omega)$$

$$\Pi_{\text{ref}} = P_3, \quad \dim \Pi_{\text{ref}} = 10$$
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots + (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t - 1$ holds, we prove it holds for t. Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis.

Linear triangular element \mathcal{M}_0^1

\begin{align*}
 u &\in C^0(\Omega) \\
 \Pi_{\text{ref}} = \mathcal{P}_1, \quad \dim \Pi_{\text{ref}} = 3
\end{align*}

Quadratic triangular element \mathcal{M}_0^2

\begin{align*}
 u &\in C^0(\Omega) \\
 \Pi_{\text{ref}} = \mathcal{P}_2, \quad \dim \Pi_{\text{ref}} = 6
\end{align*}

Cubic triangular element \mathcal{M}_0^3

\begin{align*}
 u &\in C^0(\Omega) \\
 \Pi_{\text{ref}} = \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 10
\end{align*}

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials.

Now if the interpolation for $t - 1$ holds, we prove it holds for t. Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis.

- Linear triangular element M_0^1
 - $u \in C^0(\Omega)$
 - $\Pi_{ref} = \mathcal{P}_1$, $\dim \Pi_{ref} = 3$

- Quadratic triangular element M_0^2
 - $u \in C^0(\Omega)$
 - $\Pi_{ref} = \mathcal{P}_2$, $\dim \Pi_{ref} = 6$

- Cubic triangular element M_0^3
 - $u \in C^0(\Omega)$
 - $\Pi_{ref} = \mathcal{P}_3$, $\dim \Pi_{ref} = 10$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials.

Now if the interpolation for $t - 1$ holds, we prove it holds for t. Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial

- Linear triangular element M_0^1
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_1$, $\dim \Pi_{\text{ref}} = 3$

- Quadratic triangular element M_0^2
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_2$, $\dim \Pi_{\text{ref}} = 6$

- Cubic triangular element M_0^3
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 10$

- Function value prescribed
- ○ Function value and 1st derivative prescribed
- ○○ Function value and 1st and 2nd derivatives prescribed
- ⬤ Normal derivative prescribed

D. Braess 2007
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \ 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t - 1$ holds, we prove it holds for t. Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial for these points with $p_2(z_i) = (f(z_i) - p_1(z_i))/y_i, \ 1 \leq i \leq s - (t + 1)$.

Linear triangular element M_0^1
\[u \in C^0(\Omega) \]
\[\Pi_{\text{ref}} = \mathcal{P}_1, \ \dim \Pi_{\text{ref}} = 3 \]

Quadratic triangular element M_0^2
\[u \in C^0(\Omega) \]
\[\Pi_{\text{ref}} = \mathcal{P}_2, \ \dim \Pi_{\text{ref}} = 6 \]

Cubic triangular element M_0^3
\[u \in C^0(\Omega) \]
\[\Pi_{\text{ref}} = \mathcal{P}_3, \ \dim \Pi_{\text{ref}} = 10 \]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements \mathcal{T}.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials.

Now if the interpolation for $t - 1$ holds, we prove it holds for t. Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial for these points with $p_2(z_i) = (f(z_i) - p_1(z_i))/y_i$, $1 \leq i \leq s - (t + 1)$.

The polynomial $q(x, y) = p_1(x) + yp_2(x, y)$ interpolates all points.
Consider partition of the domain into triangular elements T.

Lemma

Consider triangle T with z_1, z_2, \ldots, z_s, $s = 1 + 2 + \cdots (t + 1)$ nodes lying on the lines depicted. For every $f \in C(T)$ there is a unique polynomial p of degree $\leq t$ satisfying interpolation

$$p(z_i) = f(z_i), \quad 1 \leq i \leq s.$$

Proof: We proceed by induction. Clearly, in the case of $t = 0$ when $s = 1$ we have interpolation by the constant polynomials. Now if the interpolation for $t - 1$ holds, we prove it holds for t. Let p_1 be the univariate Lagrange polynomial interpolating the $t + 1$ points on the x-axis. Consider the sub-triangle neglecting the points on the x-axis. Let p_2 be the interpolating polynomial for these points with $p_2(z_i) = (f(z_i) - p_1(z_i))/y_i$, $1 \leq i \leq s - (t + 1)$. The polynomial $q(x, y) = p_1(x) + yp_2(x, y)$ interpolates all points. Uniqueness as exercise (use holds for degree $t - 1$). ■
Consider partition of the domain into triangular elements \mathcal{T}.

\[M_k^0 := \left\{ v \in L^2(\Omega); \quad v|_T \in P_t \text{ for every } T \in \mathcal{T} \right\} \]

\[M_0^0 := M_k^0 \cap C^0(\Omega) = M_k \cap H^1(\Omega) \]

\[M_0^1, 0 := M_k \cap H^1_0(\Omega). \]

The M_k^0 provide C^0 elements $\subset H^1$.

Note: Shared common nodes at vertices ensures the continuity.

M_k^0 is called the conforming P_k element.

M_0^1 is sometimes called the Courant triangle.

Nodal variables are $N_j(u) = u(z_j)$, so also called Lagrange elements.

Linear triangular element M_0^1

\[u \in C^0(\Omega) \]

\[\Pi_{\text{ref}} = P_1, \quad \dim \Pi_{\text{ref}} = 3 \]

Quadratic triangular element M_0^2

\[u \in C^0(\Omega) \]

\[\Pi_{\text{ref}} = P_2, \quad \dim \Pi_{\text{ref}} = 6 \]

Cubic triangular element M_0^3

\[u \in C^0(\Omega) \]

\[\Pi_{\text{ref}} = P_3, \quad \dim \Pi_{\text{ref}} = 10 \]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements \mathcal{T}.

- Linear triangular element \mathcal{M}_0^1
 - $u \in C^0(\Omega)$
 - $\Pi_{ref} = \mathcal{P}_1$, $\dim \Pi_{ref} = 3$

- Quadratic triangular element \mathcal{M}_0^2
 - $u \in C^0(\Omega)$
 - $\Pi_{ref} = \mathcal{P}_2$, $\dim \Pi_{ref} = 6$

- Cubic triangular element \mathcal{M}_0^3
 - $u \in C^0(\Omega)$
 - $\Pi_{ref} = \mathcal{P}_3$, $\dim \Pi_{ref} = 10$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed
Consider partition of the domain into triangular elements \mathcal{T}.

Definition

\[\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega); v|_T \in \mathcal{P}_t \text{ for every } T \in \mathcal{T} \} \]

- Linear triangular element \mathcal{M}_0^1
 \[u \in C^0(\Omega) \]
 \[\Pi_{\text{ref}} = \mathcal{P}_1, \quad \dim \Pi_{\text{ref}} = 3 \]

- Quadratic triangular element \mathcal{M}_0^2
 \[u \in C^0(\Omega) \]
 \[\Pi_{\text{ref}} = \mathcal{P}_2, \quad \dim \Pi_{\text{ref}} = 6 \]

- Cubic triangular element \mathcal{M}_0^3
 \[u \in C^0(\Omega) \]
 \[\Pi_{\text{ref}} = \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 10 \]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements \mathcal{T}.

Definition

$\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega) ; v|_T \in P_t \text{ for every } T \in \mathcal{T} \}$

$\mathcal{M}^k_0 := \mathcal{M}_k(\mathcal{T}) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega)$

- Linear triangular element \mathcal{M}^1_0
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_1$, $\dim \Pi_{\text{ref}} = 3$

- Quadratic triangular element \mathcal{M}^2_0
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_2$, $\dim \Pi_{\text{ref}} = 6$

- Cubic triangular element \mathcal{M}^3_0
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 10$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements \(T \).

Definition

\[
M^k := M_k(T) := \{ v \in L^2(\Omega); \, v|_T \in P_t \text{ for every } T \in T \},
\]

\[
M^k_0 := M_k(T) \cap C^0(\Omega) = M^k \cap H^1(\Omega),
\]

\[
M^k_{0,0} := M^k \cap H^1_0(\Omega).
\]

- Linear triangular element \(M^1_0 \)
 - \(u \in C^0(\Omega) \)
 - \(\Pi_{\text{ref}} = P_1, \quad \text{dim} \Pi_{\text{ref}} = 3 \)

- Quadratic triangular element \(M^2_0 \)
 - \(u \in C^0(\Omega) \)
 - \(\Pi_{\text{ref}} = P_2, \quad \text{dim} \Pi_{\text{ref}} = 6 \)

- Cubic triangular element \(M^3_0 \)
 - \(u \in C^0(\Omega) \)
 - \(\Pi_{\text{ref}} = P_3, \quad \text{dim} \Pi_{\text{ref}} = 10 \)

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements \mathcal{T}.

Definition

$$\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega); \ v|_T \in \mathcal{P}_t \text{ for every } T \in \mathcal{T} \}$$

$$\mathcal{M}^k_0 := \mathcal{M}_k(\mathcal{T}) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega)$$

$$\mathcal{M}^k_{0,0} := \mathcal{M}^k \cap H^1_0(\Omega).$$

The \mathcal{M}^k_0 provide C^0 elements $\subset H^1$.

- Linear triangular element \mathcal{M}^1_0
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_1$, $\dim \Pi_{\text{ref}} = 3$

- Quadratic triangular element \mathcal{M}^2_0
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_2$, $\dim \Pi_{\text{ref}} = 6$

- Cubic triangular element \mathcal{M}^3_0
 - $u \in C^0(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 10$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements \mathcal{T}.

Definition

$\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega); \ v|_T \in \mathcal{P}_t \text{ for every } T \in \mathcal{T} \}$

$\mathcal{M}^k_0 := \mathcal{M}_k(\mathcal{T}) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega)$

$\mathcal{M}^k_{0,0} := \mathcal{M}^k \cap H^1_0(\Omega)$.

The \mathcal{M}^k_0 provide C^0 elements $\subset H^1$.

- Linear triangular element \mathcal{M}^1_0
 $u \in C^0(\Omega)$
 $\Pi_{\text{ref}} = \mathcal{P}_1$, \ \dim \Pi_{\text{ref}} = 3$

- Quadratic triangular element \mathcal{M}^2_0
 $u \in C^0(\Omega)$
 $\Pi_{\text{ref}} = \mathcal{P}_2$, \ \dim \Pi_{\text{ref}} = 6$

- Cubic triangular element \mathcal{M}^3_0
 $u \in C^0(\Omega)$
 $\Pi_{\text{ref}} = \mathcal{P}_3$, \ \dim \Pi_{\text{ref}} = 10$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Consider partition of the domain into triangular elements \mathcal{T}.

Definition

\[
\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega); v|_T \in P_t \text{ for every } T \in \mathcal{T} \} \\
\mathcal{M}_0^k := \mathcal{M}_k(\mathcal{T}) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega) \\
\mathcal{M}_{0,0}^k := \mathcal{M}^k \cap H^1_0(\Omega).
\]

The \mathcal{M}_0^k provide C^0 elements $\subset H^1$.

Note: Shared common nodes at vertices ensures the continuity.
Consider partition of the domain into triangular elements \mathcal{T}.

Definition

\[
\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega); \ v|_{\mathcal{T}} \in \mathcal{P}_t \text{ for every } \mathcal{T} \in \mathcal{T} \}
\]

\[
\mathcal{M}^k_0 := \mathcal{M}_k(\mathcal{T}) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega)
\]

\[
\mathcal{M}^k_{0,0} := \mathcal{M}^k \cap H^1_0(\Omega).
\]

The \mathcal{M}^k_0 provide C^0 elements $\subset H^1$.

Note: Shared common nodes at vertices ensures the continuity.

\mathcal{M}^k_0 is called the **conforming P_k element**.
Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T.

Definition

\[
\mathcal{M}^k := \mathcal{M}_k(T) := \{ v \in L^2(\Omega); v|_T \in \mathcal{P}_t \text{ for every } T \in T \}
\]

\[
\mathcal{M}^k_0 := \mathcal{M}_k(T) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega)
\]

\[
\mathcal{M}^k_{0,0} := \mathcal{M}^k \cap H^1_0(\Omega).
\]

The \mathcal{M}^k_0 provide C^0 elements $\subset H^1$.

Note: Shared common nodes at vertices ensures the continuity.

\mathcal{M}^k_0 is called the conforming P_k element. \mathcal{M}^k_0 is sometimes called the Courant triangle.
Consider partition of the domain into triangular elements \mathcal{T}.

Definition

\[
\mathcal{M}^k := \mathcal{M}_k(\mathcal{T}) := \{ v \in L^2(\Omega); \; v|_T \in \mathcal{P}_t \text{ for every } T \in \mathcal{T} \}
\]

\[
\mathcal{M}^0 := \mathcal{M}_0(\mathcal{T}) \cap C^0(\Omega) = \mathcal{M}^k \cap H^1(\Omega)
\]

\[
\mathcal{M}^k_{0,0} := \mathcal{M}^k \cap H^1_0(\Omega).
\]

The \mathcal{M}^k_0 provide C^0 elements $\subset H^1$.

Note: Shared common nodes at vertices ensures the continuity.

\mathcal{M}^k_0 is called the **conforming** P_k element.

\mathcal{M}^0_0 is sometimes called the **Courant triangle**.

Nodal variables are $N_j(u) = u(z_j)$, so also called **Lagrange elements**.
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses P_5 which has dim $P_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{P}_5 = P_5 \mathbb{Q}$ which has dim $\tilde{P}_5 = 18$.
\tilde{P}_5 restricted to polynomials having normal derivatives along the edges only of degree 4, ($\partial_n p(x_e) \in P_4$).
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element:
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use S piecewise cubic polynomials on each subtriangle, dim $S = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.
Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses P_5 which has $\dim P_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{P}_5 = P_5 \mathbb{Q}$ which has $\dim \tilde{P}_5 = 18$.
\tilde{P}_5 restricted to polynomials having normal derivatives along the edges only of degree 4, ($\partial_n p(x_e) \in P_4$).
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element:
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use S piecewise cubic polynomials on each subtriangle, $\dim S = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.
Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

- **Argyris triangle**
 - $u \in C^1(\Omega)$
 - $\Pi_{\text{ref}} = P_5$, $\dim \Pi_{\text{ref}} = 21$

- **Bell triangle**
 - $u \in C^1(\Omega)$
 - $\Pi_{\text{ref}} \subset P_5$, $\partial_n u|_{\partial T_i} \in P_3$, $\dim \Pi_{\text{ref}} = 18$

- **Hsieh–Clough–Tocher element**
 - $u \in C^1(\Omega)$
 - $T = \bigcup_{i=1}^3 K_i$, $u|_{K_i} \in P_3$, $\dim \Pi_{\text{ref}} = 12$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:

Argyris triangle

$u \in C^1(\Omega)$

$\Pi_{\text{ref}} = \mathcal{P}_5, \quad \dim \Pi_{\text{ref}} = 21$

Bell triangle

$u \in C^1(\Omega)$

$\Pi_{\text{ref}} \subset \mathcal{P}_5, \quad \partial_n u|_{\partial T} \in \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 18$

Hsieh–Clough–Tocher element

$u \in C^1(\Omega)$

$T = \bigcup_{i=1}^{3} K_i, \quad u|_{K_i} \in \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 12$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.

- **Argyris triangle**
 - $u \in C^1(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_5$, $\dim \Pi_{\text{ref}} = 21$

- **Bell triangle**
 - $u \in C^1(\Omega)$
 - $\Pi_{\text{ref}} \subset \mathcal{P}_5$, $\partial_u |_{\partial \Omega} \in \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 18$

- **Hsieh–Clough–Tocher element**
 - $u \in C^1(\Omega)$
 - $T = \bigcup_{i=1}^3 K_i$, $u|_{K_i} \in \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 12$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\text{dim } \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \oplus \mathcal{Q}$ which has $\text{dim } \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh–Clough–Tocher element:
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S}-piecewise cubic polynomials on each subtriangle, $\text{dim } \mathcal{S} = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.
Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.

D. Braess 2007

Paul J. Atzberger, UCSB
Finite Element Methods

http://atzberger.org/
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has dim $\mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \mathcal{Q}$ which has dim $\tilde{\mathcal{P}}_5 = 18$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh–Clough–Tocher element:
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use S piecewise cubic polynomials on each subtriangle, dim $S = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

Bernstein–Bézier representation of polynomials used to handle derivatives along element boundaries.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Argyris triangle
\[u \in C^1(\Omega) \]
\[\Pi_{\text{ref}} = \mathcal{P}_5, \quad \dim \Pi_{\text{ref}} = 21 \]

Bell triangle
\[u \in C^1(\Omega) \]
\[\Pi_{\text{ref}} \subset \mathcal{P}_5, \quad \partial_n u|_{\partial \Omega} \in \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 18 \]

$\text{Hsieh–Clough–Tocher element}$
\[u \in C^1(\Omega) \]
\[T = \bigcup_{i=1}^3 K_i, \quad u|_{K_i} \in \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 12 \]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses P_5 which has dim $P_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices. However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.

Hsieh–Clough–Tocher element
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S} piecewise cubic polynomials on each subtriangle, $\dim \mathcal{S} = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

Bernstein–Bézier representation of polynomials used to handle derivatives along element boundaries.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has dim $\mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has dim $\tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.

Hsieh–Clough–Tocher element
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S} piecewise cubic polynomials on each subtriangle, dim $\mathcal{S} = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

Bernstein–Bézier representation of polynomials used to handle derivatives along element boundaries.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/

D. Braess 2007
More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses P_5 which has $\dim P_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{P}_5 = P_5 \setminus Q$ which has $\dim \tilde{P}_5 = 18$.
\tilde{P}_5 restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial n p(x_e) \in P_4)$).
Values given of all derivatives up to order 2 at the vertices.
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4))$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element:
Macroelement approach.
Subdivide the triangle into three subtriangles.
Use S piecewise cubic polynomials on each subtriangle, $\dim S = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.
Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along
the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4))$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

\begin{itemize}
 \item $u \in C^1(\Omega)$
 \item $\Pi_{\text{ref}} = \mathcal{P}_5, \quad \dim \Pi_{\text{ref}} = 21$
 \item $u \in C^1(\Omega)$
 \item $\Pi_{\text{ref}} \subset \mathcal{P}_5, \quad \partial_n u|_{\partial \Omega} \in \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 18$
 \item $T = \bigcup_{i=1}^3 K_i, \quad u|_{K_i} \in \mathcal{P}_3, \quad \dim \Pi_{\text{ref}} = 12$
\end{itemize}

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices. However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S} piecewise cubic polynomials on each subtriangle, $\dim \mathcal{S} = 12$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/

D. Braess 2007
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S} piecewise cubic polynomials on each subtriangle, $\dim \mathcal{S} = 12$.
Values given of function and first derivative at vertices.
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S} piecewise cubic polynomials on each subtriangle, $\dim \mathcal{S} = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

- Argyris triangle
 - $u \in C^1(\Omega)$
 - $\Pi_{\text{ref}} = \mathcal{P}_5$, $\dim \Pi_{\text{ref}} = 21$

- Bell triangle
 - $u \in C^1(\Omega)$
 - $\Pi_{\text{ref}} \subset \mathcal{P}_5$, $\partial_n u|_{\partial \Omega} \in \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 18$

- Hsieh–Clough–Tocher element
 - $u \in C^1(\Omega)$
 - $T = \bigcup_{i=1}^{3} K_i$, $u|_{K_i} \in \mathcal{P}_3$, $\dim \Pi_{\text{ref}} = 12$
Triangular Finite Elements: C^1 Regularity

More challenging to obtain elements with C^1 regularity.

Argyris element:
Uses \mathcal{P}_5 which has $\dim \mathcal{P}_5 = 21$.
Values given of all derivatives up to order 2 at the vertices.
However, this is only $3 \times 6 = 18$ DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses $\tilde{\mathcal{P}}_5 = \mathcal{P}_5 \setminus \mathcal{Q}$ which has $\dim \tilde{\mathcal{P}}_5 = 18$.
$\tilde{\mathcal{P}}_5$ restricted to polynomials having normal derivatives along the edges only of degree 4, $(\partial_n p(x_e) \in \mathcal{P}_4)$.
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.
Use \mathcal{S} piecewise cubic polynomials on each subtriangle, $\dim \mathcal{S} = 12$.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.
A tensor-product basis generated by \(\{ \varphi_k \} \) for \(x \in \mathbb{R}^n \) is given by:

\[
\tilde{P}_k := \{ u(x) | u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \varphi_{j_1}(x_1) \cdot \varphi_{j_2}(x_2) \cdots \varphi_{j_n}(x_n) \}.
\]

The polynomial tensor-product basis of degree \(t \) is:

\[
Q_t := \{ u | u(x) = \sum_{\max \alpha \leq t} c_{\alpha} x_\alpha \}.
\]

The space \(Q_1 \) gives bilinear interpolation of nodal values. In fact, \(Q_1 = \{ u \in C_0(\Omega) | v | T \in P_2, \text{along edges} v | \partial T \in P_1 \} \).
A tensor-product basis generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \).
A tensor-product basis generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{P}[\phi] := \{ u(x) \mid \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]
A **tensor-product basis** generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{\mathcal{P}}[\phi] := \{ u(x) \mid u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]

The **polynomial tensor-product basis** of degree \(t \) is
A **tensor-product basis** generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{P}[\phi] := \{ u(x) \mid u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]

The **polynomial tensor-product basis** of degree \(t \) is

\[
Q_t := \{ u \mid u(x) = \sum_{\max \alpha \leq t} c_{\alpha} x^\alpha \}
\]
Quadrilateral Finite Elements

Tensor Product Bases

A tensor-product basis generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{P}[\phi] := \{ u(x) \mid u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]

The polynomial tensor-product basis of degree \(t \) is

\[
Q_t := \{ u \mid u(x) = \sum_{\max \alpha \leq t} c_\alpha x^\alpha \}
\]

Bilinear quadrilateral element \(Q_1 \)
\(u \in C^0(\Omega) \)
\(\Pi_{\text{ref}} \subset P_2, \ u|_{\partial T_i} \in P_1, \ \dim \Pi_{\text{ref}} = 4 \)

Serendipity element
\(u \in C^0(\Omega) \)
\(\Pi_{\text{ref}} \subset P_3, \ u|_{\partial T_i} \in P_2, \ \dim \Pi_{\text{ref}} = 8 \)

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/

D. Braess 2007
Tensor Product Bases

A **tensor-product basis** generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{P}[\phi] := \{ u(x) | u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]

The **polynomial tensor-product basis** of degree \(t \) is

\[Q_t := \{ u | u(x) = \sum_{\max \alpha \leq t} c_{\alpha} x^{\alpha} \} \]

The space \(Q_1 \) gives bilinear interpolation of nodal values.
Tensor Product Bases

A **tensor-product basis** generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{P}[\phi] := \{ u(x) \mid u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]

The **polynomial tensor-product basis** of degree \(t \) is

\[
Q_t := \{ u \mid u(x) = \sum_{\max \alpha \leq t} c_\alpha x^\alpha \}
\]

The space \(Q_1 \) gives bilinear interpolation of nodal values. In fact, \(Q_1 = \{ u \in C^0(\Omega) \mid v|_T \in P_2, \text{ along edges } v|_{\partial T} \in P_1 \} \).
Tensor Product Bases

A **tensor-product basis** generated by \(\{ \phi_k \}_{k=1}^t \) for \(x \in \mathbb{R}^n \)

\[
\tilde{P}[\phi] := \{ u(x) \mid u(x_1, x_2, \ldots, x_n) = \sum_{1 \leq j_1, \ldots, j_n \leq t} c_{j_1} \phi_{j_1}(x_1) \cdot \phi_{j_2}(x_2) \cdots \phi_{j_n}(x_n) \}
\]

The **polynomial tensor-product basis** of degree \(t \) is

\[
Q_t := \{ u \mid u(x) = \sum_{\max \alpha \leq t} c_\alpha x^\alpha \}
\]

The space \(Q_1 \) gives bilinear interpolation of nodal values.
In fact, \(Q_1 = \{ u \in C^0(\Omega) \mid v|_T \in P_2, \text{ along edges } v|_{\partial T} \in P_1 \} \).
Quadrilateral Finite Elements

Serendipity Element:
\[S_{sd} = \{ u \in P_3 | u |_{\partial T} \in P_2 \}, \] which has \(\dim S_{sd} = 8 \).

\[
\begin{align*}
p(x, y) &= c_0 + c_1 x + c_2 y + c_3 xy + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1) \\
\end{align*}
\]

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider \(S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \} \). Nodal locations are vertices of rectangle and edge mid-points.

Add nodal location at the center of the rectangle.

6-Point Element:
Consider \(S_{sd} \mathcal{Q} \) for some \(\mathcal{Q} \) of polynomials terms.

For \(\mathcal{Q} = \{ c_4 (x^2 - 1)(y - 1) \oplus c_5 (x^2 - 1)(y + 1) \} \), drop midpoint nodes on edges with \(y = \pm 1 \).

For \(\mathcal{Q} = \{ c_6 (x - 1)(y^2 - 1) \oplus c_7 (x + 1)(y^2 - 1) \} \), drop midpoint nodes on edges with \(x = \pm 1 \).

Bilinear quadrilateral element \(Q_1 \)
\[u \in C^0(\Omega) \]
\[\Pi_{ref} \subset P_2, \ u|_{\partial T} \in P_1, \ \dim \Pi_{ref} = 4 \]

Serendipity element
\[u \in C^0(\Omega) \]
\[\Pi_{ref} \subset P_3, \ u|_{\partial T} \in P_2, \ \dim \Pi_{ref} = 8 \]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Serendipity Element:

Bilinear quadrilateral element Q_1

\[u \in C^0(\Omega) \]

\[\Pi_{\text{ref}} \subset P_2, \ u|_{\partial T} \in P_1, \quad \dim \Pi_{\text{ref}} = 4 \]

Serendipity element

\[u \in C^0(\Omega) \]

\[\Pi_{\text{ref}} \subset P_3, \ u|_{\partial T} \in P_2, \quad \dim \Pi_{\text{ref}} = 8 \]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Quadrilateral Finite Elements

Serendipity Element:

Consider $S_{sd} = \{ u \in P_3 \mid u_{\partial T_i} \in P_2 \}$, which has $\dim S_{sd} = 8$.

$p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1)$.

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element: Consider $S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$. Nodal locations are vertices of rectangle and edge mid-points. Add nodal location at the center of the rectangle.

6-Point Element: Consider $S_{sd} \mathcal{Q}$ for some \mathcal{Q} of polynomials terms. For $\mathcal{Q} = \{ c_4 (x^2 - 1)(y - 1) \oplus c_5 (x^2 - 1)(y + 1) \}$, drop midpoint nodes on edges with $y = \pm 1$. For $\mathcal{Q} = \{ c_6 (x - 1)(y^2 - 1) \oplus c_7 (x + 1)(y^2 - 1) \}$, drop midpoint nodes on edges with $x = \pm 1$.

Bilinear quadrilateral element Q_1

$u \in C^0(\Omega)$

$\Pi_{\text{ref}} \subset P_2$, $u_{\text{\partial } T_i} \in P_1$, $\dim \Pi_{\text{ref}} = 4$

Serendipity element

$u \in C^0(\Omega)$

$\Pi_{\text{ref}} \subset P_3$, $u_{\text{\partial } T_i} \in P_2$, $\dim \Pi_{\text{ref}} = 8$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has $\dim S_{sd} = 8$.

Bilinear quadrilateral element Q_1
- $u \in C^0(\Omega)$
- $\Pi_{ref} \subset \mathcal{P}_2$, $u|_{\partial T_i} \in \mathcal{P}_1$, $\dim \Pi_{ref} = 4$

Serendipity element
- $u \in C^0(\Omega)$
- $\Pi_{ref} \subset \mathcal{P}_3$, $u|_{\partial T_i} \in \mathcal{P}_2$, $\dim \Pi_{ref} = 8$

- Function value prescribed
- ○ Function value and 1st derivative prescribed
- ◊ Function value and 1st and 2nd derivatives prescribed
- ↓ Normal derivative prescribed

D. Braess 2007
Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has dim $S_{sd} = 8$.

\[p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy
\quad + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1)
\quad + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1). \]
Serendipity Element:
Consider $S_{sd} = \{u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2\}$, which has $\dim S_{sd} = 8$.

$$p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy$$
$$+ c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1)$$
$$+ c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).$$

Nodal locations are vertices of rectangle and edge mid-points.

Bilinear quadrilateral element Q_1

$u \in C^0(\Omega)$

$\Pi_{\text{ref}} \subset \mathcal{P}_2$, $u|_{\partial T_i} \in \mathcal{P}_1$, $\dim \Pi_{\text{ref}} = 4$

Serendipity element

$u \in C^0(\Omega)$

$\Pi_{\text{ref}} \subset \mathcal{P}_3$, $u|_{\partial T_i} \in \mathcal{P}_2$, $\dim \Pi_{\text{ref}} = 8$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Quadrilateral Finite Elements

Serendipity Element:
Consider \(S_{sd} = \{ u \in P_3 \mid u|_{\partial T} \in P_2 \} \), which has \(\dim S_{sd} = 8 \).
\[
\begin{align*}
p(x, y) &= c_0 + c_1 x + c_2 y + c_3 xy \\
&\quad + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) \\
&\quad + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).
\end{align*}
\]
Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:

9-Point Element:
Consider \(S_{9} = S_{sd} \bigoplus \{ c_8 (x^2 - 1)(y^2 - 1) \} \).
Nodal locations are vertices of rectangle and edge mid-points.

Bilinear quadrilateral element \(Q_1 \)
\[
\begin{align*}
&u \in C^0(\Omega) \\
&\Pi_{ref} \subset P_2, \ u|_{\partial T_i} \in P_1, \ \dim \Pi_{ref} = 4
\end{align*}
\]

Serendipity element
\[
\begin{align*}
&u \in C^0(\Omega) \\
&\Pi_{ref} \subset P_3, \ u|_{\partial T_i} \in P_2, \ \dim \Pi_{ref} = 8
\end{align*}
\]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Quadrilateral Finite Elements

Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has $\dim S_{sd} = 8$.

$$
p(x,y) = c_0 + c_1 x + c_2 y + c_3 xy
+ c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1)
+ c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).
$$

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \bigoplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$.

Bilinear quadrilateral element Q_1
$u \in C^0(\Omega)$
$\Pi_{ref} \subset \mathcal{P}_2$, $u|_{\partial T_i} \in \mathcal{P}_1$, $\dim \Pi_{ref} = 4$

Serendipity element
$u \in C^0(\Omega)$
$\Pi_{ref} \subset \mathcal{P}_3$, $u|_{\partial T_i} \in \mathcal{P}_2$, $\dim \Pi_{ref} = 8$

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has dim $S_{sd} = 8$.

$$p(x, y) = c_0 + c_1 x + c_2 y + c_3 x y$$
$$+ c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1)$$
$$+ c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).$$

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$.

Nodal locations are vertices of rectangle and edge mid-points.

Bilinear quadrilateral element Q_1

- $u \in C^0(\Omega)$
- $\Pi_{\text{ref}} \subseteq \mathcal{P}_2$, $u|_{\partial T_i} \in \mathcal{P}_1$, dim $\Pi_{\text{ref}} = 4$

Serendipity element

- $u \in C^0(\Omega)$
- $\Pi_{\text{ref}} \subseteq \mathcal{P}_3$, $u|_{\partial T_i} \in \mathcal{P}_2$, dim $\Pi_{\text{ref}} = 8$

- Function value prescribed
- ⊙ Function value and 1st derivative prescribed
- ◯ Function value and 1st and 2nd derivatives prescribed
- ▼ Normal derivative prescribed

D. Braess 2007
Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has $\text{dim } S_{sd} = 8$.

\[
p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).
\]

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$.
Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.

Bilinear quadrilateral element Q_1
\[
\begin{array}{c}
 u \in C^0(\Omega) \\
 \Pi_{\text{ref}} \subset \mathcal{P}_2, \ u|_{\partial T_i} \in \mathcal{P}_1, \quad \text{dim } \Pi_{\text{ref}} = 4
\end{array}
\]

Serendipity element
\[
\begin{array}{c}
 u \in C^0(\Omega) \\
 \Pi_{\text{ref}} \subset \mathcal{P}_3, \ u|_{\partial T_i} \in \mathcal{P}_2, \quad \text{dim } \Pi_{\text{ref}} = 8
\end{array}
\]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Quadrilateral Finite Elements

Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has $\dim S_{sd} = 8$.

$p(x,y) = c_0 + c_1 x + c_2 y + c_3 xy$
$+ c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1)$
$+ c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1)$.

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$.

Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.

6-Point Element:
Quadrilateral Finite Elements

Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has dim $S_{sd} = 8$.

\[
p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).
\]

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$. Nodal locations are vertices of rectangle and edge mid-points. Add nodal location at the center of the rectangle.

6-Point Element:
Consider $S_{sd} \setminus Q$ for some Q of polynomials terms.

Bilinear quadrilateral element Q_1
\[
\begin{align*}
\text{u} & \in C^0(\Omega) \\
\Pi_{ref} & \subset \mathcal{P}_3, \ u|_{\partial T} \in \mathcal{P}_2, \ \text{dim} \ \Pi_{ref} = 4
\end{align*}
\]

Serendipity element
\[
\begin{align*}
\text{u} & \in C^0(\Omega) \\
\Pi_{ref} & \subset \mathcal{P}_3, \ u|_{\partial T} \in \mathcal{P}_2, \ \text{dim} \ \Pi_{ref} = 8
\end{align*}
\]

- Function value prescribed
- Function value and 1st derivative prescribed
- Function value and 1st and 2nd derivatives prescribed
- Normal derivative prescribed

D. Braess 2007
Quadrilateral Finite Elements

Serendipity Element:
Consider $S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \}$, which has $\dim S_{sd} = 8$.

$$p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).$$

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \}$. Nodal locations are vertices of rectangle and edge mid-points. Add nodal location at the center of the rectangle.

6-Point Element:
Consider $S_{sd} \setminus Q$ for some Q of polynomials terms. For $Q = \{ c_4 (x^2 - 1)(y - 1) \oplus c_5 (x^2 - 1)(y + 1) \}$, drop midpoint nodes on edges with $y = \pm 1$.
Quadrilateral Finite Elements

Serendipity Element:
Consider \(S_{sd} = \{ u \in \mathcal{P}_3 \mid u|_{\partial T} \in \mathcal{P}_2 \} \), which has \(\dim S_{sd} = 8 \).

\[
p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy + c_4 (x^2 - 1)(y - 1) + c_5 (x^2 - 1)(y + 1) + c_6 (x - 1)(y^2 - 1) + c_7 (x + 1)(y^2 - 1).
\]

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider \(S_9 = S_{sd} \oplus \{ c_8 (x^2 - 1)(y^2 - 1) \} \).
Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.

6-Point Element:
Consider \(S_{sd} \setminus Q \) for some \(Q \) of polynomials terms.
For \(Q = \{ c_4 (x^2 - 1)(y - 1) \oplus c_5 (x^2 - 1)(y + 1) \} \),
drop midpoint nodes on edges with \(y = \pm 1 \).
For \(Q = \{ c_6 (x - 1)(y^2 - 1) \oplus c_7 (x + 1)(y^2 - 1) \} \),
drop midpoint nodes on edges with \(x = \pm 1 \).

Serendipity Element:
Consider $S_{sd} = \{ u \in P_3 \mid u|_{\partial T} \in P_2 \}$, which has $\dim S_{sd} = 8$.

\[
p(x, y) = c_0 + c_1 x + c_2 y + c_3 xy \\
+ c_4(x^2 - 1)(y - 1) + c_5(x^2 - 1)(y + 1) \\
+ c_6(x - 1)(y^2 - 1) + c_7(x + 1)(y^2 - 1).
\]

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider $S_9 = S_{sd} \oplus \{c_8(x^2 - 1)(y^2 - 1)\}$.
Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.

6-Point Element:
Consider $S_{sd} \backslash Q$ for some Q of polynomials terms.
For $Q = \{c_4(x^2 - 1)(y - 1) \oplus c_5(x^2 - 1)(y + 1)\}$,
drop midpoint nodes on edges with $y = \pm 1$.
For $Q = \{c_6(x - 1)(y^2 - 1) \oplus c_7(x + 1)(y^2 - 1)\}$,
drop midpoint nodes on edges with $x = \pm 1$.
Affine Families of Elements

Definition

We define for canonical representation a reference element \((T_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\). A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an affine family if for every \(T_j \in T_h\) there exists an affine map \(F_j : T_{\text{ref}} \rightarrow T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form \(v(x) = p(F_j^{-1}x)\) with \(p \in \Pi_{\text{ref}}\).

The finite elements \(M_{k0}\) are an affine family. The quadrilateral elements we defined using nodal values give affine families. However, the Argyris elements are not since they involve normal derivatives.
Affine Families of Elements

Definition

We define for canonical representation a **reference element** \((\mathcal{T}_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\).

A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an **affine family** if for every \(T_j \in T_h\) there exists an affine map \(F_j : \mathcal{T}_{\text{ref}} \rightarrow T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form \(v(x) = p(F_j^{-1}x)\) with \(p \in \Pi_{\text{ref}}\).

The finite elements \(M_{k0}\) are an affine family. The quadrilateral elements we defined using nodal values give affine families. However, the Argyris elements are not since they involve normal derivatives.
Definition

We define for canonical representation a **reference element** $(T_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})$. A collection of finite element spaces S_h for partitions $T_h \subset \Omega \subset \mathbb{R}^d$ is called an **affine family** if

- For every $T_j \in T_h$ there exists an affine map $F_j : T_{\text{ref}} \rightarrow T_j$ so that when $v \in S_h$ when restricted to T_j is of the form $v(x) = p(F^{-1}_j x)$ with $p \in \Pi_{\text{ref}}$.

The finite elements M_{k0} are an affine family. The quadrilateral elements we defined using nodal values give affine families. However, the Argyris elements are not since they involve normal derivatives.
Definition

We define for canonical representation a **reference element** \((T_{ref}, \Pi_{ref}, \Sigma_{ref})\).

A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an **affine family** if

1. For every \(T_j \in T_h\) there exists an affine map \(F_j : T_{ref} \to T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form

\[
v(x) = p(F_j^{-1}(x)) \quad \text{with} \quad p \in \Pi_{ref}.
\]
Affine Families of Elements

Definition

We define for canonical representation a reference element \((T_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\).

A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an affine family if

1. For every \(T_j \in T_h\) there exists an affine map \(F_j : T_{\text{ref}} \to T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form

\[
v(x) = p(F_j^{-1}x) \quad \text{with} \quad p \in \Pi_{\text{ref}}.
\]
Affine Families of Elements

Definition

We define for canonical representation a reference element \((\mathcal{T}_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\).

A collection of finite element spaces \(S_h\) for partitions \(\mathcal{T}_h \subset \Omega \subset \mathbb{R}^d\) is called an affine family if

1. For every \(T_j \in \mathcal{T}_h\) there exists an affine map \(F_j : T_{\text{ref}} \rightarrow T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form

\[
v(x) = p(F_j^{-1}x) \quad \text{with} \quad p \in \Pi_{\text{ref}}.\]

The finite elements \(M_0^k\) are an affine family.

The quadrilateral elements we defined using nodal values give affine families. However, the Argyris elements are not since they involve normal derivatives.
Affine Families of Elements

Definition

We define for canonical representation a reference element \((T_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\).

A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an affine family if

i. For every \(T_j \in T_h\) there exists an affine map \(F_j : T_{\text{ref}} \rightarrow T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form

\[
v(x) = p(F_j^{-1}x) \quad \text{with} \quad p \in \Pi_{\text{ref}}.
\]

The finite elements \(M_k^0\) are an affine family.

The quadrilateral elements we defined using nodal values give affine families.
Affine Families of Elements

Definition

We define for canonical representation a **reference element** \((T_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\).

A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an **affine family** if

1. For every \(T_j \in T_h\) there exists an affine map \(F_j : T_{\text{ref}} \rightarrow T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form

\[
v(x) = p(F_j^{-1}x) \quad \text{with} \quad p \in \Pi_{\text{ref}}.
\]

The finite elements \(M_0^k\) are an affine family.

The quadrilateral elements we defined using nodal values give affine families.

However, the Argyris elements are not since they involve normal derivatives.
Affine Families of Elements

Definition

We define for canonical representation a reference element \((T_{\text{ref}}, \Pi_{\text{ref}}, \Sigma_{\text{ref}})\). A collection of finite element spaces \(S_h\) for partitions \(T_h \subset \Omega \subset \mathbb{R}^d\) is called an affine family if

1. For every \(T_j \in T_h\) there exists an affine map \(F_j : T_{\text{ref}} \to T_j\) so that when \(v \in S_h\) when restricted to \(T_j\) is of the form

\[
 v(x) = p(F_j^{-1}x) \quad \text{with} \quad p \in \Pi_{\text{ref}}.
\]

The finite elements \(M_0^k\) are an affine family.

The quadrilateral elements we defined using nodal values give affine families.

However, the Argyris elements are not since they involve normal derivatives.
Application to Elliptic PDEs.
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[\nabla^2 u = -g, \quad x \in \Omega \\
\left. u \right|_{\partial \Omega} = f, \quad x \in \partial \Omega . \]

\[\langle a(u, v) = -\langle g, v \rangle, \quad v \in S \rangle \]

(RG-Approximation)

Motivations:
- Steady-state heat equation
- Electrostatics
- Incompressibility constraints

Finite Element Approximation Steps:
- Select element type for generating a space \(S \).
- Mesh the domain to obtain a collection of elements.
- Calculate the stiffness matrix and load vector using weak form.
- Solve the linear system \(K u = f \).

Paul J. Atzberger, UCSB
http://atzberger.org/
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

Motivations:
Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:
- Select element type for generating a space \(S \).
- Mesh the domain to obtain a collection of elements.
- Calculate the stiffness matrix and load vector using weak form.
- Solve the linear system \(Ku = f \).

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
\quad u = f, & x \in \partial\Omega.
\end{cases}
\]
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
 u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
\{ & a(u, v) = - (g, v), \quad v \in S \\
 & a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx. \}
\end{align*}
\]

Motivations:
Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:
1. Select element type for generating a space \(S \).
2. Mesh the domain to obtain a collection of elements.
3. Calculate the stiffness matrix and load vector using weak form.
4. Solve the linear system \(K u = f \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial\Omega.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) &= -\langle g, v \rangle, \quad v \in S \\
a(u, v) &= \int_\Omega \nabla u \cdot \nabla v \, dx.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) &= \int_\Omega \nabla u \cdot \nabla v \, dx.
\end{aligned}
\]

(RG-Approximation)

Motivations:
Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

i. Select element type for generating a space \(S \).

ii. Mesh the domain to obtain a collection of elements.

iii. Calculate the stiffness matrix and load vector using weak form.

iv. Solve the linear system \(K u = f \).

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial\Omega.
\end{align*}
\]

\[\rightarrow\]

\[
\begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{aligned}
\rightarrow
\begin{aligned}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{aligned}
\] (RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

i Select element type for generating a space \(S \).
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u & = -g, \quad x \in \Omega \\
u & = f, \quad x \in \partial \Omega.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) & = - (g, v), \quad v \in S \\
a(u, v) & = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{aligned}
\]

(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

i. Select element type for generating a space \(S \).

ii. Mesh the domain to obtain a collection of elements.
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) &= -\langle g, v \rangle, \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{aligned}
\]

(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

i. Select element type for generating a space \(S \).

ii. Mesh the domain to obtain a collection of elements.

iii. Calculate the stiffness matrix and load vector using weak form.
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\Rightarrow \quad \begin{cases}
\quad a(u, v) = -(g, v), \quad v \in S \\
\quad a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\]

(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

i. Select element type for generating a space \(S \).

ii. Mesh the domain to obtain a collection of elements.

iii. Calculate the stiffness matrix and load vector using weak form.

iv. Solve the linear system \(Ku = f \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

1. Select element type for generating a space \(S \).
2. Mesh the domain to obtain a collection of elements.
3. Calculate the stiffness matrix and load vector using weak form.
4. Solve the linear system \(Ku = f \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\end{align*}
\rightarrow
\begin{align*}
\begin{cases}
a(u,v) = -(g,v), & v \in S \\
a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\end{align*}
\]

Discretization:

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
\{ & a(u, v) = -(g, v), \quad v \in S \\
& a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v d\Omega. \}
\end{align*}
\]

(RG-Approximation)

Discretization:
Divide domain into triangular elements \(T_j \).

\[
\begin{align*}
\Omega \\
\partial \Omega \\
f
\end{align*}
\]
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial\Omega.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_\Omega \nabla u \cdot \nabla v d\mathbf{x}.
\end{aligned}
\]

(RG-Approximation)

Discretization:
Divide domain into triangular elements T_j.

- Domain
- Triangulation
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\] \quad \rightarrow \quad \begin{cases}
\mathbf{a}(u, \mathbf{v}) = -\mathbf{(g,v)}, & \mathbf{v} \in \mathbf{S} \\
\mathbf{a}(u, \mathbf{v}) = \int_{\Omega} \nabla u \cdot \nabla \mathbf{v} d\mathbf{x}.
\end{cases}
\] (RG-Approximation)

Discretization:

Divide domain into triangular elements \(T_j \).
Denote triangle vertices as \(x_i \).

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{aligned}
\]

\[
\rightarrow \quad \begin{aligned}
\forall (u, v) : \quad a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{aligned}
\]

(RG-Approximation)

Discretization:

Divide domain into triangular elements \(T_j \).
Denote triangle vertices as \(x_i \).
Use for shape space \(P_1 \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
 a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Discretization:

Divide domain into triangular elements \(T_j \).
Denote triangle vertices as \(x_i \).
Use for shape space \(P_1 \).
Take nodal variables as \(N_i[v] = v(x_i) \).
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\]

\[
\begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\]

(RG-Approximation)

Discretization:

Divide domain into triangular elements \(T_j \).
Denote triangle vertices as \(x_i \).
Use for shape space \(P_1 \).
Take nodal variables as \(N_i[v] = v(x_i) \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\left\{ \begin{array}{l}
\Delta u = -g, \quad x \in \Omega \\
u = f, \quad x \in \partial\Omega.
\end{array} \right. \rightarrow \left\{ \begin{array}{l}
a(u, v) = -\langle g, v \rangle, \quad v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{array} \right. \tag{RG-Approximation}
\]

Discretization:
Divide domain into triangular elements \(T_j \).
Denote triangle vertices as \(x_i \).
Use for shape space \(P_1 \).
Take nodal variables as \(N_i[v] = v(x_i) \).
Nodal basis \(\{\phi_i\} \) are 2D "hat functions."
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
\{ \Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega \} \rightarrow \{ a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \ dx. \}
\end{align*}
\]

(RG-Approximation)

Discretization:

Divide domain into triangular elements \(T_j \).
Denote triangle vertices as \(x_i \).
Use for shape space \(P_1 \).
Take nodal variables as \(N_i[v] = v(x_i) \).
Nodal basis \(\{ \phi_i \} \) are 2D "hat functions."
Functions in \(v \in S \) can be represented as

\[
v(x) = \sum_{i=1}^{n} v(x_i) \phi_i(x) \in H^1.
\]
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega
\end{align*}
\]

\[
\rightarrow \quad \begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx
\end{cases}
\] (RG-Approximation)

Mesh Refinement:

- Can increase accuracy by refining the mesh.
- Many strategies possible.
- Here, edges of triangle are bisected.
- Recursively yields mesh refinements.
- Quality of the triangle shapes is important.
- Quality impacts condition number of the stiffness matrix \(K\).

Convergence expected sufficiently uniform refinements.
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
\{ a(u, v) &= -(g, v), \quad v \in S \}
\end{align*}
\]

\[
\{ a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v dx. \}
\]

(RG-Approximation)

Mesh Refinement:

Can increase accuracy by refining the mesh. Many strategies possible. Here, edges of triangle are bisected. Recursively yields mesh refinements. Quality of the triangle shapes is important. Quality impacts condition number of the stiffness matrix K. Convergence expected sufficiently uniform refinements.
Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]
\[
\Rightarrow \begin{cases}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\]
(RG-Approximation)

Mesh Refinement:
Can increase accuracy by refining the mesh.
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[\rightarrow \quad \left\{ \begin{array}{l}
a(u,v) = -(g,v), \quad v \in S \\
a(u,v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{array} \right\} \quad \text{(RG-Approximation)}
\]

Mesh Refinement:
Can increase accuracy by refining the mesh.
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\rightarrow
\begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \ dx.
\end{cases}
\]

(RG-Approximation)

Mesh Refinement:
Can increase accuracy by refining the mesh.
Many strategies possible.
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial\Omega.
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Mesh Refinement:

Can increase accuracy by refining the mesh.

Many strategies possible.

Here, edges of triangle are bisected.
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla \! v \, dx.
\end{align*}
\]

(RG-Approximation)

Mesh Refinement:

Can increase accuracy by refining the mesh.

Many strategies possible.

Here, edges of triangle are bisected.

Recursively yields mesh refinements.
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
\{ \quad a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx. \quad (\text{RG-Approximation})
\end{align*}
\]

Mesh Refinement:
Can increase accuracy by refining the mesh.
Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.
Quality of the triangle shapes is important.
Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]
\[
\rightarrow \left\{ \begin{array}{l}
a(u, v) = -(g, v), \quad v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{array} \right\} \quad \text{(RG-Approximation)}
\]

Mesh Refinement:
Can increase accuracy by refining the mesh.
Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.
Quality of the triangle shapes is important.
Quality impacts condition number of the stiffness matrix \(K \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\Rightarrow \begin{cases}
a(u, v) = -(g, v), \quad v \in S \\
a(u, v) = \int_\Omega \nabla u \cdot \nabla v dx.
\end{cases}
\]

(RG-Approximation)

Mesh Refinement:
Can increase accuracy by refining the mesh.
Many strategies possible.
Here, edges of triangle are bisected.
Recursively yields mesh refinements.
Quality of the triangle shapes is important.
Quality impacts condition number of the stiffness matrix \(K\).
Convergence expected sufficiently uniform refinements.
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v dx.
\end{aligned}
\]

(RG-Approximation)
Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{aligned}
\]

\[
\begin{aligned}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{aligned}
\]

(RG-Approximation)

Example:

Consider PDE with
\(g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \)
\(f(x, y) = \sin(\pi x) + \cos(\pi x) \).

Solution is
\(u(x, y) = \sin(\pi x) + \cos(\pi x) \).

Refinement of the mesh increases solution accuracy.
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
\{ & a(u, v) = -(g, v), \quad v \in S \\
& a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx. \quad \text{(RG-Approximation)}
\end{align*}
\]

Example:

Consider PDE with

\[
\begin{align*}
g(x, y) &= \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\] →
\[
\begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v dx.
\end{cases}
\] (RG-Approximation)

Example:

Consider PDE with
\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x)
\]
\[
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is
\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, & x &\in \Omega \\
 u &= f, & x &\in \partial\Omega.
\end{align*}
\] →

\[
\begin{align*}
a(u, v) &= -(g, v), & v &\in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Example:

Consider PDE with
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x)
f(x, y) = \sin(\pi x) + \cos(\pi x).

Solution is

\[u(x, y) = \sin(\pi x) + \cos(\pi x).\]
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\{ \Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\rightarrow \begin{cases}
a(u, v) = -(g, v), \quad v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\]

(RG-Approximation)

Example:

Consider PDE with
\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x)
\]
\[
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is
\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Refinement of the mesh increases solution accuracy.
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega
\end{cases}
\]

\[
\rightarrow \quad \begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v dx.
\end{cases}
\]

(RG-Approximation)

Example:

Consider PDE with
\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is
\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Refinement of the mesh increases solution accuracy.
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\rightarrow
\begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_\Omega \nabla u \cdot \nabla v \ dx.
\end{cases}
\]

(RG-Approximation)

Example:
Consider PDE with
\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]
Solution is
\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]
Refinement of the mesh increases solution accuracy.
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
a(u, v) &= -\langle g, v \rangle, \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Example:
Consider PDE with
\[
\begin{align*}
g(x, y) &= \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]

Solution is
\[
\begin{align*}
u(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{aligned}
\] →

\[
\begin{aligned}
a(u, v) &= - (g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{aligned}
\] (RG-Approximation)

Example:

Consider PDE with

\[
\begin{aligned}
g(x, y) &= \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{aligned}
\]

Solution is

\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\rightarrow \quad \begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v dx.
\end{align*}
\]

(RG-Approximation)

Example:

Consider PDE with

\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x)
\]

\[
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is

\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Study the error vs mesh refinement \(N \sim h^{-2} \).
Application to Elliptic PDEs

Poisson Equation as Model Problem:
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:
\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
\quad u &= f, \quad x \in \partial \Omega.
\end{align*}
\]
\[
\rightarrow \quad \begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v dx.
\end{align*}
\]
(RG-Approximation)

Example:
Consider PDE with
\[
\begin{align*}
g(x, y) &= \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]
Solution is
\[
\begin{align*}
u(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]
Study the error vs mesh refinement \(N \sim h^{-2} \).

\[\text{Convergence Rate}\]
\[\text{error absolute vs number of elements}\]
\[\text{Log-log plots yield information on convergence rate}\]
\[\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h^{-r} + C) \Rightarrow -r/2 = s \sim -0.9\]
\[r \sim 1.8\]
Indicates 2nd-order convergence rate.
Need to develop theory to predict from element properties.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\]

\[\rightarrow\]

\[
\begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\]

(RG-Approximation)

Example:

Consider PDE with

\[g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x)\]

\[f(x, y) = \sin(\pi x) + \cos(\pi x)\]

Solution is

\[u(x, y) = \sin(\pi x) + \cos(\pi x)\]

Study the error vs mesh refinement \(N \sim h^{-2}\). Log-log plots yield information on convergence rate

\[\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h^r) + \log(C) \Rightarrow -r/2 = s \sim -0.9\]

Indicates 2nd-order convergence rate.

Need to develop theory to predict from element properties.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial\Omega
\end{cases}
\end{align*}
\rightarrow \begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_\Omega \nabla u \cdot \nabla v dx.
\end{cases}
\] (RG-Approximation)

Example:

Consider PDE with

\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is

\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Study the error vs mesh refinement \(N \sim h^{-2}\).

Log-log plots yield information on convergence rate \(\epsilon = C h^r\).
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases} \rightarrow \begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_\Omega \nabla u \cdot \nabla v dx.
\end{cases}
\] (RG-Approximation)

Example:

Consider PDE with

\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \]
\[
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is

\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Study the error vs mesh refinement \(N \sim h^{-2} \).

Log-log plots yield information on convergence rate

\[\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h)r + \log(C)\]
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\to
\begin{align*}
a(u, v) &= -(g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Example:

Consider PDE with

\[
\begin{align*}
g(x, y) &= \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]

Solution is

\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Study the error vs mesh refinement \(N \sim h^{-2} \).

Log-log plots yield information on convergence rate

\[\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h)r + \log(C) \Rightarrow -r/2 = s \sim -0.9 \]
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{aligned}
\begin{cases}
\Delta u = -g, & x \in \Omega \\
u = f, & x \in \partial \Omega.
\end{cases}
\rightarrow \begin{cases}
a(u, v) = -(g, v), & v \in S \\
a(u, v) = \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{cases}
\end{aligned}
\]

(RG-Approximation)

Example:

Consider PDE with

\[
g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Solution is

\[
u(x, y) = \sin(\pi x) + \cos(\pi x).
\]

Study the error vs mesh refinement \(N \sim h^{-2} \).

Log-log plots yield information on convergence rate

\[
\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h)r + \log(C) \Rightarrow -r/2 = s \sim -0.9 \rightarrow r \sim 1.8.
\]
Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[
\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*}
\]

\[
\begin{align*}
a(u, v) &= - (g, v), \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx.
\end{align*}
\]

(RG-Approximation)

Example:

Consider PDE with

\[
\begin{align*}
g(x, y) &= \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \\
f(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]

Solution is

\[
\begin{align*}
u(x, y) &= \sin(\pi x) + \cos(\pi x).
\end{align*}
\]

Study the error vs mesh refinement \(N \sim h^{-2} \).

Log-log plots yield information on convergence rate

\[
\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h)r + \log(C) \Rightarrow -r/2 = s \sim -0.9 \rightarrow r \sim 1.8.
\]

Indicates 2nd-order convergence rate.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Application to Elliptic PDEs

Poisson Equation as Model Problem:

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG) Approximation:

\[\begin{align*}
\Delta u &= -g, \quad x \in \Omega \\
u &= f, \quad x \in \partial \Omega.
\end{align*} \]

\[\rightarrow \begin{align*}
a(u, v) &= -\langle g, v \rangle, \quad v \in S \\
a(u, v) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx. \quad (\text{RG-Approximation})
\end{align*} \]

Example:

Consider PDE with

\[g(x, y) = \pi^2 \sin(\pi x) + \pi^2 \cos(\pi x) \]
\[f(x, y) = \sin(\pi x) + \cos(\pi x). \]

Solution is

\[u(x, y) = \sin(\pi x) + \cos(\pi x). \]

Study the error vs mesh refinement \(N \sim h^{-2}. \)

Log-log plots yield information on convergence rate

\[\epsilon = Ch^r \rightarrow \log(\epsilon) = \log(h) r + \log(C) \Rightarrow -r/2 = s \sim -0.9 \rightarrow r \sim 1.8. \]

Indicates 2\(^{nd}\)-order convergence rate.

Need to develop theory to predict from element properties.