Mixed Methods

Paul J. Atzberger

206D: Finite Element Methods
University of California Santa Barbara
We consider variational problems with constraints. Let X and M be Hilbert spaces with

- $a : X \times X \to \mathbb{R}$ (continuous bilinear forms)
- $b : X \times M \to \mathbb{R}$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u)$$

subject to

$$b(u, \mu) = (g, \mu), \forall \mu \in M.$$

Consider the Lagrangian

$$L(u, \lambda) := J[u] + \left[b(u, \lambda) - (g, \lambda) \right].$$

We seek the minimum of $L(\cdot, \lambda)$ with fixed λ.

Can we find λ_0 so this minimum satisfies the constraints?

When L contains only bilinear and quadratic expressions in u and λ, we obtain a saddle point problem.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
We consider variational problems with constraints. Let X and M be Hilbert spaces with
Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

\[a : X \times X \rightarrow \mathbb{R}, \quad b : X \times M \rightarrow \mathbb{R}, \] (continuous bilinear forms)

Find the minimum $u \in X$ of

\[J[u] = \frac{1}{2} a(u, u) - (f, u) \]
subject to

\[b(u, \mu) = (g, \mu), \quad \forall \mu \in M. \]

Consider the Lagrangian

\[L(u, \lambda) := J[u] + b(u, \lambda) - (g, \lambda). \]

We seek the minimum of $L(\cdot, \lambda)$ with fixed λ.

Can we find λ_0 so this minimum satisfies the constraints?

When L contains only bilinear and quadratic expressions in u and λ, we obtain a saddle point problem.
We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R}, \quad (\text{continuous bilinear forms})$$

Can we find λ_0 so this minimum satisfies the constraints?

When L contains only bilinear and quadratic expressions in u and λ, we obtain a saddle point problem.
We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u) \quad \text{subject to} \quad b(u, \mu) = (g, \mu), \quad \forall \mu \in M.$$
We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

We seek the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u) \quad \text{subject to} \quad b(u, \mu) = (g, \mu), \quad \forall \mu \in M.$$
Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u) \quad \text{subject to} \quad b(u, \mu) = (g, \mu), \quad \forall \mu \in M.$$

Consider the Lagrangian
We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \rightarrow \mathbb{R}, \quad b : X \times M \rightarrow \mathbb{R},$$

(continuous bilinear forms)

Saddle Point Problems

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u) \quad \text{subject to} \quad b(u, \mu) = (g, \mu), \quad \forall \mu \in M.$$

Consider the **Lagrangian**

$$\mathcal{L}(u, \lambda) := J[u] + [b(u, \lambda) - (g, \lambda)].$$
Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

\[a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R}, \] (continuous bilinear forms)

Find the minimum $u \in X$ of

\[J[u] = \frac{1}{2} a(u, u) - (f, u) \quad \text{subject to} \quad b(u, \mu) = (g, \mu), \quad \forall \mu \in M. \]

Consider the Lagrangian

\[\mathcal{L}(u, \lambda) := J[u] + [b(u, \lambda) - (g, \lambda)]. \]

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R},$$

(continuous bilinear forms)

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u)$$

subject to

$$b(u, \mu) = (g, \mu), \quad \forall \mu \in M.$$

Consider the **Lagrangian**

$$\mathcal{L}(u, \lambda) := J[u] + [b(u, \lambda) - (g, \lambda)].$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ. Can we find λ_0 so this minimum satisfies the constraints?
We consider variational problems with constraints. Let X and M be Hilbert spaces with

$$a : X \times X \to \mathbb{R}, \quad b : X \times M \to \mathbb{R}, \quad \text{(continuous bilinear forms)}$$

Find the minimum $u \in X$ of

$$J[u] = \frac{1}{2} a(u, u) - (f, u) \quad \text{subject to} \quad b(u, \mu) = (g, \mu), \ \forall \mu \in M.$$

Consider the **Lagrangian**

$$\mathcal{L}(u, \lambda) := J[u] + [b(u, \lambda) - (g, \lambda)].$$

We seek the minimum of $\mathcal{L}(\cdot, \lambda)$ with fixed λ. Can we find λ_0 so this minimum satisfies the constraints?

When \mathcal{L} contains only bilinear and quadratic expressions in u and λ, we obtain a saddle point problem.
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[a(u, v) + b(v, \lambda) = \langle f, v \rangle, \forall v \in X,\]

\[b(u, v) = \langle g, \mu \rangle, \forall \mu \in M.\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[L(u^*, \lambda^*) \leq L(u^*, \lambda^*) \leq L(u, \lambda^*), \forall (u, \lambda) \in X \times M.\]

Assumes that \(a(v, v) \geq 0.\)

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form \(a\), but also of properties for the constraints \(b\) beyond simply linear independence.

Consider the overall linear mapping for the above problem \(L: X \times M \rightarrow X' \times M',\) maps \((u, \lambda) \mapsto (f, g).\)

Need ways to characterize when \(L\) is invertible (solvable) and the inverse is continuous (stable).
Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
 b(u, v) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]

When the solution \((u^\ast, \lambda^\ast)\) is solution of the saddle-point conditions, this corresponds to

\[
L(u^\ast, \lambda^\ast) \leq L(u, \lambda^\ast) \leq L(u, \lambda^\ast), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces:
we must not only have notion for definiteness of the bilinear form
a, but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem \(L\):
\(X \times M \rightarrow X' \times M'\), maps \((u, \lambda) \mapsto (f, g)\).

Need ways to characterize when \(L\) is invertible (solvable) and the inverse is continuous (stable).
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[a(u, v) + b(v, \lambda) = \langle f, v \rangle, \quad \forall v \in X, \]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[L(u^*, \lambda^*) \leq L(u, \lambda^*) \leq L(u, \lambda), \quad \forall (u, \lambda) \in X \times M. \]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces:

we must not only have notion for definiteness of the bilinear form \(a\),

but also of properties for the constraints \(b\) beyond simply linear independence.

Consider the overall linear mapping for the above problem \(L\):

\[X \times M \rightarrow X' \times M', \quad \text{maps } (u, \lambda) \mapsto (f, g). \]

Need ways to characterize when \(L\) is invertible (solvable) and the inverse is continuous (stable).
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
b(u, v) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
 b(u, v) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
a(u, v) + b(v, \lambda) = \langle f, v \rangle, \quad \forall v \in X,
\]

\[
b(u, v) = \langle g, \mu \rangle, \quad \forall \mu \in M.
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[
L(u^*, \lambda^*) \leq L(u, \lambda^*) \leq L(u^*, \lambda), \quad \forall (u, \lambda) \in X \times M.
\]
Saddle Point Problems

Saddle Point Problem I

Find $(u, \lambda) \in X \times M$ with

\[
a(u, v) + b(v, \lambda) = \langle f, v \rangle, \quad \forall v \in X,
\]
\[
b(u, v) = \langle g, \mu \rangle, \quad \forall \mu \in M.
\]

When the solution (u^*, λ^*) is solution of the saddle-point conditions, this corresponds to

\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
a(u, v) + b(v, \lambda) &= \langle f, v \rangle, & \forall v \in X, \\
b(u, v) &= \langle g, \mu \rangle, & \forall \mu \in M.
\end{align*}
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
a(u, v) + b(v, \lambda) = \langle f, v \rangle, \quad \forall v \in X,
\]
\[
b(u, v) = \langle g, \mu \rangle, \quad \forall \mu \in M.
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form \(a\), but also of properties for the constraints \(b\) beyond simply linear independence.
Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with
\[
\begin{align*}
a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
b(u, v) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to
\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form \(a\), but also of properties for the constraints \(b\) beyond simply linear independence.

Consider the overall linear mapping for the above problem
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
a(u, v) + b(v, \lambda) = \langle f, v \rangle, \quad \forall v \in X,
b(u, v) = \langle g, \mu \rangle, \quad \forall \mu \in M.
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form \(a\), but also of properties for the constraints \(b\) beyond simply linear independence.

Consider the overall linear mapping for the above problem

\[
L : X \times M \to X' \times M', \quad \text{maps} \quad (u, \lambda) \mapsto (f, g).
\]
Saddle Point Problems

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) & = \langle f, v \rangle, \quad \forall v \in X, \\
 b(u, v) & = \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form \(a\), but also of properties for the constraints \(b\) beyond simply linear independence.

Consider the overall linear mapping for the above problem

\[
L : X \times M \to X' \times M', \quad \text{maps} \quad (u, \lambda) \mapsto (f, g).
\]

Need ways to characterize when \(L\) is invertible (solvable) and the inverse is continuous (stable).
Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
b(u, v) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]

When the solution \((u^*, \lambda^*)\) is solution of the saddle-point conditions, this corresponds to

\[
\mathcal{L}(u^*, \lambda) \leq \mathcal{L}(u^*, \lambda^*) \leq \mathcal{L}(u, \lambda^*), \quad \forall (u, \lambda) \in X \times M.
\]

Assumes that \(a(v, v) \geq 0\).

Solution in Infinite-Dimensional Spaces: We must not only have notion for definiteness of the bilinear form \(a\), but also of properties for the constraints \(b\) beyond simply linear independence.

Consider the overall linear mapping for the above problem

\[
L : X \times M \rightarrow X' \times M', \quad \text{maps} \quad (u, \lambda) \mapsto (f, g).
\]

Need ways to characterize when \(L\) is invertible (solvable) and the inverse is continuous (stable).
Functional Analysis

Isomorphism

A linear mapping $L: U \rightarrow V$ with U, V normed linear spaces is called an isomorphism if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{ \ell \in X': \langle \ell, v \rangle = 0, \forall v \in V \}$ is called the polar set.

Theorem (Inf-Sup Condition) For Hilbert spaces U, V, the linear mapping $L: U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a: U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) Inf-Sup Condition: There exists $\alpha > 0$ such that $\inf_{u \in U} \sup_{v \in V} a(u, v) \|u\|_U \|v\|_V \geq \alpha > 0$.

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.
A linear mapping $L : U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle L u, v \rangle := a(u, v), \forall v \in V$.

Variational problem:

$a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle L u, v \rangle = \langle f, v \rangle$, formally $u = L^{-1} f$.

Definition:

For $V \subset X$ closed, the $V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} a(u, v) \|u\|_U \|v\|_V \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Isomorphism

A linear mapping \(L : U \to V \) with \(U, V \) normed linear spaces is called an \textbf{isomorphism} if it is bijective and \(L \) and \(L^{-1} \) are continuous.
Isomorphism

A linear mapping $L : U \rightarrow V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \quad \forall v \in V.$
A linear mapping $L : U \rightarrow V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle, \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Isomorphism

A linear mapping $L : U \rightarrow V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \quad \forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle, \quad \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition:
Functional Analysis

Isomorphism

A linear mapping $L : U \rightarrow V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \quad \forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle, \quad \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V \}$ is called the **polar set**.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Isomorphism

A linear mapping $L : U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle, \ \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \ \forall v \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)
Isomorphism

A linear mapping $L : U \to V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v)$, $\forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle$, $\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if
Isomorphism

A linear mapping \(L : U \rightarrow V \) with \(U, V \) normed linear spaces is called an \textbf{isomorphism} if it is bijective and \(L \) and \(L^{-1} \) are continuous.

Consider a linear map associated with a bilinear form \(a \) by \(\langle Lu, v \rangle := a(u, v), \; \forall v \in V \).

Variational problem: \(a(u, v) = \langle f, v \rangle, \; \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle \), formally \(u = L^{-1}f \).

Definition: For \(V \subset X \) closed, the \(V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \; \forall v \in V \} \) is called the \textbf{polar set}.

Theorem (Inf-Sup Condition)

For Hilbert spaces \(U, V \), the linear mapping \(L : U \rightarrow V' \) is an isomorphism if and only if the corresponding bilinear form \(a : U \times V \rightarrow \mathbb{R} \) satisfies the conditions:
Isomorphism

A linear mapping \(L : U \rightarrow V \) with \(U, V \) normed linear spaces is called an **isomorphism** if it is bijective and \(L \) and \(L^{-1} \) are continuous.

Consider a linear map associated with a bilinear form \(a \) by \(\langle Lu, v \rangle := a(u, v) \), \(\forall v \in V \).

Variational problem: \(a(u, v) = \langle f, v \rangle \), \(\forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle \), formally \(u = L^{-1}f \).

Definition: For \(V \subset X \) closed, the \(V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \forall v \in V \} \) is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces \(U, V \), the linear mapping \(L : U \rightarrow V' \) is an isomorphism if and only if the corresponding bilinear form \(a : U \times V \rightarrow \mathbb{R} \) satisfies the conditions:

(i) **Continuity:** There exists \(C \geq 0 \) so that \(|a(u, v)| \leq C\|u\|\|v\| \).
Isomorphism

A linear mapping \(L : U \to V \) with \(U, V \) normed linear spaces is called an \textbf{isomorphism} if it is bijective and \(L \) and \(L^{-1} \) are continuous.

Consider a linear map associated with a bilinear form \(a \) by \(\langle Lu, v \rangle := a(u, v), \ \forall v \in V \).

\textbf{Variational problem:} \(a(u, v) = \langle f, v \rangle, \ \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle \), formally \(u = L^{-1}f \).

\textbf{Definition:} For \(V \subset X \) closed, the \(V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \ \forall v \in V \} \) is called the \textbf{polar set}.

\textbf{Theorem (Inf-Sup Condition)}

For Hilbert spaces \(U, V \), the linear mapping \(L : U \to V' \) is an isomorphism if and only if the corresponding bilinear form \(a : U \times V \to \mathbb{R} \) satisfies the conditions:

(i) \textbf{Continuity:} There exists \(C \geq 0 \) so that \(|a(u, v)| \leq C\|u\|\|v\|. \)

(ii) \textbf{Inf-Sup Condition:} There exists \(\alpha > 0 \) such that
Functional Analysis

Isomorphism

A linear mapping \(L : U \to V \) with \(U, V \) normed linear spaces is called an **isomorphism** if it is bijective and \(L \) and \(L^{-1} \) are continuous.

Consider a linear map associated with a bilinear form \(a \) by \(\langle Lu, v \rangle := a(u, v), \ \forall v \in V. \)

Variational problem: \(a(u, v) = \langle f, v \rangle, \ \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle, \) formally \(u = L^{-1}f. \)

Definition: For \(V \subset X \) closed, the \(V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \ \forall v \in V \} \) is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces \(U, V \), the linear mapping \(L : U \to V' \) is an isomorphism if and only if the corresponding bilinear form \(a : U \times V \to \mathbb{R} \) satisfies the conditions:

(i) **Continuity**: There exists \(C \geq 0 \) so that \(|a(u, v)| \leq C \|u\|_U \|v\|_V. \)
(ii) **Inf-Sup Condition**: There exists \(\alpha > 0 \) such that

\[
\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.
\]
Isomorphism

A linear mapping $L : U \rightarrow V$ with U, V normed linear spaces is called an **isomorphism** if it is bijective and L and L^{-1} are continuous.

Consider a linear map associated with a bilinear form a by $\langle Lu, v \rangle := a(u, v), \ \forall v \in V$.

Variational problem: $a(u, v) = \langle f, v \rangle, \ \forall v \in V \Rightarrow \langle Lu, v \rangle = \langle f, v \rangle$, formally $u = L^{-1}f$.

Definition: For $V \subset X$ closed, the $V^0 := \{ \ell \in X' : \langle \ell, v \rangle = 0, \ \forall v \in V \}$ is called the **polar set**.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

\[
\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.
\]

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Paul J. Atzberger, UCSB
[Finite Element Methods](http://atzberger.org/)
For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) *Continuity:* There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) *Inf-Sup Condition:* There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \rightarrow V'$.

Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving

$$\sup_{v \in V} a(u_1 - u_2, v) = 0.$$

By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$.

For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} a(u, v)\|v\|_V = \sup_{v \in V} \langle f, v \rangle\|v\|_V = \|f\|_{V'}$ $\Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \frac{\alpha^{-1}}{\alpha} \|f\|_{V'}$,

so L^{-1} is continuous on $\text{Im}(L)$.

Continuity of L, L^{-1} implies $L(U)$ closed.

Condition (iii) ensures only element in polar set is $\{0\}$ so L is surjective (thm).
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$.
Theorem (Inf-Sup Condition)
For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

\[
\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.
\]

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, so L is an isomorphism.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\| \|v\|$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$
\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\| \|v\|} \geq \alpha > 0.
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$,
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \ \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \ \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so L is injective. By (iii) L is surjective, so L is an isomorphism.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) Continuity: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) Inf-Sup Condition: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \rightarrow V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \ \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$,
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V}$
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\| \|v\|$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\| \|v\|} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\| \leq \sup_{v \in V} \frac{a(u, v)}{\|v\| \|v\|} = \sup_{v \in V} \langle f, v \rangle$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|U\|v\|V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|U\|v\|V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|V} = \|f\|V' \Rightarrow \|Lu\|V'$.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \ \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_{V'} \Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U$.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):
Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha\|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_{V'} \Rightarrow \|Lu\|_{V'} \geq \alpha\|u\|_U \Rightarrow \|L^{-1}f\|_U$.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|U\|v\|V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|U \|v\|V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \rightarrow V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_{V'} \Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_V' \Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$, so L^{-1} is continuous on $\text{Im}(L)$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_{V'} \Rightarrow \|Lu\|_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$, so L^{-1} is continuous on $\text{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_{V^*} \Rightarrow \|Lu\|_{V^*} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V^*}$, so L^{-1} is continuous on $\text{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed. Condition (iii) ensures only element in polar set is $\{0\}$.
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v)$, $\forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha \|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} = \|f\|_{V'} \Rightarrow ||Lu||_{V'} \geq \alpha \|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1} \|f\|_{V'}$, so L^{-1} is continuous on $\text{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed. Condition (iii) ensures only element in polar set is $\{0\}$ so L is surjective (thm).
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Proof (sketch):

Condition (i) readily implies the continuity of $L : U \to V'$. Condition (ii) gives us invertibility of L, since if $Lu_1 = Lu_2$ then $a(u_1, v) = a(u_2, v), \forall v \in V$, giving $\sup_{v \in V} a(u_1 - u_2, v) = 0$. By (ii) this only occurs if $\|u_1 - u_2\|_U = 0$, so $u_1 = u_2$. For $f \in L(U)$, by injectivity, exists unique $u = L^{-1}f$.

By (ii) $\Rightarrow \alpha\|u\|_U \leq \sup_{v \in V} \frac{a(u, v)}{\|v\|_V} = \sup_{v \in V} \frac{\langle f, v \rangle}{\|v\|_V} \Rightarrow \|Lu\|_{V'} \geq \alpha\|u\|_U \Rightarrow \|L^{-1}f\|_U \leq \alpha^{-1}\|f\|_{V'}$, so L^{-1} is continuous on $\operatorname{Im}(L)$. Continuity of L, L^{-1} implies $L(U)$ closed. Condition (iii) ensures only element in polar set is $\{0\}$ so L is surjective (thm).
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

Remark: Lax-Milgram follows as a special case, since

$$\sup_{v \in V} a(v, u) \|v\| \geq a(u, u) \|u\| \geq \alpha \|u\|.$$
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \to V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \to \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is *isomorphism* on W^0 where
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is *isomorphism* on W^0 where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, \ W^0 \subset V'.$$
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity**: There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition**: There exists $\alpha > 0$ such that

$$
\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is *isomorphism* on W^0 where

$$
W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, \ W^0 \subset V'.
$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'.

Remark: Lax-Milgram follows as a special case, since

$$
\sup_{v \in V} |a(v, u)| \|v\| \geq a(u, u) \|u\| \geq \alpha \|u\|.
$$
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C \|u\|_U \|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U \|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is isomorphism on W^0 where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, \quad W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'.

Remark:

Lax-Milgram follows as a special case, since

$$\sup_{v \in V} a(v, u) \|v\| \geq a(u, u) \|u\| \geq \alpha \|u\|.$$
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is *isomorphism* on W^0 where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, \quad W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'.

Remark: Lax-Milgram follows as a special case, since

\[
\sup_v a(v, u) \|v\| \geq a(u, u) \|u\| \geq \alpha \|u\|.
\]
Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping $L : U \rightarrow V'$ is an isomorphism if and only if the corresponding bilinear form $a : U \times V \rightarrow \mathbb{R}$ satisfies the conditions:

(i) **Continuity:** There exists $C \geq 0$ so that $|a(u, v)| \leq C\|u\|_U\|v\|_V$.

(ii) **Inf-Sup Condition:** There exists $\alpha > 0$ such that

$$
\inf_{u \in U} \sup_{v \in V} \frac{a(u, v)}{\|u\|_U\|v\|_V} \geq \alpha > 0.
$$

(iii) For each $v \in V$, there exists $u \in U$ with $a(u, v) \neq 0$.

The conditions (i) and (ii) alone imply that L is *isomorphism* on W^0 where

$$W = \{v \in V \mid a(u, v) = 0, \forall u \in U\}, \ W^0 \subset V'.$$

This provides ways to describe correspondence for set U, the equivalent functionals in V'.

Remark: Lax-Milgram follows as a special case, since

$$
\sup_v \frac{a(v, u)}{\|v\|} \geq \frac{a(u, u)}{\|u\|} \geq \alpha\|u\|.
$$
Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that
\[
a(u_h, v) = \langle f, v \rangle, \quad \forall v \in V_h.
\]

Lemma (Convergence): Consider $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then
\[
\|u - u_h\| \leq 1 + C\alpha \inf_{w_h \in U_h} \|u - w_h\|.
\]

Remark: When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional.

Given $f \in V'$, we seek solution $u_h \in U_h$ so that $a(u_h, v) = \langle f, v \rangle$, $\forall v \in V_h$.

Lemma (Convergence)

Consider $a : U \times V \rightarrow \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then $\|u - u_h\| \leq 1 + C_\alpha \inf_{w_h \in U_h} \|u - w_h\|$.

Remark: When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \quad \forall v \in V_h.$$
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \forall v \in V_h.$$

Lemma (Convergence)

Consider $a: U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq 1 + C \alpha \inf_{w_h \in U_h} \|u - w_h\|.$$

Remark: When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \forall v \in V_h.$$

Lemma (Convergence)

Consider $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \quad \forall v \in V_h.$$

Lemma (Convergence)

Consider $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \forall v \in V_h.$$

Lemma (Convergence)

Consider $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq 1 + C \alpha \inf_{w_h \in U_h} \|u - w_h\|.$$

Remark: When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \quad \forall v \in V_h.$$

Lemma (Convergence)

Consider $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.$$

Remark: When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \quad \forall v \in V_h.$$

Lemma (Convergence)

Consider $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.$$

Remark:

When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Galerkin Method

Choose approximation spaces $U_h \subset U$ and $V_h \subset V$ that are finite dimensional. Given $f \in V'$, we seek solution $u_h \in U_h$ so that

$$a(u_h, v) = \langle f, v \rangle, \forall v \in V_h.$$

Lemma (Convergence)

Consider $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choosing approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.$$

Remark: When this criteria holds for the spaces U_h, V_h, we say they satisfy the Babuska-Brezzi Condition.
Lemma (Convergence)

Consider bilinear form \(a : U \times V \to \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\| u - u_h \| \leq \left(1 + \frac{C}{\alpha} \right) \inf_{w_h \in U_h} \| u - w_h \|.
\]

Proof:

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h.
\]

Then, for \(\ell := a(u - w_h, \cdot) \), we have

\[
\| \ell \| \leq C \| u - w_h \|.
\]

By conditions (i)–(iii), the mapping \(L_h : U_h \to V_h' \) obtained from \(a(u_h - w_h, \cdot) \) satisfies \(\| L - L_h \| \leq \alpha - 1 \).

This gives

\[
\| u_h - w_h \| \leq \alpha - 1 \| \ell \| \leq \alpha - 1 C \| u - w_h \|.
\]

From triangle inequality,

\[
\| u - u_h \| \leq \| u - w_h \| + \| w_h - u_h \| \leq (1 + \alpha - 1 C) \| u - w_h \|.
\]

\(\blacksquare \)
Lemma (Convergence)

Consider bilinear form $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.$$

Proof:
Lemma (Convergence)

Consider bilinear form \(a : U \times V \to \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.
\]

Proof:

\[
a(u - u_h, v) = 0, \quad \forall v \in V_h
\]
Lemma (Convergence)

Consider bilinear form $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V, V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.$$

Proof:

$$a(u - u_h, v) = 0, \forall v \in V_h$$

For any $w_h \in U_h$ we have
Lemma (Convergence)

Consider bilinear form \(a : U \times V \rightarrow \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.
\]

Proof:

\[
a(u - u_h, v) = 0, \quad \forall v \in V_h
\]

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h
\]
Lemma (Convergence)

Consider bilinear form \(a : U \times V \to \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.
\]

Proof:

\[
a(u - u_h, v) = 0, \quad \forall v \in V_h
\]

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h
\]

For \(\langle \ell, v \rangle := a(u - w_h, v) \), we have \(\|\ell\| \leq C\|u - w_h\| \).
Lemma (Convergence)

Consider bilinear form $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$\| u - u_h \| \leq \left(1 + \frac{C}{\alpha} \right) \inf_{w_h \in U_h} \| u - w_h \|.$$

Proof:

$$a(u - u_h, v) = 0, \quad \forall v \in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u - w_h, v)$, we have $\| \ell \| \leq C \| u - w_h \|$. By conditions (i)–(iii), the mapping $L_h : U_h \to V'_h$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\| L_h^{-1} \| \leq \alpha^{-1}$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Lemma (Convergence)

Consider bilinear form \(a : U \times V \rightarrow \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.
\]

Proof:

\[
a(u - u_h, v) = 0, \ \forall v \in V_h
\]

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \ \forall v \in V_h
\]

For \(\langle \ell, v \rangle := a(u - w_h, v) \), we have \(\|\ell\| \leq C\|u - w_h\| \). By conditions (i)–(iii), the mapping \(L_h : U_h \rightarrow V_h' \) obtained from \(a(u_h - w_h, \cdot) \) satisfies \(\|L_h^{-1}\| \leq \alpha^{-1} \). This gives
Lemma (Convergence)

Consider bilinear form \(a : U \times V \to \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\| u - u_h \| \leq \left(1 + \frac{C}{\alpha} \right) \inf_{w_h \in U_h} \| u - w_h \|.
\]

Proof:

\[
a(u - u_h, v) = 0, \quad \forall v \in V_h
\]

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h
\]

For \(\langle \ell, v \rangle := a(u - w_h, v) \), we have \(\| \ell \| \leq C \| u - w_h \| \). By conditions (i)–(iii), the mapping \(L_h : U_h \to V'_h \) obtained from \(a(u_h - w_h, \cdot) \) satisfies \(\| L_h^{-1} \| \leq \alpha^{-1} \). This gives

\[
\| u_h - w_h \| \leq \alpha^{-1} \| \ell \| \leq \alpha^{-1} C \| u - w_h \|.
\]
Lemma (Convergence)

Consider bilinear form $a : U \times V \to \mathbb{R}$ that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces $U_h \subset V$, $V_h \subset V$ for which the theorem also holds. Then

$$\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.$$

Proof:

$$a(u - u_h, v) = 0, \quad \forall v \in V_h$$

For any $w_h \in U_h$ we have

$$a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h$$

For $\langle \ell, v \rangle := a(u - w_h, v)$, we have $\|\ell\| \leq C\|u - w_h\|$. By conditions (i)–(iii), the mapping $L_h : U_h \to V'_h$ obtained from $a(u_h - w_h, \cdot)$ satisfies $\|L_h^{-1}\| \leq \alpha^{-1}$. This gives

$$\|u_h - w_h\| \leq \alpha^{-1}\|\ell\| \leq \alpha^{-1}C\|u - w_h\|.$$

From triangle inequality,
Lemma (Convergence)

Consider bilinear form \(a : U \times V \to \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\|u - u_h\| \leq \left(1 + \frac{C}{\alpha}\right) \inf_{w_h \in U_h} \|u - w_h\|.
\]

Proof:

\[
a(u - u_h, v) = 0, \quad \forall v \in V_h
\]

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \quad \forall v \in V_h
\]

For \(\langle \ell, v \rangle := a(u - w_h, v) \), we have \(\|\ell\| \leq C\|u - w_h\| \). By conditions (i)–(iii), the mapping \(L_h : U_h \to V_h' \) obtained from \(a(u_h - w_h, \cdot) \) satisfies \(\|L_h^{-1}\| \leq \alpha^{-1} \). This gives

\[
\|u_h - w_h\| \leq \alpha^{-1}\|\ell\| \leq \alpha^{-1}C\|u - w_h\|.
\]

From triangle inequality,

\[
\|u - u_h\| \leq \|u - w_h\| + \|w_h - u_h\| \leq (1 + \alpha^{-1}C)\|u - w_h\|.
\]
Lemma (Convergence)

Consider bilinear form \(a : U \times V \to \mathbb{R} \) that satisfies the theorem based on Inf-Sup Conditions. Consider choice of approximation spaces \(U_h \subset V, V_h \subset V \) for which the theorem also holds. Then

\[
\| u - u_h \| \leq \left(1 + \frac{C}{\alpha} \right) \inf_{w_h \in U_h} \| u - w_h \|.
\]

Proof:

\[
a(u - u_h, v) = 0, \forall v \in V_h
\]

For any \(w_h \in U_h \) we have

\[
a(u_h - w_h, v) = a(u - w_h, v), \forall v \in V_h
\]

For \(\langle \ell, v \rangle := a(u - w_h, v) \), we have \(\| \ell \| \leq C \| u - w_h \| \). By conditions (i)–(iii), the mapping \(L_h : U_h \to V_h' \) obtained from \(a(u_h - w_h, \cdot) \) satisfies \(\| L_h^{-1} \| \leq \alpha^{-1} \). This gives

\[
\| u_h - w_h \| \leq \alpha^{-1} \| \ell \| \leq \alpha^{-1} C \| u - w_h \|.
\]

From triangle inequality,

\[
\| u - u_h \| \leq \| u - w_h \| + \| w_h - u_h \| \leq (1 + \alpha^{-1} C) \| u - w_h \|.
\]
Saddle Point Problems

Returning to our original motivation.

Solution in Infinite-Dimensional Spaces:
Now have ways to characterize the properties of a, b to ensure solution.
Consider the overall linear mapping for the above problem $L: X \times M \rightarrow X' \times M'$, maps $(u, \lambda) \mapsto (f, g)$.
We need to establish conditions for this to be an isomorphism.
Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

\[\begin{align*}
(\mathbf{u}, \lambda) \in X \times M \text{ with } & \quad a(\mathbf{u}, \mathbf{v}) + b(\mathbf{v}, \lambda) = \langle f, \mathbf{v} \rangle, \quad \forall \mathbf{v} \in X, \\
b(\mathbf{u}, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*} \]

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of \(a, b\) to ensure solution.

Consider the overall linear mapping for the above problem \(L: X \times M \rightarrow X' \times M'\), maps \((\mathbf{u}, \lambda) \mapsto (f, g)\).

We need to establish conditions for this to be an isomorphism.
Returning to our original motivation.

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) &= \langle f, v \rangle, & \forall v \in X, \\
 b(u, \mu) &= \langle g, \mu \rangle, & \forall \mu \in M.
\end{align*}
\]
Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
 b(u, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]
Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
b(u, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of \(a, b\) to ensure solution.
Returning to our original motivation.

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in X, \\
b(u, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M.
\end{align*}
\]

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of \(a, b\) to ensure solution.

Consider the overall linear mapping for the above problem.
Returning to our original motivation.

Saddle Point Problem I

Find \((u, \lambda) \in \mathcal{X} \times \mathcal{M}\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) &= \langle f, v \rangle, \quad \forall v \in \mathcal{X}, \\
 b(u, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in \mathcal{M}.
\end{align*}
\]

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of \(a, b\) to ensure solution.

Consider the overall linear mapping for the above problem

\[
L : \mathcal{X} \times \mathcal{M} \to \mathcal{X}' \times \mathcal{M}', \quad \text{maps} \quad (u, \lambda) \mapsto (f, g).
\]
Returning to our original motivation.

Saddle Point Problem I

Find \((u, \lambda) \in X \times M\) with

\[
\begin{align*}
 a(u, v) + b(v, \lambda) &= \langle f, v \rangle, & \forall v \in X, \\
 b(u, \mu) &= \langle g, \mu \rangle, & \forall \mu \in M.
\end{align*}
\]

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of \(a, b\) to ensure solution.

Consider the overall linear mapping for the above problem

\[
L : X \times M \to X' \times M', \quad \text{maps} \quad (u, \lambda) \mapsto (f, g).
\]

We need to establish conditions for this to be an isomorphism.
Saddle Point Problems

Notation:

\[V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \]

\[V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \]

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form

\[A : X \rightarrow X' \]
\[\langle Au, v \rangle = a(u, v), \forall v \in X. \]

Similarly, for \(b(u, \cdot) \) we define \(B \) and adjoint \(B' \) as

\[B : X \rightarrow M' \]
\[B'(\lambda, v) = b(v, \lambda), \forall \lambda \in M, \forall v \in X. \]

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find \((u, \lambda) \in X \times M\) satisfying

\[Au + B'\lambda = f, \]
\[Bu = g. \]
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \),
Saddle Point Problems

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}$, $V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \to X' \\
\langle Au, v \rangle = a(u, v), \quad \forall v \in X.
\]
Saddle Point Problems

Notation: \(V(g) := \{v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M\} \), \(V := \{v \in X : b(v, \mu) = 0, \forall \mu \in M\} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \to X', \quad \langle Au, v \rangle = a(u, v), \forall v \in X.
\]

Similarly, for \(b(\cdot, \cdot) \) we define \(B \) and adjoint \(B' \) as
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \to X' \\
\langle Au, v \rangle = a(u, v), \forall v \in X.
\]

Similarly, for \(b(\cdot, \cdot) \) we define \(B \) and adjoint \(B' \) as

\[
B : X \to M', \quad B' : M \to X' \\
\langle Bu, \mu \rangle = b(u, \mu), \forall \mu \in M, \quad \langle B' \lambda, v \rangle = b(v, \lambda), \forall v \in X.
\]
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \to X' \quad \langle Au, v \rangle = a(u, v), \forall v \in X.
\]

Similarly, for \(b(\cdot, \cdot) \) we define \(B \) and adjoint \(B' \) as

\[
B : X \to M', \quad B' : M \to X' \quad \langle Bu, \mu \rangle = b(u, \mu), \forall \mu \in M, \langle B' \lambda, v \rangle = b(v, \lambda), \forall v \in X.
\]

The Saddle Point Problem I can be expressed as
Saddle Point Problems

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \}$

Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form $a(\cdot, \cdot)$

$$
A : X \to X', \quad \langle Au, v \rangle = a(u, v), \ \forall v \in X.
$$

Similarly, for $b(\cdot, \cdot)$ we define B and adjoint B' as

$$
B : X \to M', \quad B' : M \to X', \quad \langle Bu, \mu \rangle = b(u, \mu), \ \forall \mu \in M, \quad \langle B' \lambda, v \rangle = b(\nu, \lambda), \ \forall v \in X.
$$

The Saddle Point Problem I can be expressed as

Saddle Point Problem II
Saddle Point Problems

Notation:\[V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, \quad V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \]

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \to X', \quad \langle Au, v \rangle = a(u, v), \quad \forall v \in X.
\]

Similarly, for \(b(\cdot, \cdot) \) we define \(B \) and adjoint \(B' \) as

\[
B : X \to M', \quad B' : M \to X', \quad \langle Bu, \mu \rangle = b(u, \mu), \quad \forall \mu \in M, \quad \langle B'\lambda, v \rangle = b(\nu, \lambda), \quad \forall v \in X.
\]

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find \((u, \lambda) \in X \times M\) satisfying
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \to X', \quad \langle Au, v \rangle = a(u, v), \quad \forall v \in X.
\]

Similarly, for \(b(\cdot, \cdot) \) we define \(B \) and adjoint \(B' \) as

\[
B : X \to M', \quad \langle Bu, \mu \rangle = b(u, \mu), \quad \forall \mu \in M, \quad \langle B' \lambda, v \rangle = b(v, \lambda), \quad \forall v \in X.
\]

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find \((u, \lambda) \in X \times M\) satisfying

\[
Au + B' \lambda = f, \\
Bu = g.
\]
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \} \)

Since \(b \) is continuous, \(V \) is a closed subspace of \(X \).

Reformulation as an operator equation using bilinear form \(a(\cdot, \cdot) \)

\[
A : X \rightarrow X' \\
\langle Au, v \rangle = a(u, v), \ \forall v \in X.
\]

Similarly, for \(b(\cdot, \cdot) \) we define \(B \) and adjoint \(B' \) as

\[
B : X \rightarrow M' , \quad B' : M \rightarrow X' \\
\langle Bu, \mu \rangle = b(u, \mu), \ \forall \mu \in M, \quad \langle B' \lambda, v \rangle = b(v, \lambda), \ \forall v \in X.
\]

The Saddle Point Problem I can be expressed as

Saddle Point Problem II

Find \((u, \lambda) \in X \times M\) satisfying

\[
Au + B' \lambda = f, \\
Bu = g.
\]
Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} b(v, \mu) \|v\| \|\mu\| \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V_0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M \).

Proof: The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \(\Rightarrow \) (ii).

For \(v \in V^\perp \) let \(g \in V_0 \) defined by mapping \(w \mapsto (v, w) \).

By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that \(b(w, \lambda) = (v, w), \forall w \in V \).

From the definition of the functional \(\|g\| = \|v\| \).

Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\| \).

Substituting into \(b(\cdot, \cdot) \) above \(w = v \), we have

\[\sup_{\mu \in M} b(v, \mu) \|\mu\| \geq b(v, \mu) \|\mu\| = (v, v) \|\lambda\| \geq \beta \|v\|. \]

The \(B : V^\perp \to M' \) satisfies the conditions of Inf-Sup Lemma so the mapping \(B \) is an isomorphism.

Therefore, (iii) \(\Rightarrow \) (ii).
Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} b(v, \mu) \|v\| \|\mu\| \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp \).

(iii) The operator \(B' : M \rightarrow V_0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M \).

Proof: The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \(\Rightarrow \) (ii).

For \(v \in V^\perp \) let \(g \in V_0 \) defined by mapping \(w \mapsto (v, w) \).

By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that \(b(w, \lambda) = (v, w), \forall w \in V \).

From the definition of the functional \(\|g\| = \|v\| \).

Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\| \).

Substituting into \(b(\cdot, \cdot) \) above \(w = v \), we have \(\sup_{\mu \in M} \ b(v, \mu) \|\mu\| \geq b(v, \mu) \|\mu\| = (v, v) \|\lambda\| \geq \beta \|v\| \).

The \(B : V^\perp \rightarrow M' \) satisfies the conditions of Inf-Sup Lemma so the mapping \(B \) is an isomorphism.

Therefore, (iii) \(\Rightarrow \) (ii).
Inf-Sup Lemma

The following conditions are equivalent

(i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0$.

(ii) The operator $B : V^\perp \rightarrow M'$ is an isomorphism and $\|Bv\| \geq \beta \|v\|$, $\forall v \in V^\perp$.

(iii) The operator $B' : M \rightarrow V_0 \subset X'$ is an isomorphism and $\|B'\mu\| \geq \beta \|\mu\|$, $\forall \mu \in M$.

Proof: The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \Rightarrow (ii).

For $v \in V^\perp$ let $g \in V_0$ defined by mapping $w \mapsto (v, w)$.

By (iii) B' is an isomorphism so there exists $\lambda \in M$ so that $b(w, \lambda) = (v, w)$, $\forall w \in V$.

From the definition of the functional $\|g\| = \|v\|$.

Also, $\|B'\mu\| \geq \beta \|\mu\|$ so $\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\|$.

Substituting into $b(\cdot, \cdot)$ above $w = v$, we have $\sup_{\mu \in M} b(v, \mu) \|\mu\| \geq b(v, \mu) \|\mu\| = (v, v) \|\lambda\| \geq \beta \|v\|$.

The $B : V^\perp \rightarrow M'$ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.

Therefore, (iii) \Rightarrow (ii).
The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp. \)

Proof: The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \(\Rightarrow \) (ii).

For \(v \in V^\perp \) let \(g \in V_0 \) defined by mapping \(w \mapsto (v, w) \).

By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that \(b(w, \lambda) = (v, w), \forall w \in V \).

From the definition of the functional \(\|g\| = \|v\| \).

Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\| \).

Substituting into \(b(\cdot, \cdot) \) above \(w = v \), we have

\[\sup_{\mu \in M} b(v, \mu) \quad \|\mu\| \geq b(v, \mu) \quad \|\mu\| = (v, v) \quad \|\lambda\| \geq \beta \|v\|. \]

Therefore, (iii) \(\Rightarrow \) (ii).
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \(\Rightarrow \) (ii).
For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \).
By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that \(b(w, \lambda) = (v, w), \ \forall w \in V^\perp \).
From the definition of the functional \(\|g\| = \|v\| \).
Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\| \).
Substituting into \(b(\cdot, \cdot) \) above \(w = v \), we have
\[\sup_{\mu \in M} b(v, \mu) \geq \frac{b(v, \mu)}{\|\mu\|} \geq \beta \|v\| = (v, v) \\|\lambda\| \geq \beta \|v\|. \]

The \(B : V^\perp \to M' \) satisfies the conditions of Inf-Sup Lemma so the mapping \(B \) is an isomorphism.

Therefore, (iii) \(\Rightarrow \) (ii).
Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M. \)

Proof:
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \quad \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \quad \forall \mu \in M. \)

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B' \mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \(\Rightarrow \) (ii).
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp. \)

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M. \)

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma. We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \).
Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M. \)

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \). By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that...
The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp. \)

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M. \)

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \). By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that

\[b(w, \lambda) = (v, w), \forall w \in V. \]
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \; \forall v \in V^\perp. \)

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \; \forall \mu \in M. \)

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \). By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that

\[b(w, \lambda) = (v, w), \; \forall w \in V. \]

From the definition of the functional \(\|g\| = \|v\|. \)
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M \).

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \). By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that

\[
\forall w \in V, \quad b(w, \lambda) = (v, w).
\]

From the definition of the functional \(\|g\| = \|v\| \). Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\| \).
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w) \). By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that

\[b(w, \lambda) = (v, w), \ \forall w \in V. \]

From the definition of the functional \(\|g\| = \|v\| \). Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\| \).
Substituting into \(b(\cdot, \cdot) \) above \(w = v \), we have
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \forall \mu \in M. \)

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w). \) By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that

\[
 b(w, \lambda) = (v, w), \forall w \in V.
\]

From the definition of the functional \(\|g\| = \|v\|. \) Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\|. \)

Substituting into \(b(\cdot, \cdot) \) above \(w = v, \) we have

\[
 \sup_{\mu \in M} \frac{b(v, \mu)}{\|\mu\|} \geq \frac{b(v, \mu)}{\|\mu\|} = \frac{(v, v)}{\|\lambda\|} \geq \beta \|v\|.
\]
Inf-Sup Lemma

The following conditions are equivalent
(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)
(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp. \)
(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M. \)

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w). \) By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that
\[
b(w, \lambda) = (v, w), \ \forall w \in V.
\]
From the definition of the functional \(\|g\| = \|v\|. \) Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\|. \)
Substituting into \(b(\cdot, \cdot) \) above \(w = v, \) we have
\[
\sup_{\mu \in M} \frac{b(v, \mu)}{\|\mu\|} \geq \frac{b(v, \mu)}{\|\mu\|} = \frac{(v, v)}{\|\lambda\|} \geq \beta \|v\|.
\]
The \(B : V^\perp \to M' \) satisfies the conditions of Inf-Sup Lemma so the mapping \(B \) is an isomorphism.
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M. \)

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) \(\Rightarrow \) (ii). For \(v \in V^\perp \) let \(g \in V^0 \) defined by mapping \(w \mapsto (v, w). \) By (iii) \(B' \) is an isomorphism so there exists \(\lambda \in M \) so that

\[b(w, \lambda) = (v, w), \ \forall w \in V. \]

From the definition of the functional \(\|g\| = \|v\|. \) Also, \(\|B'\mu\| \geq \beta \|\mu\| \) so \(\|v\| = \|g\| = \|B'\lambda\| \geq \beta \|\lambda\|. \)

Substituting into \(b(\cdot, \cdot) \) above \(w = v, \) we have

\[\sup_{\mu \in M} \frac{b(v, \mu)}{\|\mu\|} \geq \frac{b(v, \mu)}{\|\mu\|} = \frac{(v, v)}{\|\lambda\|} \geq \beta \|v\|. \]

The \(B : V^\perp \rightarrow M' \) satisfies the conditions of Inf-Sup Lemma so the mapping \(B \) is an isomorphism. Therefore, (iii) \(\Rightarrow \) (ii).
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:

We show (ii) \(\Rightarrow\) (i).
Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:
We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \to M' \) is an isomorphism.
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M. \)

Proof:
We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \rightarrow M' \) is an isomorphism. For \(\mu \in M \), we have by duality of the norms
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp. \)

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M. \)

Proof:
We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \to M' \) is an isomorphism. For \(\mu \in M \), we have by duality of the norms

\[
\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|}
\]
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\|\|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\| \), \(\forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\| \), \(\forall \mu \in M \).

Proof:
We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \to M' \) is an isomorphism. For \(\mu \in M \), we have by duality of the norms

\[
\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^\perp} \frac{\langle Bv, \mu \rangle}{\|Bv\|}.
\]
Inf-Sup Lemma

The following conditions are equivalent

(i) $\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0$.

(ii) The operator $B : V^\perp \rightarrow M'$ is an isomorphism and $\|Bv\| \geq \beta \|v\|$, $\forall v \in V^\perp$.

(iii) The operator $B' : M \rightarrow V^0 \subset X'$ is an isomorphism and $\|B'\mu\| \geq \beta \|\mu\|$, $\forall \mu \in M$.

Proof:

We show (ii) ⇒ (i). By (ii), $B : V^\perp \rightarrow M'$ is an isomorphism. For $\mu \in M$, we have by duality of the norms

\[
\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^\perp} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^\perp} \frac{b(v, \mu)}{\|Bv\|}
\]
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0. \)

(ii) The operator \(B : V^\perp \rightarrow M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp. \)

(iii) The operator \(B' : M \rightarrow V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M. \)

Proof:
We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \rightarrow M' \) is an isomorphism. For \(\mu \in M \), we have by duality of the norms

\[
\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^\perp} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^\perp} \frac{b(v, \mu)}{\|Bv\|} \leq \sup_{v \in V^\perp} \frac{b(v, \mu)}{\beta \|v\|}.
\]
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:

We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \to M' \) is an isomorphism. For \(\mu \in M \), we have by duality of the norms

\[
\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^\perp} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^\perp} \frac{b(v, \mu)}{\|Bv\|} \leq \sup_{v \in V^\perp} \frac{b(v, \mu)}{\beta \|v\|}.
\]

Therefore, (ii) \(\Rightarrow \) (i).
Inf-Sup Lemma

The following conditions are equivalent

(i) \(\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\|v\| \|\mu\|} \geq \beta > 0 \).

(ii) The operator \(B : V^\perp \to M' \) is an isomorphism and \(\|Bv\| \geq \beta \|v\|, \ \forall v \in V^\perp \).

(iii) The operator \(B' : M \to V^0 \subset X' \) is an isomorphism and \(\|B'\mu\| \geq \beta \|\mu\|, \ \forall \mu \in M \).

Proof:
We show (ii) \(\Rightarrow \) (i). By (ii), \(B : V^\perp \to M' \) is an isomorphism. For \(\mu \in M \), we have by duality of the norms

\[
\|\mu\| = \sup_{g \in M'} \frac{\langle g, \mu \rangle}{\|g\|} = \sup_{v \in V^\perp} \frac{\langle Bv, \mu \rangle}{\|Bv\|} = \sup_{v \in V^\perp} \frac{b(v, \mu)}{\|Bv\|} \leq \sup_{v \in V^\perp} \frac{b(v, \mu)}{\beta \|v\|}.
\]

Therefore, (ii) \(\Rightarrow \) (i).
\[\blacksquare\]
Notation:

\[V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \]

\[V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \]

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping \(L \) is an isomorphism \(L : X \times M \to X' \times M' \) if and only if the following two conditions are satisfied

1. The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \),
 \[a(v, v) \geq \alpha \|v\|^2, \forall v \in V \text{ with } \alpha > 0, \]
 \(V \) given above.

2. The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition
 \[\inf_{\mu \in M} \sup_{v \in X} b(v, \mu) \|v\| \|\mu\| \geq \beta. \]

Remark:
Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).

Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solvability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \),
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \}, \ V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

A central theorem for saddle point problems.

Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).

Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solvability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the Saddle Point Problem I, the mapping \(L \) is an isomorphism \(L : X \times M \rightarrow X' \times M' \)
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the *Saddle Point Problem I*, the mapping \(L : X \times M \to X' \times M' \) if and only if the following two conditions are satisfied:

1. The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \),
 \[a(v, v) \geq \alpha \| v \|^2, \forall v \in V \text{ with } \alpha > 0, \]
 where \(V \) is given above.

2. The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition
 \[\inf_{\mu \in M} \sup_{v \in X} b(v, \mu) \| v \| \| \mu \| \geq \beta. \]

Remark: Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).

Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solvability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the Saddle Point Problem I, the mapping \(L \) is an isomorphism \(L : X \times M \to X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \|v\|^2, \ \forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

Remark: Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)). Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solveability. Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the *Saddle Point Problem I*, the mapping \(L : X \times M \to X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \|v\|^2, \forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

(ii) The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition
Saddle Point Problems

Notation: $V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}$, $V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \}$

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the *Saddle Point Problem I*, the mapping $L : X \times M \rightarrow X' \times M'$ if and only if the following two conditions are satisfied:

(i) The bilinear form $a(\cdot, \cdot)$ is elliptic (coercive) in V, $a(v, v) \geq \alpha \| v \|^2$, $\forall v \in V$ with $\alpha > 0$, V given above.

(ii) The bilinear form $b(\cdot, \cdot)$ satisfies the inf-sup condition

$$\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\| v \| \| \mu \|} \geq \beta.$$
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \, \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the *Saddle Point Problem I*, the mapping \(L : X \times M \to X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \| v \|^2 \), \(\forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

(ii) The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition

\[
\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\| v \| \| \mu \|} \geq \beta.
\]

Remark:

Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).

Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solvability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the *Saddle Point Problem I*, the mapping \(L \) is an isomorphism \(L : X \times M \rightarrow X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \| v \|^2, \ \forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

(ii) The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition

\[
\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\| v \| \| \mu \|} \geq \beta.
\]

Remark: Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \}, V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the Saddle Point Problem I, the mapping \(L : X \times M \rightarrow X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \| v \|^2 \), \(\forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

(ii) The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition

\[
\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\| v \| \| \mu \|} \geq \beta.
\]

Remark: Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the Saddle Point Problem I, the mapping \(L : X \times M \rightarrow X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \| v \|^2 \), \(\forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

(ii) The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition

\[
\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\| v \| \| \mu \|} \geq \beta.
\]

Remark: Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).

Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solveability.
Saddle Point Problems

Notation: \(V(g) := \{ v \in X : b(v, \mu) = \langle g, \mu \rangle, \ \forall \mu \in M \} \), \(V := \{ v \in X : b(v, \mu) = 0, \ \forall \mu \in M \} \)

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the *Saddle Point Problem I*, the mapping \(L : X \times M \to X' \times M' \) if and only if the following two conditions are satisfied

(i) The bilinear form \(a(\cdot, \cdot) \) is elliptic (coercive) in \(V \), \(a(v, v) \geq \alpha \| v \|^2, \ \forall v \in V \) with \(\alpha > 0 \), \(V \) given above.

(ii) The bilinear form \(b(\cdot, \cdot) \) satisfies the inf-sup condition

\[
\inf_{\mu \in M} \sup_{v \in X} \frac{b(v, \mu)}{\| v \| \| \mu \|} \geq \beta.
\]

Remark: Note the coercivity is assumed only for \(v \) in kernel of \(B \) (see def. of \(V \)).

Provides conditions directly in terms of the bilinear forms \(a \) and \(b \) concerning solvability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
Find $(u_h, \lambda_h) \in X_h \times M_h$ so that

$$a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h$$

$$b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.$$

Remark: Need to choose the spaces X_h and M_h carefully so that compatibility is satisfied.

Notation: $V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}$.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces X_h, M_h if there exists $\alpha > 0, \beta > 0$ independent of h so that

(i) Bilinear form $a(\cdot, \cdot)$ is V_h-elliptic with constant $\alpha > 0$.

(ii) The condition holds $\sup_{v \in X_h} b(v, \lambda_h) \|v\| \geq \beta \|\lambda_h\|, \forall \lambda_h \in M_h$.

Remark: Also referred to as the Inf-Sup Conditions.
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h \]

\[b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h. \]

Remark: Need to choose the spaces \(X_h\) and \(M_h\) carefully so that compatibility is satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).

(ii) The condition holds

\[\sup_{v \in X_h} b(v, \lambda_h) \|v\| \geq \beta \|\lambda_h\|, \quad \forall \lambda_h \in M_h. \]

Remark: Also referred to as the Inf-Sup Conditions.
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark:

Need to choose the spaces \(X_h\) and \(M_h\) carefully so that compatibility is satisfied.

Notation:

\[V_h := \{ v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h \} \]

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).

(ii) The condition holds \(\sup_{v \in X_h} b(v, \lambda_h) \|v\| \geq \beta \|\lambda_h\|, \forall \lambda_h \in M_h\).

Remark:

Also referred to as the Inf-Sup Conditions.
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
 a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h, \\
b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark:

Need to choose the spaces \(X_h\) and \(M_h\) carefully so that compatibility is satisfied.

Notation:

\[V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}.\]

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).

(ii) The condition holds \(\sup_{v \in X_h} b(v, \lambda_h) \|v\| \geq \beta \|\lambda_h\|, \forall \lambda_h \in M_h\).

Remark:

Also referred to as the Inf-Sup Conditions.
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h \\
b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
 a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
 b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation:
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
 a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
 b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to choose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{ v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h \}\).

Definition: Babuska-Brezzi Condition

\[
\begin{align*}
 (i) \quad & \text{Bilinear form} \ a(u_h, v) \text{ is } V_h \text{-elliptic with constant } \alpha > 0. \\
 (ii) \quad & \text{The condition holds } \sup_{v \in X_h} b(v, \lambda_h) \|v\| \geq \beta \|\lambda_h\|, \quad \forall \lambda_h \in M_h.
\end{align*}
\]

Remark: Also referred to as the Inf-Sup Conditions.

Paul J. Atzberger, UCSB

http://atzberger.org/
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).

(ii) The condition holds
Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
 a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
 b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).
(ii) The condition holds

\[
\sup_{v \in X_h} \frac{b(v, \lambda_h)}{\|v\|} \geq \beta \|\lambda_h\|, \quad \forall \lambda_h \in M_h.
\]
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
a(u_h, v) + b(v, \lambda_h) = \langle f, v \rangle, \quad \forall v \in X_h
\]

\[
b(u_h, \mu) = \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).

(ii) The condition holds

\[
\sup_{v \in X_h} \frac{b(v, \lambda_h)}{\|v\|} \geq \beta \|\lambda_h\|, \quad \forall \lambda_h \in M_h.
\]

Remark:
Mixed Finite Element Methods

Mixed FEM I

Find \((u_h, \lambda_h) \in X_h \times M_h\) so that

\[
\begin{align*}
 a(u_h, v) + b(v, \lambda_h) &= \langle f, v \rangle, \quad \forall v \in X_h \\
 b(u_h, \mu) &= \langle g, \mu \rangle, \quad \forall \mu \in M_h.
\end{align*}
\]

Remark: Need to chose the spaces \(X_h\) and \(M_h\) carefully so have compatibility so the inf-sup conditions satisfied.

Notation: \(V_h := \{v \in X_h : b(v, \mu) = 0, \forall \mu \in M_h\}\).

Definition: Babuska-Brezzi Condition

We say the **Babuska-Brezzi Condition** is satisfied by a family of finite element spaces \(X_h, M_h\) if there exists \(\alpha > 0, \beta > 0\) independent of \(h\) so that

(i) Bilinear form \(a(\cdot, \cdot)\) is \(V_h\)-elliptic with constant \(\alpha > 0\).

(ii) The condition holds

\[
\sup_{v \in X_h} \frac{b(v, \lambda_h)}{\|v\|} \geq \beta \|\lambda_h\|, \quad \forall \lambda_h \in M_h.
\]

Remark: Also referred to as the Inf-Sup Conditions.
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

\[\parallel u - u_h \parallel + \parallel \lambda - \lambda_h \parallel \leq c \inf_{v_h \in X_h} \parallel u - v_h \parallel + \inf_{\mu_h \in M_h} \parallel \lambda - \mu_h \parallel \]

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition: The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h, b(v_h, \mu_h) = 0$, $\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$, $\forall \mu \in M$.

Theorem: Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\parallel u - u_h \parallel \leq c \inf_{v_h \in X_h} \parallel u - v_h \parallel \]
Mixed Methods

Theorem

When \(X_h \) and \(M_h \) satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

\[
\| u - u_h \| + \| \lambda - \lambda_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \| + \inf_{\mu_h \in M_h} \| \lambda - \mu_h \|.
\]

Remark: Generally, \(V_h \not\subset V \) (non-conforming). We usually do get better results in conforming case \(V_h \subset V \).

Definition

The spaces \(X_h \subset X \) and \(M_h \subset M \), are said to satisfy condition (C) provided \(V_h \subset V \).

Significance:

Condition (C) \(\Rightarrow \forall v_h \in X_h, b(v_h, \mu_h) = 0, \forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0, \forall \mu \in M \).
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \leq c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\| \right)$$
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\| u - u_h \| + \| \lambda - \lambda_h \| \leq c \left(\inf_{v_h \in X_h} \| u - v_h \| + \inf_{\mu_h \in M_h} \| \lambda - \mu_h \| \right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.

Significance:

Condition (C) $\Rightarrow \forall v_h \in X_h$, $b(v_h, \mu_h) = 0$,

$\forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0$,

$\forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|.$$
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\| u - u_h \| + \| \lambda - \lambda_h \| \leq c \left(\inf_{v_h \in X_h} \| u - v_h \| + \inf_{\mu_h \in M_h} \| \lambda - \mu_h \| \right)
$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\|u - u_h\| + \|\lambda - \lambda_h\| \leq c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\| \right)
$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.
Mixed Methods

Theorem
When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$
\|u - u_h\| + \|\lambda - \lambda_h\| \leq c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\| \right)
$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition
The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.

Significance:
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \leq c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\| \right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h, \ b(v_h, \mu_h) = 0, \ \forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0, \ \forall \mu \in M$.

Theorem
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \leq c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\| \right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h, \ b(v_h, \mu_h) = 0, \ \forall \mu_h \in M_h \Rightarrow b(v_h, \mu) = 0, \ \forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies
Mixed Methods

Theorem

When X_h and M_h satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

$$\|u - u_h\| + \|\lambda - \lambda_h\| \leq c \left(\inf_{v_h \in X_h} \|u - v_h\| + \inf_{\mu_h \in M_h} \|\lambda - \mu_h\| \right)$$

Remark: Generally, $V_h \not\subset V$ (non-conforming). We usually do get better results in conforming case $V_h \subset V$.

Definition

The spaces $X_h \subset X$ and $M_h \subset M$, are said to satisfy condition (C) provided $V_h \subset V$.

Significance: Condition (C) $\Rightarrow \forall v_h \in X_h$, $b(v_h, \mu_h) = 0$, $\forall \mu_h \in M_h$ $\Rightarrow b(v_h, \mu) = 0$, $\forall \mu \in M$.

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

$$\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|.$$
Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:
Consider \(v_h \in V_h(\mathbf{g}) \). It follows that

\[a(u_h - v_h, v_h) = a(u_h, v_h) - a(u, v) + a(u - v_h, v_h) \]

\[= b(v, \lambda - \lambda_h) + a(u - v_h, v_h) \leq C \| u - v_h \| \cdot \| v \|. \]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then

\[\| u_h - v_h \|_2 \leq \alpha^{-1} C \| u_h - v_h \| \cdot \| u - v_h \|. \]

Dividing by \(\| u_h - v_h \| \), we have

\[\| u_h - v_h \| \leq \alpha^{-1} C \| u - v_h \|. \]

By triangle inequality,

\[\| u - u_h \| \leq \| u - v_h \| + \| v_h - u_h \| \]

and the result follows.

\[\square \]
Mixed Methods

Theorem

Suppose assumptions of prior theorem and \textit{Condition (C)} satisfied. The solution to Mixed FEM I satisfies

\[\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|. \]

Proof:

Consider \(v_h \in V_h(g)\). It follows that

\[a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v) \leq C \|u - v_h\| \cdot \|v\|. \]

Holds \(\forall v \in V_h\) since \(b(v, \lambda - \lambda_h) = 0\) from Condition (C).

Let \(v := u_h - v_h\), then

\[\|u_h - v_h\| \leq \alpha - 1 C \|u - v_h\| \cdot \|u - v_h\|.\]

Dividing by \(\|u_h - v_h\|\), we have

\[\|u_h - v_h\| \leq \alpha - 1 C \|u - v_h\|.\]

By triangle inequality, \(\|u - u_h\| \leq \|u - v_h\| + \|v_h - u_h\|\) and the result follows. ■
Theorem
Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:
Consider \(v_h \in V_h \). It follows that

\[a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v) \]

\[= b(v, \lambda - \lambda_h) + a(u - v_h, v) \leq C \| u - v_h \| \cdot \| v \|. \]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then

\[\| u_h - v_h \| \leq \alpha - 1 C \| u - v_h \| \cdot \| u - v_h \|. \]

Dividing by \(\| u_h - v_h \| \), we have

\[\| u_h - v_h \| \leq \alpha \inf_{v_h \in X_h} \| u - v_h \|. \]

By triangle inequality,

\[\| u - u_h \| \leq \| u - v_h \| + \| v_h - u_h \| \]

and the result follows.\[\square\]
Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|. \]

Proof:

Consider \(v_h \in V_h \). It follows that

\[a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v) = b(v, \lambda - \lambda_h) + a(u - v_h, v) \leq C \|u - v_h\| \|v\|. \]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then

\[\|u_h - v_h\| \leq \alpha - 1 C \|u_h - v_h\| \|u - v_h\|. \]

Dividing by \(\|u_h - v_h\| \), we have

\[\|u_h - v_h\| \leq \alpha - 1 C \|u - v_h\|. \]

By triangle inequality, \(\|u - u_h\| \leq \|u - v_h\| + \|v_h - u_h\| \) and the result follows. ■

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:

Consider \(v_h \in V_h(g) \).
Theorem

Suppose assumptions of prior theorem and Condition \((C)\) satisfied. The solution to Mixed FEM I satisfies

\[
\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|.
\]

Proof:
Consider \(v_h \in V_h(g)\). It follows that

\[
\|u - u_h\| \leq \alpha - 1 c \|u - v_h\| \cdot \|u - v_h\|.
\]

Dividing by \(\|u - u_h\|\), we have

\[
\|u - u_h\| \leq c \alpha - 1 \|u - v_h\|.
\]

By triangle inequality,

\[
\|u - v_h\| \leq \|u - u_h\| + \|v_h - u_h\|
\]

and the result follows.

\(\blacksquare\)
Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|. \]

Proof:
Consider \(v_h \in V_h(g) \). It follows that

\[a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v) \]
Suppose assumptions of prior theorem and *Condition (C)* satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:
Consider \(v_h \in V_h(g) \). It follows that

\[
\begin{align*}
a(u_h - v_h, v) &= a(u_h, v) - a(u, v) + a(u - v_h, v) \\
&= b(v, \lambda - \lambda_h) + a(u - v_h, v)
\end{align*}
\]
Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|. \]

Proof:
Consider \(v_h \in V_h(g) \). It follows that

\[
a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v) \\
= b(v, \lambda - \lambda_h) + a(u - v_h, v) \\
\leq C \|u - v_h\| \cdot \|v\|.
\]
Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:
Consider \(v_h \in V_h(g) \). It follows that

\[
\begin{align*}
 a(u_h - v_h, v) &= a(u_h, v) - a(u, v) + a(u - v_h, v) \\
 &= b(v, \lambda - \lambda_h) + a(u - v_h, v) \\
 &\leq C \| u - v_h \| \cdot \| v \|.
\end{align*}
\]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).
Mixed Methods

Theorem

Suppose assumptions of prior theorem and *Condition (C)* satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:

Consider \(v_h \in V_h(g) \). It follows that

\[
\begin{align*}
 a(u_h - v_h, v) &= a(u_h, v) - a(u, v) + a(u - v_h, v) \\
 &= b(v, \lambda - \lambda_h) + a(u - v_h, v) \\
 &\leq C \| u - v_h \| \cdot \| v \|.
\end{align*}
\]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then

\[\| u_h - v_h \|^2 \leq \alpha^{-1} C \| u_h - v_h \| \cdot \| u - v_h \|. \]
Theorem

Suppose assumptions of prior theorem and \textit{Condition (C)} satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:

Consider \(v_h \in V_h(g) \). It follows that

\[
\begin{align*}
a(u_h - v_h, v) &= a(u_h, v) - a(u, v) + a(u - v_h, v) \\
&= b(v, \lambda - \lambda_h) + a(u - v_h, v) \\
&\leq C \| u - v_h \| \cdot \| v \|.
\end{align*}
\]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then \(\| u_h - v_h \|^2 \leq \alpha^{-1} C \| u_h - v_h \| \cdot \| u - v_h \| \). Dividing by \(\| u_h - v_h \| \), we have

\[\| u_h - v_h \| \leq \alpha^{-1} C \| u - v_h \|. \]
Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition \((C)\) satisfied. The solution to Mixed FEM I satisfies

\[
\|u - u_h\| \leq c \inf_{v_h \in X_h} \|u - v_h\|.
\]

Proof:
Consider \(v_h \in V_h(g)\). It follows that

\[
a(u_h - v_h, v) = a(u_h, v) - a(u, v) + a(u - v_h, v)
\]

\[
= b(v, \lambda - \lambda_h) + a(u - v_h, v)
\]

\[
\leq C \|u - v_h\| \cdot \|v\|.
\]

Holds \(\forall v \in V_h\) since \(b(v, \lambda - \lambda_h) = 0\) from Condition \((C)\).

Let \(v := u_h - v_h\), then \(\|u_h - v_h\|^2 \leq \alpha^{-1} C \|u_h - v_h\| \cdot \|u - v_h\|\). Dividing by \(\|u_h - v_h\|\), we have

\(\|u_h - v_h\| \leq \alpha^{-1} C \|u - v_h\|\).

By triangle inequality, \(\|u - u_h\| \leq \|u - v_h\| + \|v_h - u_h\|\)
Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:
Consider \(v_h \in V_h(g) \). It follows that

\[
\begin{align*}
a(u_h - v_h, v) & = a(u_h, v) - a(u, v) + a(u - v_h, v) \\
& = b(v, \lambda - \lambda_h) + a(u - v_h, v) \\
& \leq C \| u - v_h \| \cdot \| v \|.
\end{align*}
\]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then \(\| u_h - v_h \|^2 \leq \alpha^{-1} C \| u_h - v_h \| \cdot \| u - v_h \| \). Dividing by \(\| u_h - v_h \| \), we have

\[\| u_h - v_h \| \leq \alpha^{-1} C \| u - v_h \|. \]

By triangle inequality, \(\| u - u_h \| \leq \| u - v_h \| + \| v_h - u_h \| \) and the result follows.
Mixed Methods

Theorem

Suppose assumptions of prior theorem and *Condition (C)* satisfied. The solution to Mixed FEM I satisfies

\[\| u - u_h \| \leq c \inf_{v_h \in X_h} \| u - v_h \|. \]

Proof:

Consider \(v_h \in V_h(g) \). It follows that

\[
\begin{align*}
a(u_h - v_h, v) &= a(u_h, v) - a(u, v) + a(u - v_h, v) \\
&= b(v, \lambda - \lambda_h) + a(u - v_h, v) \\
&\leq C \| u - v_h \| \cdot \| v \|.
\end{align*}
\]

Holds \(\forall v \in V_h \) since \(b(v, \lambda - \lambda_h) = 0 \) from Condition (C).

Let \(v := u_h - v_h \), then \(\| u_h - v_h \|^2 \leq \alpha^{-1} C \| u_h - v_h \| \cdot \| u - v_h \| \). Dividing by \(\| u_h - v_h \| \), we have \(\| u_h - v_h \| \leq \alpha^{-1} C \| u - v_h \| \).

By triangle inequality, \(\| u - u_h \| \leq \| u - v_h \| + \| v_h - u_h \| \) and the result follows.

\[\blacksquare \]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \quad x \in \Omega, \]
\[u = 0, \quad x \in \Gamma_0, \]
\[\nabla u \cdot n = 0, \quad x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \text{ grad} u \).

Let \(\sigma = \text{grad} u \),

then the Poisson problem becomes

\[\text{grad} u = \sigma, \quad \text{div} \sigma = -f. \]

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L^2(\Omega) \times H^1_0(\Omega)\) so that

\[(\sigma, \tau)_0, \Omega - (\tau, \nabla u)_0, \Omega = 0, \quad \forall \tau \in L^2(\Omega), \]
\[(\sigma, \nabla v)_0, \Omega = -(f, v)_0, \Omega, \quad \forall v \in H^1_0(\Omega). \]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \ x \in \Omega, \]

We use that \(\Delta u = \text{div} \ \text{grad} u \).

Let \(\sigma = \text{grad} u \), then the Poisson problem becomes

\[\text{grad} u = \sigma \] \[\text{div} \sigma = -f \]

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L^2(\Omega) \times H^1_0(\Omega)\) so that

\[(\sigma, \tau)_0, \Omega \] \[- (\tau, \nabla u)_0, \Omega \] \[= 0, \ \forall \tau \in L^2(\Omega) \] \[- (\sigma, \nabla v)_0, \Omega \] \[= - (f, v)_0, \Omega, \ \forall v \in H^1_0(\Omega) \].
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \quad x \in \Omega, \quad u = 0, \quad x \in \Gamma_0, \]
Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L^2(\Omega) \times H^1_0(\Omega)\) so that

\[
(\sigma, \tau)_{L^2(\Omega)} - (\tau, \nabla u)_{L^2(\Omega)} = 0, \quad \forall \tau \in L^2(\Omega)
\]

\[
(\sigma, \nabla v)_{L^2(\Omega)} = - (f, v)_{L^2(\Omega)}, \quad \forall v \in H^1_0(\Omega).
\]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \quad x \in \Omega, \quad u = 0, \quad x \in \Gamma_0, \quad \nabla u \cdot n = 0, \quad x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \ \text{grad} \ u \).
Poisson Problem:

\[\Delta u = -f, \; x \in \Omega, \quad u = 0, \; x \in \Gamma_0, \quad \nabla u \cdot n = 0, \; x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \; \text{grad} \; u \). Let \(\sigma = \text{grad} \; u \),
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \quad x \in \Omega, \quad u = 0, \quad x \in \Gamma_0, \quad \nabla u \cdot n = 0, \quad x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \ \text{grad} u \). Let \(\sigma = \text{grad} u \), then the Poisson problem becomes

\[\text{grad} u = \sigma \]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \quad x \in \Omega, \quad u = 0, \quad x \in \Gamma_0, \quad \nabla u \cdot n = 0, \quad x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \, \text{grad} \, u \). Let \(\sigma = \text{grad} \, u \), then the Poisson problem becomes

\[
\begin{align*}
\text{grad} \, u &= \sigma \\
\text{div} \, \sigma &= -f
\end{align*}
\]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \ x \in \Omega, \quad u = 0, \ x \in \Gamma_0, \quad \nabla u \cdot n = 0, \ x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \ \text{grad} \ u \). Let \(\sigma = \text{grad} \ u \), then the Poisson problem becomes

\[
\begin{align*}
\text{grad} \ u & = \sigma \\
\text{div} \ \sigma & = -f
\end{align*}
\]

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that
Poisson Problem: Mixed Methods

Poisson Problem:
\[
\Delta u = -f, \quad x \in \Omega, \quad u = 0, \quad x \in \Gamma_0, \quad \nabla u \cdot n = 0, \quad x \in \Gamma_1.
\]

We use that \(\Delta u = \text{div} \, \text{grad} \, u \). Let \(\sigma = \text{grad} \, u \), then the Poisson problem becomes
\[
\begin{align*}
\text{grad} \, u & = \sigma \\
\text{div} \, \sigma & = -f
\end{align*}
\]

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H^1_0(\Omega)\) so that
\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d
\]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \ x \in \Omega, \ u = 0, \ x \in \Gamma_0, \ \nabla u \cdot n = 0, \ x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \ \text{grad} \ u \). Let \(\sigma = \text{grad} \ u \), then the Poisson problem becomes

\[
\begin{align*}
\text{grad} \ u &= \sigma \\
\text{div} \ \sigma &= -f
\end{align*}
\]

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that

\[
\begin{align*}
(\sigma, \tau)_{0, \Omega} - (\tau, \nabla u)_{0, \Omega} &= 0, \ \forall \tau \in L_2(\Omega)^d \\
-(\sigma, \nabla v)_{0, \Omega} &= -(f, v)_{0, \Omega}, \ \forall v \in H_0^1(\Omega).
\end{align*}
\]
Poisson Problem: Mixed Methods

Poisson Problem:

\[\Delta u = -f, \quad x \in \Omega, \quad u = 0, \quad x \in \Gamma_0, \quad \nabla u \cdot \mathbf{n} = 0, \quad x \in \Gamma_1. \]

We use that \(\Delta u = \text{div} \, \text{grad} u \). Let \(\sigma = \text{grad} u \), then the Poisson problem becomes

\[
\begin{align*}
\text{grad} u &= \sigma \\
\text{div} \sigma &= -f
\end{align*}
\]

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that

\[
\begin{align*}
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} &= 0, \quad \forall \tau \in L_2(\Omega)^d \\
-(\sigma, \nabla \nu)_{0,\Omega} &= -(f, \nu)_{0,\Omega}, \quad \forall \nu \in H_0^1(\Omega).
\end{align*}
\]
Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L^2(\Omega) \times H^1_0(\Omega)\) so that

\[
(\sigma, \tau) = (\sigma, \tau)_{0, \Omega},
\]

\[
\tau, \nabla u = 0, \forall \tau \in L^2(\Omega),
\]

\[
(\sigma, \nabla v) = -\langle f, v \rangle_{0, \Omega}, \forall v \in H^1_0(\Omega).
\]

Poisson Problem: Saddle-Point Formulation

Let \(X := L^2(\Omega)\), \(M := H^1_0(\Omega)\)

\[
a(\sigma, \tau) := (\sigma, \tau)_{0, \Omega},
\]

\[
b(\tau, v) := -(\tau, \nabla v)_{0, \Omega}.
\]

Saddle-Point Problem:

\[
a(\sigma, \tau) - b(\tau, v) = 0
\]

\[
b(\sigma, \tau) = -\langle f, v \rangle_{0, \Omega}.
\]
Find \((\sigma, u) \in L_2(\Omega)^d \times H^1_0(\Omega)\) so that

\[
\begin{align*}
(\sigma, \tau) &\quad_{\Omega} - (\tau, \nabla u)_{\Omega} = 0, \\
(\sigma, \nabla v)_{\Omega} &\quad_{\Omega} = -\langle f, v \rangle_{\Omega},
\end{align*}
\]

Poisson Problem: Saddle-Point Formulation

Let \(X := L_2(\Omega)^d\), \(M := H^1_0(\Omega)\)

\(a(\sigma, \tau) := (\sigma, \tau)_{\Omega}\)
\(b(\tau, v) := -\langle \tau, \nabla v \rangle_{\Omega}\)

Saddle-Point Problem:

\[
a(\sigma, \tau) - b(\tau, v) = 0
\]

\[
b(\sigma, \tau) = -\langle f, v \rangle_{\Omega}
\]
Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H^1_0(\Omega)\) so that

\[
(\sigma, \tau)_{0, \Omega} - (\tau, \nabla u)_{0, \Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d
\]
Find \((\sigma, u) \in L_2(\Omega)^d \times H^1_0(\Omega)\) so that

\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d \\
-(\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \quad \forall v \in H^1_0(\Omega).
\]
Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that

\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d
\]

\[
-(\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \quad \forall v \in H_0^1(\Omega).
\]

Poisson Problem: Saddle-Point Formulation

Let \(X := L_2(\Omega)^d\), \(M := H_0^1(\Omega)\)

\[a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.
\]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0
\]

\[b(\sigma, \tau) = -(f, v)_{0,\Omega}.
\]
Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L^2(\Omega)^d \times H^1_0(\Omega)\) so that

\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L^2(\Omega)^d
\]

\[
- (\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \quad \forall v \in H^1_0(\Omega).
\]

Poisson Problem: Saddle-Point Formulation

Let

\[
a(\sigma, \tau) - b(\tau, v) = 0
\]

\[
b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}, \quad \forall v \in H^1_0(\Omega).
\]
Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that

\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d
\]

\[
-(\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \quad \forall v \in H_0^1(\Omega).
\]

Poisson Problem: Saddle-Point Formulation

Let

\[
X := L_2(\Omega)^d, \quad M := H_0^1(\Omega)
\]
Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H^1_0(\Omega)\) so that

\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d
\]

\[
-(\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \quad \forall v \in H^1_0(\Omega).
\]

Poisson Problem: Saddle-Point Formulation

Let

\[
X := L_2(\Omega)^d, \quad M := H^1_0(\Omega)
\]

\[
a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.
\]

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that

\[
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} = 0, \quad \forall \tau \in L_2(\Omega)^d
\]

\[-(\sigma, \nabla v)_{0,\Omega} = -(f, v)_{0,\Omega}, \quad \forall v \in H_0^1(\Omega).
\]

Poisson Problem: Saddle-Point Formulation

Let

\[
X := L_2(\Omega)^d, \quad M := H_0^1(\Omega)
\]

\[
a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.
\]

Saddle-Point Problem:
Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L^2(\Omega)^d \times H^1_0(\Omega)\) so that

\[
\begin{align*}
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} &= 0, \quad \forall \tau \in L^2(\Omega)^d, \\
-(\sigma, \nabla v)_{0,\Omega} &= -(f, v)_{0,\Omega}, \quad \forall v \in H^1_0(\Omega).
\end{align*}
\]

Poisson Problem: Saddle-Point Formulation

Let

\[X := L^2(\Omega)^d, \quad M := H^1_0(\Omega) \]
\[a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]
Poisson Problem: Mixed Formulation

Find \((\sigma, u) \in L_2(\Omega)^d \times H_0^1(\Omega)\) so that

\[
\begin{align*}
(\sigma, \tau)_{0,\Omega} - (\tau, \nabla u)_{0,\Omega} & = 0, \quad \forall \tau \in L_2(\Omega)^d \\
-(\sigma, \nabla v)_{0,\Omega} & = -(f, v)_{0,\Omega}, \quad \forall v \in H_0^1(\Omega).
\end{align*}
\]

Poisson Problem: Saddle-Point Formulation

Let

\[
X := L_2(\Omega)^d, \quad M := H_0^1(\Omega)
\]

\[
a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.
\]

Saddle-Point Problem:

\[
\begin{align*}
a(\sigma, \tau) - b(\tau, v) & = 0 \\
b(\sigma, \tau) & = -(f, v)_{0,\Omega}.
\end{align*}
\]
Poisson Problem: Mixed Methods

Let

\[X := L_2(\Omega)^d, \quad M := H_0^1(\Omega) \]

\[a(\sigma, \tau) := (\sigma, \tau)_{0, \Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0, \Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]

\[b(\sigma, \tau) = -\langle f, v \rangle_{0, \Omega}. \]
Poisson Problem: Mixed Methods

Let

\[X := L_2(\Omega)^d, \quad M := H^1_0(\Omega) \]

\[a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]

\[b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}. \]

The Inf-Sup Condition holds since

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/
Poisson Problem: Mixed Methods

Let

\[
X := L_2(\Omega)^d, \quad M := H^1_0(\Omega)
\]

\[
a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.
\]

Saddle-Point Problem:

\[
a(\sigma, \tau) - b(\tau, v) = 0
\]

\[
b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}.
\]

The Inf-Sup Condition holds since

\[
\frac{b(\tau, v)}{\|\tau\|_0} \geq 1
\]

Paul J. Atzberger, UCSB
Poisson Problem: Mixed Methods

Let

\[X := L_2(\Omega)^d, \quad M := H^1_0(\Omega) \]

\[a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := - (\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]

\[b(\sigma, \tau) = - \langle f, v \rangle_{0,\Omega}. \]

The Inf-Sup Condition holds since

\[\frac{b(\tau, v)}{\|\tau\|_0} = - \frac{(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_0} \]

Paul J. Atzberger, UCSB
Poisson Problem: Mixed Methods

Let

\[X := L_2(\Omega)^d, \ M := H_0^1(\Omega) \]

\[a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \ b(\tau, v) := - (\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]
\[b(\sigma, \tau) = - \langle f, v \rangle_{0,\Omega}. \]

The Inf-Sup Condition holds since

\[\frac{b(\tau, v)}{\|\tau\|_0} = \frac{-(\tau, \nabla v)_{0,\Omega}}{\|\tau\|_0} \rightarrow \frac{(\nabla v, \nabla v)_{0,\Omega}}{\|\nabla v\|_0} \]
Poisson Problem: Mixed Methods

Let

\[X := L_2(\Omega)^d, \quad M := H^1_0(\Omega) \]

\[a(\sigma, \tau) := \langle \sigma, \tau \rangle_{0, \Omega}, \quad b(\tau, v) := -\langle \tau, \nabla v \rangle_{0, \Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]

\[b(\sigma, \tau) = -\langle f, v \rangle_{0, \Omega}. \]

The Inf-Sup Condition holds since

\[\frac{b(\tau, v)}{\|\tau\|_0} = -\frac{\langle \tau, \nabla v \rangle_{0, \Omega}}{\|\tau\|_0} \rightarrow \frac{\langle \nabla v, \nabla v \rangle_{0, \Omega}}{\|\nabla v\|_0} = |v|_1 \]
Poisson Problem: Mixed Methods

Let

\[X := L^2(\Omega)^d, \quad M := H^1_0(\Omega) \]

\[a(\sigma, \tau) := (\sigma, \tau)_{0, \Omega}, \quad b(\tau, v) := -(<\tau, \nabla v>)_{0, \Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]

\[b(\sigma, \tau) = -<f, v>_{0, \Omega}. \]

The Inf-Sup Condition holds since

\[\frac{b(\tau, v)}{||\tau||_0} = \frac{-<\tau, \nabla v>_{0, \Omega}}{||\tau||_0} \rightarrow \frac{(\nabla v, \nabla v)_{0, \Omega}}{||\nabla v||_0} = |v|_1 \geq \frac{1}{c} ||v||_1. \]
Poisson Problem: Mixed Methods

Let

\[X := L^2(\Omega)^d, M := H^1_0(\Omega) \]

\[a(\sigma, \tau) := (\sigma, \tau)_{0, \Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0, \Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]

\[b(\sigma, \tau) = -\langle f, v \rangle_{0, \Omega}. \]

The Inf-Sup Condition holds since

\[\frac{b(\tau, v)}{\|\tau\|_0} = \frac{-(\tau, \nabla v)_{0, \Omega}}{\|\tau\|_0} \rightarrow \frac{(\nabla v, \nabla v)_{0, \Omega}}{\|\nabla v\|_0} = |v|_1 \geq \frac{1}{c} \|v\|_1. \]

This establishes stability of the formulation.
Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

\[X := L_2(\Omega)^d, \quad M := H_0^1(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -\langle \tau, \nabla v \rangle_{0,\Omega}. \]

Saddle-Point Problem:

\[
\begin{align*}
 a(\sigma, \tau) - b(\tau, v) &= 0 \\
 b(\sigma, \tau) &= -\langle f, v \rangle_{0,\Omega}.
\end{align*}
\]
Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

\[X := L^2(\Omega)^d, \quad M := H^1_0(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[
\begin{align*}
 a(\sigma, \tau) - b(\tau, v) &= 0 \\
 b(\sigma, \tau) &= -\langle f, v \rangle_{0,\Omega}.
\end{align*}
\]

We can obtain stable Finite Element discretizations for triangulations \(\mathcal{T}_h \).
Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

\[X := L_2(\Omega)^d, \quad M := H_0^1(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[
\begin{align*}
\quad a(\sigma, \tau) - b(\tau, v) &= 0 \\
\quad b(\sigma, \tau) &= -\langle f, v \rangle_{0,\Omega}.
\end{align*}
\]

We can obtain stable Finite Element discretizations for triangulations \(T_h \). For \(k \geq 1 \), let
Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

\[
X := L_2(\Omega)^d, \quad M := H^1_0(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}.
\]

Saddle-Point Problem:

\[
\begin{align*}
a(\sigma, \tau) - b(\tau, v) &= 0 \\
b(\sigma, \tau) &= -\langle f, v \rangle_{0,\Omega}.
\end{align*}
\]

We can obtain stable Finite Element discretizations for triangulations \(T_h \). For \(k \geq 1 \), let

Poisson Problem: Stable Mixed Finite Element Spaces
Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

\[X := L_2(\Omega)^d, \quad M := H^1_0(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]
\[b(\sigma, \tau) = -\langle f, v \rangle_{0,\Omega}. \]

We can obtain stable Finite Element discretizations for triangulations \(T_h \). For \(k \geq 1 \), let

Poisson Problem: Stable Mixed Finite Element Spaces

\[X_h := \left(\mathcal{M}^{k-1} \right)^d = \{ \sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in P_{k-1}, \forall T \in T_h \} \]
We can obtain stable Finite Element discretizations for triangulations \mathcal{T}_h. For $k \geq 1$, let

$$X_h := \left(\mathcal{M}^{k-1} \right)^d = \{ \sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in \mathcal{P}_{k-1}, \ \forall T \in \mathcal{T}_h \}$$

$$M_h := \mathcal{M}^k_{0,0} = \{ v_h \in H_0^1(\Omega); \ v_h|_T \in \mathcal{P}_k, \ \forall T \in \mathcal{T}_h \}$$
Poisson Problem: Saddle-Point Formulation

\[X := L_2(\Omega)^d, \quad M := H_0^1(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0, \Omega}, \quad b(\tau, v) := -(\tau, \nabla v)_{0, \Omega}. \]

Saddle-Point Problem:

\[
\begin{align*}
a(\sigma, \tau) - b(\tau, v) &= 0 \\
b(\sigma, \tau) &= -\langle f, v \rangle_{0, \Omega}.
\end{align*}
\]

We can obtain stable Finite Element discretizations for triangulations \(T_h \). For \(k \geq 1 \), let

\[X_h := \left(M^{k-1} \right)^d = \{ \sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in P_{k-1}, \forall T \in T_h \} \]

\[M_h := M^k_{0,0} = \{ v_h \in H_0^1(\Omega); v_h|_T \in P_k, \forall T \in T_h \} \]

Note that \(\nabla M_h \subset X_h \), allow us to verify same as in continuous case.
Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

\[X := L_2(\Omega)^d, \quad M := H_0^1(\Omega), \quad a(\sigma, \tau) := (\sigma, \tau)_{0, \Omega}, \quad b(\tau, v) := -\langle \tau, \nabla v \rangle_{0, \Omega}. \]

Saddle-Point Problem:

\[a(\sigma, \tau) - b(\tau, v) = 0 \]
\[b(\sigma, \tau) = -\langle f, v \rangle_{0, \Omega}. \]

We can obtain stable Finite Element discretizations for triangulations \(T_h \). For \(k \geq 1 \), let

Poisson Problem: Stable Mixed Finite Element Spaces

\[X_h := \left(M^{k-1} \right)^d = \{ \sigma_h \in L_2(\Omega)^d; \sigma_h|_T \in P_{k-1}, \forall T \in T_h \} \]
\[M_h := M_{0,0}^k = \{ v_h \in H_0^1(\Omega); v_h|_T \in P_k, \forall T \in T_h \} \]

Note that \(\nabla M_h \subset X_h \), allow us to verify same as in continuous case.
Poisson Problem: Mixed Methods

Raviart-Thomas Element

Let \(h \) denote the mesh size and \(\tau \) be a vector function in \(L^2(\Omega) \). The Raviart-Thomas element \(\tau \) is defined as an element of the space \(RT_k(\mathcal{T}_h) \) such that

\[
\tau \in \{ \tau \in L^2(\Omega) : \tau|_T = a_T + b_T x + c_T y, a_T, b_T, c_T \in P_k, \forall T \in \mathcal{T}_h \}
\]

The\(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries. These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For \(k = 0 \), \(p \in (P_1)^2 \) has \(p(x, y) = a y + b x + c \) when \(n \) is orthogonal to the line. Edge values determine the polynomial \(p \). Formally, elements are triple \(T, (P_0)^2 + x \cdot P_0, n \cdot p(z_i), i = 1, 2, 3 \) where \(z_i \) is edge midpoint.
Poisson Problem: Mixed Methods

Raviart-Thomas Element

\[X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \; a_T, b_T, c_T \in P_k, \; \forall T \in T_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \]

\[M_h := M_k(T_h) := \left\{ v \in L_2(\Omega); v|_T \in P_k, \; \forall T \in T_h \right\} \]

The \(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries. These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For \(k = 0 \), \(p \in (P_1)^2 \) has \(p(x, y) = a b + c x y \).

The \(n \cdot p \) is constant on \(\alpha x + \beta y = c_0 \) when \(n \) orthogonal to the line.

Edge values determine the polynomial \(p \). Formally, elements are triple \(T, (P_0)^2 + x \cdot P_0, n_i \cdot p(z_i), i = 1, 2, 3 \), \(z_i \) is edge midpoint.
Poisson Problem: Mixed Methods

Raviart-Thomas Element

\[
X_h := RT_k := \left\{ \tau \in L_2(\Omega)^2; \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, a_T, b_T, c_T \in \mathcal{P}_k, \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\}
\]

\[
M_h := \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); v|_T \in \mathcal{P}_k, \forall T \in \mathcal{T}_h \}
\]
Poisson Problem: Mixed Methods

Raviart-Thomas Element

\[X_h := \text{RT}_k := \{ \tau \in L_2(\Omega)^2; \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \; a_T, b_T, c_T \in \mathcal{P}_k, \; \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \} \]

\[M_h := \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); v|_T \in \mathcal{P}_k, \; \forall T \in \mathcal{T}_h \} \]

The \(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries.
Raviart-Thomas Element

\[X_h := RT_k := \left\{ \tau \in L^2(\Omega)^2; \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \ a_T, b_T, c_T \in P_k, \ \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \]

\[M_h := M^k(\mathcal{T}_h) := \{ v \in L^2(\Omega); \ v|_T \in P_k, \ \forall T \in \mathcal{T}_h \} \]

The \(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.
Poisson Problem: Mixed Methods

Raviart-Thomas Element

\[X_h := \text{RT}_k := \left\{ \tau \in L_2(\Omega)^2; \quad \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \quad a_T, b_T, c_T \in P_k, \quad \forall T \in \mathcal{T}_h, \quad \tau \cdot n \in \tilde{C}(\partial T) \right\} \]

\[M_h := \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L_2(\Omega); \quad v|_T \in P_k, \quad \forall T \in \mathcal{T}_h \} \]

The \(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For \(k = 0 \), \(p \in (P_1)^2 \) has

Paul J. Atzberger, UCSB

http://atzberger.org/
The $\tau \cdot n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For $k = 0$, $p \in (P_1)^2$ has

$$p(x, y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}.$$

The $n \cdot p$ is constant on $\alpha x + \beta y = c_0$ when n orthogonal to the line.
The $\tau - n \in \tilde{C}(\partial T)$ denotes that $\tau \cdot n$ is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For $k = 0$, $p \in (P_1)^2$ has

$$p(x, y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}.$$

The $n \cdot p$ is constant on $\alpha x + \beta y = c_0$ when n orthogonal to the line. Edge values determine the polynomial p.

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Poisson Problem: Mixed Methods

Raviart-Thomas Element

\[X_h := RT_k := \left\{ \tau \in L^2(\Omega)^2; \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \; a_T, b_T, c_T \in P_k, \; \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \]

\[M_h := \mathcal{M}^k(\mathcal{T}_h) := \{ v \in L^2(\Omega); v|_T \in P_k, \; \forall T \in \mathcal{T}_h \} \]

The \(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For \(k = 0, p \in (P_1)^2 \) has

\[p(x, y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}. \]

The \(n \cdot p \) is constant on \(\alpha x + \beta y = c_0 \) when \(n \) orthogonal to the line. Edge values determine the polynomial \(p \). Formally, elements are triple
Poisson Problem: Mixed Methods

Raviart-Thomas Element

\[X_h := RT_k := \left\{ \tau \in L^2(\Omega)^2; \; \tau|_T = \begin{pmatrix} a_T \\ b_T \end{pmatrix} + c_T \begin{pmatrix} x \\ y \end{pmatrix}, \; a_T, b_T, c_T \in P_k, \; \forall T \in \mathcal{T}_h, \tau \cdot n \in \tilde{C}(\partial T) \right\} \]

\[M_h := \mathcal{M}^k(T_h) := \{ v \in L^2(\Omega); \; v|_T \in P_k, \; \forall T \in \mathcal{T}_h \} \]

The \(\tau \cdot n \in \tilde{C}(\partial T) \) denotes that \(\tau \cdot n \) is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For \(k = 0, \; p \in (P_1)^2 \) has

\[p(x, y) = \begin{pmatrix} a \\ b \end{pmatrix} + c \begin{pmatrix} x \\ y \end{pmatrix}. \]

The \(n \cdot p \) is constant on \(\alpha x + \beta y = c_0 \) when \(n \) orthogonal to the line.

Edge values determine the polynomial \(p \). Formally, elements are triple

\[(T, (P_0)^2 + x \cdot P_0, \; n_i \cdot p(z_i), i = 1, 2, 3, \; z_i \text{ is edge midpoint}) \]

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Mesh-Dependent Norms:

\[\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \subset \Gamma_h} \| \tau_n \|_0^2 \right)^{1/2} \]

Properties of \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \):

Ellipticity of \(a(\cdot, \cdot) \) follows from

\[\| \tau \|_{0,h} \leq C \| \tau \|_{0,\Omega} \quad \forall \tau \in RT_k \Rightarrow a(\tau, \tau) \geq C - h^{-2} \| \tau \|_{0,\Omega}^2 . \]

Properties of \(b(\tau, v) := - (\tau, \nabla v)_{0,\Omega} \):

Use Green's Identity to rewrite as

\[b(\tau, v) = - \sum_{T \in \mathcal{T}_h} \int_T \tau \cdot \nabla v \, dx + \int_{\Gamma_h} J(v) \tau \, ds . \]

\(J(v) \) is jump of \(v \) in normal direction \(n \). \(\Gamma_h \) := \(S_{\mathcal{T}_h}(\partial T_\Omega) \) interior bnds.

The \(b \) continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established.
Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

\[\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \in \Gamma_h} \| \tau n \|_{0,e}^2 \right)^{1/2} \]
Mesh-Dependent Norms:

\[\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \subset \Gamma_h} \| \tau n \|_{0,e}^2 \right)^{1/2} \]

\[|v|_{1,h} := \left(\sum_{T \in T_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \| J(v) \|_{0,e}^2 \right)^{1/2} \]
Mesh-Dependent Norms:

\[
\|\tau\|_{0,h} := \left(\|\tau\|^2_0 + h \sum_{e \subset \Gamma_h} \|\tau n\|^2_{0,e} \right)^{1/2},
\]

\[
|v|_{1,h} := \left(\sum_{T \in T_h} |v|^2_{1,T} + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|^2_{0,e} \right)^{1/2}.
\]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}\) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}\) defined for \(\tau, \sigma \in L_2(\Omega)^d\).
Mesh-Dependent Norms:

\[\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \subset \Gamma_h} \| \tau n \|_{0,e}^2 \right)^{1/2} \]

\[| \nu |_{1,h} := \left(\sum_{T \in \mathcal{T}_h} | \nu |_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \| J(\nu) \|_{0,e}^2 \right)^{1/2} \]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \) and \(b(\tau, \nu) := - (\tau, \nabla \nu)_{0,\Omega} \) defined for \(\tau, \sigma \in L_2(\Omega)^d \).

Properties of \(a \):

\[\text{Ellipticity of } a(\cdot, \cdot) \text{ follows from } \| \tau \|_{0,h} \leq C \| \tau \|_{0,\Omega} \Rightarrow a(\tau, \tau) = \| \tau \|_{0,\Omega}^2 \geq C^{-2} \| \tau \|_{0,h}^2. \]
Mesh-Dependent Norms:

\[
\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \subseteq \Gamma_h} \| \tau n \|_{0,e}^2 \right)^{1/2}
\]

\[
| \nu |_{1,h} := \left(\sum_{T \in T_h} | \nu |_{1,T}^2 + h^{-1} \sum_{e \subseteq \Gamma_h} \| J(\nu) \|_{0,e}^2 \right)^{1/2}
\]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \) and \(b(\tau, \nu) := -(\tau, \nabla \nu)_{0,\Omega} \) defined for \(\tau, \sigma \in L_2(\Omega)^d \).

Properties of a: Ellipticity of \(a(\cdot, \cdot) \) follows from
Mesh-Dependent Norms:

\[
\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subseteq \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2},
\]

\[
|v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + \frac{1}{h} \sum_{e \subseteq \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}.
\]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}\) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}\) defined for \(\tau, \sigma \in L_2(\Omega)^d\).

Properties of \(a\): Ellipticity of \(a(\cdot, \cdot)\) follows from

\[
\|\tau\|_{0,h} \leq C \|\tau\|_0, \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \|\tau\|^2_{0,\Omega} \geq C^{-2} \|\tau\|_{0,h}^2.
\]
Mesh-Dependent Norms:

\[\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \subset \Gamma_h} \| \tau n \|_{0,e}^2 \right)^{1/2} \]

\[|v|_{1,h} := \left(\sum_{T \in T_h} |v|^2_T + h^{-1} \sum_{e \subset \Gamma_h} \| J(v) \|_{0,e}^2 \right)^{1/2}. \]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega} \) defined for \(\tau, \sigma \in L^2(\Omega)^d \).

Properties of \(a \): Ellipticity of \(a(\cdot, \cdot) \) follows from

\[\| \tau \|_{0,h} \leq C \| \tau \|_0 \quad \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \| \tau \|_{0,\Omega}^2 \geq C^{-2} \| \tau \|_{0,h}^2. \]

Properties of \(b \):

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

\[
\| \tau \|_{0,h} := \left(\| \tau \|^2 + h \sum_{e \subset \Gamma_h} \| \tau n \|^2_{0,e} \right)^{1/2}
\]

\[
|v|_{1,h} := \left(\sum_{T \in T_h} |v|_1^2 + h^{-1} \sum_{e \subset \Gamma_h} \| J(v) \|^2_{0,e} \right)^{1/2}
\]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega} \) defined for \(\tau, \sigma \in L_2(\Omega)^d \).

Properties of \(a \): Ellipticity of \(a(\cdot, \cdot) \) follows from

\[
\| \tau \|_{0,h} \leq C \| \tau \|_{0,\Omega}, \quad \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \| \tau \|^2_{0,\Omega} \geq C^{-2} \| \tau \|^2_{0,h}.
\]

Properties of \(b \): Use Green’s Identity to rewrite as
Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

\[
\|\tau\|_{0,h} := \left(\|\tau\|^2_0 + h \sum_{e \subset \Gamma_h} \|\tau n\|^2_{0,e}\right)^{1/2}, \quad |v|_{1,h} := \left(\sum_{T \in T_h} |v|^2_{1,T} + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|^2_{0,e}\right)^{1/2}.
\]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}\) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}\) defined for \(\tau, \sigma \in L^2(\Omega)^d\).

Properties of \(a\): Ellipticity of \(a(\cdot, \cdot)\) follows from

\[
\|\tau\|_{0,h} \leq C \|\tau\|_0, \quad \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \|\tau\|^2_{0,\Omega} \geq C^{-2} \|\tau\|^2_{0,h}.
\]

Properties of \(b\): Use Green’s Identity to rewrite as

\[
b(\tau, v) = -\sum_{T \in T} \int_T \tau \cdot \nabla v \, dx + \int_{\Gamma_h} J(v) \tau n ds.
\]
Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

\[\|\tau\|_{0,h} := \left(\|\tau\|_0^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2} \]

\[|v|_{1,h} := \left(\sum_{T \in T_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2} \]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \) and \(b(\tau, v) := - (\tau, \nabla v)_{0,\Omega} \) defined for \(\tau, \sigma \in L_2(\Omega)^d \).

Properties of \(a \): Ellipticity of \(a(\cdot, \cdot) \) follows from

\[\|\tau\|_{0,h} \leq C \|\tau\|_0, \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2. \]

Properties of \(b \): Use Green’s Identity to rewrite as

\[b(\tau, v) = - \sum_{T \in T} \int_T \tau \cdot \text{grad} \ v \, dx + \int_{\Gamma_h} J(v) \tau \, n ds. \]

\(J(v) \) is jump of \(v \) in normal direction \(n \). \(\Gamma_h := \bigcup_T (\partial T \cap \Omega) \) interior bnds.

Raviart-Thomas Element
Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

\[\| \tau \|_{0,h} := \left(\| \tau \|_0^2 + h \sum_{e \in \Gamma_h} \| \tau n \|_{0,e}^2 \right)^{1/2} \]

\[|v|_{1,h} := \left(\sum_{T \in T_h} |v|_{1,T}^2 + h^{-1} \sum_{e \in \Gamma_h} \| J(v) \|_{0,e}^2 \right)^{1/2}. \]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega} \) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega} \) defined for \(\tau, \sigma \in L^2(\Omega)^d \).

Properties of \(a \): Ellipticity of \(a(\cdot, \cdot) \) follows from

\[\| \tau \|_{0,h} \leq C \| \tau \|_0, \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \| \tau \|_{0,\Omega}^2 \geq C^{-2} \| \tau \|_{0,h}^2. \]

Properties of \(b \): Use Green's Identity to rewrite as

\[b(\tau, v) = -\sum_{T \in T} \int_T \tau \cdot \text{grad} \ v \ dx + \int_{\Gamma_h} J(v) \tau nds. \]

\(J(v) \) is jump of \(v \) in normal direction \(n \). \(\Gamma_h := \bigcup_T (\partial T \cap \Omega) \) interior bnds. The \(b \) continuity with Mesh-Norms follows readily.
Mesh-Dependent Norms:

\[
\|\tau\|_{0,h} := \left(\|\tau\|_{0}^2 + h \sum_{e \subset \Gamma_h} \|\tau n\|_{0,e}^2 \right)^{1/2}
\]
\[
|v|_{1,h} := \left(\sum_{T \in \mathcal{T}_h} |v|_{1,T}^2 + h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 \right)^{1/2}
\]

The \(a(\sigma, \tau) := (\sigma, \tau)_{0,\Omega}\) and \(b(\tau, v) := -(\tau, \nabla v)_{0,\Omega}\) defined for \(\tau, \sigma \in L_2(\Omega)^d\).

Properties of \(a\): Ellipticity of \(a(\cdot, \cdot)\) follows from

\[
\|\tau\|_{0,h} \leq C \|\tau\|_{0,\Omega}, \forall \tau \in RT_k \Rightarrow a(\tau, \tau) = \|\tau\|_{0,\Omega}^2 \geq C^{-2} \|\tau\|_{0,h}^2.
\]

Properties of \(b\): Use Green’s Identity to rewrite as

\[
b(\tau, v) = -\sum_{T \in \mathcal{T}} \int_T \tau \cdot \text{grad} \ v \, dx + \int_{\Gamma_h} J(v) \tau \, nds.
\]

\(J(v)\) is jump of \(v\) in normal direction \(n\). \(\Gamma_h := \bigcup_T (\partial T \cap \Omega)\) interior bnds.

The \(b\) continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established.
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in \text{RT}_k} b(\tau, v) \|\tau\|_0, h \geq \beta |v|_1, h, \forall v \in M_k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch):
Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$. This implies there exists $\tau \in \text{RT}_0$ so that $\tau_n = h^{-1} J(v)$ on each edge $e \subset \Gamma_h$. Since in this case the area term in Green's Identity for b vanishes, we have

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 \, ds = h^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_0^2, e = |v|_1^2, h.$$
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in \text{RT}_k} b(\tau, v) \|\tau\|_0, h \geq \beta |v|_{1, h}, \forall v \in M_k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch): Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$. This implies there exists $\tau \in \text{RT}_0$ so that $\tau_n = h^{-1} J(v)$ on each edge $e \subset \Gamma_h$. Since in this case the area term in Green's Identity for b vanishes, we have $b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 \, ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0, e} = |v|_{2,1, h}$.

Paul J. Atzberger, UCSB

http://atzberger.org/
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \quad \forall v \in \mathcal{M}^k,$$
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \; \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k.
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \; \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, \nu)}{\|\tau\|_{0,h}} \geq \beta |\nu|_{1,h}, \quad \forall \nu \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch):
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \quad \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h.

Proof (sketch):

Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form \(b \) with the RT-elements satisfies

\[
\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\| \tau \|_{0,h}} \geq \beta |v|_{1,h}, \quad \forall v \in \mathcal{M}^k,
\]

where \(\beta > 0 \) and depends on \(k \) and the shape regularity of the triangulation \(T_h \).

Proof (sketch):
Consider case \(k = 0 \), then \(J(v) \) is constant along each edge \(e \subset \Gamma_h \).
This implies there exists \(\tau \in RT_0 \) so that

\[
\tau n = h^{-1} J(v)
\]
on each edge \(e \subset \Gamma_h \).
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in M_k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch):

Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$. This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1} J(v)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green’s Identity
Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch):
Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$.
This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1} J(v)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green’s Identity for b vanishes, we have
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$
\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_0, h} \geq \beta |v|_{1, h}, \ \forall v \in \mathcal{M}^k,
$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h.

Proof (sketch):
Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$.

This implies there exists $\tau \in RT_0$ so that

$$
\tau n = h^{-1} J(v)
$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green’s Identity for b vanishes, we have

$$
b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds
$$
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \quad \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch):
Consider case $k = 0$, then $J(\nu)$ is constant along each edge $e \subset \Gamma_h$.
This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1} J(\nu)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green’s Identity for b vanishes, we have

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(\nu)|^2 ds = c h^{-1} \sum_{e \subset \Gamma_h} \|J(\nu)\|^2_{0,e}$$
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch):

Consider case $k = 0$, then $J(v)$ is constant along each edge $e \subset \Gamma_h$. This implies there exists $\tau \in RT_0$ so that

$$\tau n = h^{-1} J(v)$$

on each edge $e \subset \Gamma_h$. Since in this case the area term in Green’s Identity for b vanishes, we have

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = |v|_{1,h}^2.$$
Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|^2_{0,e} = |v|_{1,h}^2.$$
Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = |v|_{1,h}^2.$$

We also have
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \quad \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation \mathcal{T}_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking $|v|_{1,h} = |v|_{1,h} c^{-1/2} \|\tau\|_{0,h}$,
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 \, ds = c^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_0^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq c h \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = c^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_0^2 = c |v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h} c^{-1/2} \|\tau\|_{0,h}$, we have $b(\tau, v) \geq c^{-1/2} |v|_{1,h} \|\tau\|_{0,h}$.
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta|v|_{1,h}, \quad \forall v \in \mathcal{M}^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 \, ds = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|^2_{0,e} = |v|_{1,h}^2.$$

We also have

$$\|\tau\|^2_{0,h} \leq ch \sum_{e \subset \Gamma_h} \|\tau\|^2_{0,e} = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|^2_{0,e} = c|v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h} c^{-1/2} \|\tau\|_{0,h}$, we have $b(\tau, v) \geq c^{-1/2} |v|_{1,h} \|\tau\|_{0,h}$. Establishes the Inf-Sup Condition.
Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

$$\sup_{\tau \in RT_k} \frac{b(\tau, v)}{\|\tau\|_{0,h}} \geq \beta |v|_{1,h}, \ \forall v \in M^k,$$

where $\beta > 0$ and depends on k and the shape regularity of the triangulation T_h.

Proof (sketch) (continued):

$$b(\tau, v) = h^{-1} \int_{\Gamma_h} |J(v)|^2 \text{d}s = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = |v|_{1,h}^2.$$

We also have

$$\|\tau\|_{0,h}^2 \leq ch \sum_{e \subset \Gamma_h} \|\tau\|_{0,e}^2 = ch^{-1} \sum_{e \subset \Gamma_h} \|J(v)\|_{0,e}^2 = c|v|_{1,h}^2.$$

By taking $|v|_{1,h}^2 = |v|_{1,h} c^{-1/2} \|\tau\|_{0,h}$, we have $b(\tau, v) \geq c^{-1/2} |v|_{1,h} \|\tau\|_{0,h}$. Establishes the Inf-Sup Condition.

\[\blacksquare\]
Stokes Hydrodynamic Equations

Stokes Flow

\[
\begin{align*}
\n\Delta u + \nabla p &= -f, \quad x \in \Omega \\
\n\nabla \cdot u &= 0, \quad x \in \Omega \\
\n\n\nabla u &= u_0, \quad x \in \partial \Omega.
\end{align*}
\]

The \(u : \Omega \rightarrow \mathbb{R}^n \) is fluid velocity and \(p : \Omega \rightarrow \mathbb{R} \) is pressure. The \(\nabla \cdot u = 0 \) is constraint for fluid to be incompressible. Only imposes \(p \) up to constant, usually use condition \(\int p dx = 0 \).

Variational Formulation:

\[
X = H^1_0(\Omega)
\]

\[
M = L^2_0(\Omega) := q \in L^2(\Omega); \int q dx = 0.
\]

\[
a(u, v) = \int_\Omega \nabla u : \nabla v \, dx,
\]

\[
b(v, q) = \int_\Omega \nabla \cdot v \, q \, dx.
\]
Stokes Hydrodynamic Equations

Stokes Flow

\[\Delta u + \text{grad} p = -f, \ x \in \Omega \]
Stokes Hydrodynamic Equations

Stokes Flow

\[\Delta u + \text{grad } p = -f, \quad x \in \Omega \]

\[\text{div } u = 0, \quad x \in \Omega \]
Stokes Hydrodynamic Equations

Stokes Flow

\[\Delta u + \text{grad } p = -f, \quad x \in \Omega \]
\[\text{div } u = 0, \quad x \in \Omega \]
\[u = u_0, \quad x \in \partial \Omega. \]
Stokes Flow

\[
\begin{align*}
\Delta u + \text{grad } p &= -f, \ x \in \Omega \\
\text{div } u &= 0, \ x \in \Omega \\
u &= u_0, \ x \in \partial \Omega.
\end{align*}
\]

The \(u : \Omega \rightarrow \mathbb{R}^n \) is **fluid velocity** and \(p : \Omega \rightarrow \mathbb{R} \) is **pressure**.
Stokes Hydrodynamic Equations

\[\Delta u + \text{grad } p = -f, \ x \in \Omega \]
\[\text{div } u = 0, \ x \in \Omega \]
\[u = u_0, \ x \in \partial \Omega. \]

The \(u : \Omega \to \mathbb{R}^n \) is fluid velocity and \(p : \Omega \to \mathbb{R} \) is pressure.

The \(\text{div } u = 0 \) is constraint for fluid to be incompressible.
Stokes Hydrodynamic Equations

Stokes Flow

\[
\begin{align*}
\Delta u + \text{grad } p &= -f, \ x \in \Omega \\
\text{div } u &= 0, \ x \in \Omega \\
u &= u_0, \ x \in \partial \Omega.
\end{align*}
\]

The \(u : \Omega \to \mathbb{R}^n \) is fluid velocity and \(p : \Omega \to \mathbb{R} \) is pressure.

The \(\text{div } u = 0 \) is constraint for fluid to be incompressible.

Only imposes \(p \) up to constant, usually use condition \(\int p \, dx = 0 \).
Stokes Flow

\[\Delta u + \text{grad } p = -f, \ x \in \Omega \]
\[\text{div } u = 0, \ x \in \Omega \]
\[u = u_0, \ x \in \partial \Omega. \]

The \(u : \Omega \to \mathbb{R}^n \) is **fluid velocity** and \(p : \Omega \to \mathbb{R} \) is **pressure**.

The \(\text{div } u = 0 \) is constraint for fluid to be **incompressible**.

Only imposes \(p \) up to constant, usually use condition \(\int p \, dx = 0 \).

Variational Formulation: \(X = H^1_0(\Omega)^n, \ M = L^2_{2,0}(\Omega) := \{ q \in L^2(\Omega); \int q \, dx = 0 \} \).
Stokes Hydrodynamic Equations

Stokes Flow

\[\Delta u + \text{grad} p = -f, \ x \in \Omega \]
\[\text{div} \ u = 0, \ x \in \Omega \]
\[u = u_0, \ x \in \partial \Omega. \]

The \(u : \Omega \to \mathbb{R}^n \) is **fluid velocity** and \(p : \Omega \to \mathbb{R} \) is **pressure**.

The \(\text{div} \ u = 0 \) is constraint for fluid to be **incompressible**.

Only imposes \(p \) up to constant, usually use condition \(\int p \, dx = 0 \).

Variational Formulation: \(X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \ \int q \, dx = 0 \} \).

\[a(u,v) = \int_\Omega \text{grad} \ u : \text{grad} \ v \, dx, \]
Stokes Hydrodynamic Equations

Stokes Flow

\[\Delta u + \text{grad } p = -f, \ x \in \Omega \]
\[\text{div } u = 0, \ x \in \Omega \]
\[u = u_0, \ x \in \partial \Omega. \]

The \(u : \Omega \to \mathbb{R}^n \) is fluid velocity and \(p : \Omega \to \mathbb{R} \) is pressure.

The \(\text{div } u = 0 \) is constraint for fluid to be incompressible.

Only imposes \(p \) up to constant, usually use condition \(\int p \, dx = 0 \).

Variational Formulation: \(X = H_0^1(\Omega)^n, \ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q \, dx = 0 \} \).

\[a(u, v) = \int_\Omega \text{grad } u : \text{grad } v \, dx, \quad b(v, q) = \int_\Omega \text{div}(v) \, q \, dx. \]
Stokes Hydrodynamic Equations

\textbf{Variational Formulation: } \mathcal{X} = H_0^1(\Omega)^n, \ \mathcal{M} = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \}.

\[a(u, v) = \int_{\Omega} \text{grad } u : \text{grad } v \, dx, \quad b(v, q) = \int_{\Omega} \text{div}(v) \, q \, dx. \]
Variational Formulation: \(X = H^1_0(\Omega)^n \), \(M = L^2_{2,0}(\Omega) := \{ q \in L^2(\Omega); \int q dx = 0 \} \).

\[
a(u, v) = \int_\Omega \text{grad } u : \text{grad } v \, dx, \quad b(v, q) = \int_\Omega \text{div}(v) \, q \, dx.
\]
Stokes Hydrodynamic Equations

Variational Formulation: $X = H_0^1(\Omega)^n$, $M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \}$.

$$a(u, v) = \int_{\Omega} \text{grad } u : \text{grad } v \, dx, \quad b(v, q) = \int_{\Omega} \text{div}(v) \, q \, dx.$$

Saddle-Point Problem (Stokes)

$X = H_0^1(\Omega)^n$, $M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \}$.

Need to establish the Inf-Sup Conditions.
Stokes Hydrodynamic Equations

Variational Formulation: \(X = H^1_0(\Omega)^n,\ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \} \).

\[a(u, v) = \int_{\Omega} \nabla u : \nabla v \ dx, \quad b(v, q) = \int_{\Omega} \text{div}(v) \ q \ dx. \]

Saddle-Point Problem (Stokes)

\(X = H^1_0(\Omega)^n,\ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \} \).

\[a(u, v) + b(v, p) = (f, v)_0, \ \forall v \in X \]
Stokes Hydrodynamic Equations

Variational Formulation: $X = H^1_0(\Omega)^n$, $M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \}$.

\[a(u, v) = \int_\Omega \text{grad } u : \text{grad } v \, dx, \quad b(v, q) = \int_\Omega \text{div}(v) \, q \, dx. \]

Saddle-Point Problem (Stokes)

$X = H^1_0(\Omega)^n$, $M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q dx = 0 \}$.

\[a(u, v) + b(v, p) = (f, v)_0, \quad \forall v \in X \]
\[b(u, q) = 0, \quad \forall q \in M. \]
Stokes Hydrodynamic Equations

Variational Formulation: \(X = H^1_0(\Omega)^n, \ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q d\Omega = 0 \}. \)

\[
a(u, v) = \int_{\Omega} \text{grad} \, u : \text{grad} \, v \, d\Omega, \quad b(v, q) = \int_{\Omega} \text{div} \, v \, q \, d\Omega.
\]

Saddle-Point Problem (Stokes)

\(X = H^1_0(\Omega)^n, \ M = L_{2,0}(\Omega) := \{ q \in L_2(\Omega); \int q d\Omega = 0 \}. \)

\[
a(u, v) + b(v, p) = (f, v)_0, \quad \forall v \in X
\]
\[
b(u, q) = 0, \quad \forall q \in M.
\]

Need to establish the Inf-Sup Conditions.
For Stokes we have

\[V := \{ v \in X; (\text{div} v, q)_{\Omega} = 0, \forall q \in L^2(\Omega) \}, \]

\[V_\perp := \{ u \in X; (\nabla u, \nabla v)_{\Omega} = 0, \forall v \in V \}. \]

The \[V_\perp \] is \[H^1_0(\Omega) \]-orthogonal complement of \[V \].

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[\text{div} : V_\perp \rightarrow L^2(\Omega), v \mapsto \text{div} v. \]

For any \(q \in L^2(\Omega) \) with \(\int_\Omega q \, dx = 0 \), there exists \(v \in V_\perp \subset H^1_0(\Omega) \) with \(\text{div} v = q \) and

\[\| v \|_{1, \Omega} \leq c \| q \|_{0, \Omega}, \]

where \(c = c(\Omega) \) constant.
Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

$$V := \{ v \in X; (\text{div } v, q)_{\Omega} = 0, \forall q \in L^2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad } u, \text{grad } v)_{\Omega, \Omega} = 0, \forall v \in V \}.$$

The V^\perp is H^1_0-orthogonal complement of V.

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms $\text{div} : V^\perp \rightarrow L^2(\Omega), v \mapsto \text{div } v$. For any $q \in L^2(\Omega)$ with $\int_{\Omega} q \, dx = 0$, there exists $v \in V^\perp \subset H^1_0(\Omega)$ with $\text{div } v = q$ and $\| v \|_{1, \Omega} \leq c \| q \|_{0, \Omega}$, where $c = c(\Omega)$ constant.
Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

\[V := \{ v \in X; (\text{div } v, q)_0,\Omega = 0, \forall q \in L_2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad } u, \text{grad } v)_0,\Omega = 0, \forall v \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).
For Stokes we have

\[V := \{ v \in X; (\text{div}\ v, q)_{0,\Omega} = 0, \ \forall q \in L_2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad}\ u, \text{grad}\ v)_{0,\Omega} = 0, \ \forall v \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).
For Stokes we have

\[V := \{ \mathbf{v} \in X; \ (\text{div} \ \mathbf{v}, q)_{\Omega} = 0, \ \forall q \in L_2(\Omega) \} , \quad V^\perp := \{ u \in X; \ (\text{grad} \ u, \text{grad} \ \mathbf{v})_{\Omega} = 0, \ \forall \mathbf{v} \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary.
For Stokes we have

\[V := \{ v \in X; (\text{div} \, v, q)_{0,\Omega} = 0, \ \forall q \in L^2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad} \, u, \text{grad} \, v)_{0,\Omega} = 0, \ \forall v \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms
For Stokes we have

\[V := \{ v \in X; (\text{div } v, q)_{0,\Omega} = 0, \forall q \in L_2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad } u, \text{grad } v)_{0,\Omega} = 0, \forall v \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[\text{div}: V^\perp \rightarrow L_{2,0}(\Omega) \]
Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

\[V := \{ v \in X; (\text{div} v, q)_{0,\Omega} = 0, \forall q \in L_2(\Omega) \} \], \quad V^\perp := \{ u \in X; (\text{grad} u, \text{grad} v)_{0,\Omega} = 0, \forall v \in V \} . \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[\text{div} : V^\perp \rightarrow L_{2,0}(\Omega) \]

\[v \mapsto \text{div} v. \]
For Stokes we have
\[V := \{ v \in X; (\text{div } v, q)_{0,\Omega} = 0, \forall q \in L^2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad } u, \text{grad } v)_{0,\Omega} = 0, \forall v \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[
\begin{align*}
\text{div} : V^\perp & \rightarrow L^2,0(\Omega) \\
\nu & \mapsto \text{div } \nu.
\end{align*}
\]

For any \(q \in L^2(\Omega) \) with \(\int q \, dx = 0 \),
Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

\[V := \{ \mathbf{v} \in \mathbf{X}; (\text{div} \, \mathbf{v}, q)_{0, \Omega} = 0, \forall q \in L_2(\Omega) \}, \quad V^\perp := \{ u \in \mathbf{X}; (\text{grad} \, u, \text{grad} \, \mathbf{v})_{0, \Omega} = 0, \forall \mathbf{v} \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem 1

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[\text{div} : \ V^\perp \to L_{2,0}(\Omega) \]

\[\mathbf{v} \mapsto \text{div} \, \mathbf{v}. \]

For any \(q \in L_2(\Omega) \) with \(\int q \, dx = 0 \), there exists \(\mathbf{v} \in V^\perp \subset H^1_0(\Omega)^n \).
Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

\[V := \{ v \in X; (\text{div}\, v, q)_{0,\Omega} = 0, \forall q \in L_2(\Omega) \}, \quad V^\bot := \{ u \in X; (\text{grad}\, u, \text{grad}\, v)_{0,\Omega} = 0, \forall v \in V \}. \]

The \(V^\bot \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem 1

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[
\text{div} : V^\bot \rightarrow L_2,0(\Omega) \\
v \mapsto \text{div} v.
\]

For any \(q \in L_2(\Omega) \) with \(\int q \, dx = 0 \), there exists \(v \in V^\bot \subset H_0^1(\Omega)^n \) with

\[
\text{div} v = q \text{ and } \|v\|_{1,\Omega} \leq c\|q\|_{0,\Omega},
\]
For Stokes we have

\[V := \{ \mathbf{v} \in X; (\text{div} \mathbf{v}, q)_{0,\Omega} = 0, \forall q \in L_2(\Omega) \}, \quad V^\perp := \{ u \in X; (\text{grad} u, \text{grad} \mathbf{v})_{0,\Omega} = 0, \forall \mathbf{v} \in V \}. \]

The \(V^\perp \) is \(H^1 \)-orthogonal complement of \(V \).

Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem 1

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary. The following mappings are isomorphisms

\[
\text{div} : V^\perp \to L_{2,0}(\Omega) \quad \text{with} \quad \mathbf{v} \mapsto \text{div} \mathbf{v}.
\]

For any \(q \in L_2(\Omega) \) with \(\int q \, dx = 0 \), there exists \(\mathbf{v} \in V^\perp \subset H^1_0(\Omega)^n \) with

\[
\text{div} \mathbf{v} = q \quad \text{and} \quad ||v||_{1,\Omega} \leq c ||q||_{0,\Omega},
\]

where \(c = c(\Omega) \) constant.
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in $H^{-1}(\Omega)$: $\text{grad} : L^2(\Omega) \rightarrow H^{-1}(\Omega)$.

2. For $f \in H^{-1}(\Omega)$, if $\langle f, v \rangle = 0$, $\forall v \in V$.

3. There is constant $c = c(\Omega)$ so that $\|q\|_{0,\Omega} \leq c (\|\text{grad} q\|_{-1,\Omega} + \|q\|_{-1,\Omega})$, $\forall q \in L^2(\Omega)$.

$\|q\|_{0,\Omega} \leq c \|\text{grad} q\|_{-1,\Omega}$, $\forall q \in L^2(\Omega)$.

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem II

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in \(H^{-1}(\Omega) \):
 \[
 \text{grad} : L^2(\Omega) \rightarrow H^{-1}(\Omega)
 \]

2. For \(f \in H^{-1}(\Omega) \), if \(\langle f, v \rangle = 0 \), \(\forall v \in V \).

3. There is constant \(c = c(\Omega) \) so that
 \[
 \| q \|_{0, \Omega} \leq c \left(\| \text{grad} q \|^{-1}_{-1, \Omega} + \| q \|^{-1}_{-1, \Omega} \right) \forall q \in L^2(\Omega),
 \]
 \[
 \| q \|_{0, \Omega} \leq c \| \text{grad} q \|^{-1}_{-1, \Omega} \forall q \in L^2(\Omega).
 \]
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in \(H^{-1}(\Omega)^n \)

\[
\text{grad} : L_2(\Omega) \to H^{-1}(\Omega)^n
\]

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Theorem II

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in \(H^{-1}(\Omega)^n \)
 \[
 \text{grad} : L_2(\Omega) \to H^{-1}(\Omega)^n
 \]

2. For \(f \in H^{-1}(\Omega)^n \), if
 \[
 \langle f, v \rangle = 0, \quad \forall v \in V
 \]

3. There is constant \(c = c(\Omega) \) so that
 \[
 \| q \|_{0, \Omega} \leq c (\| \text{grad} q \|_{-1, \Omega} + \| q \|_{-1, \Omega})
 \]
 \[
 \| q \|_{0, \Omega} \leq c \| \text{grad} q \|_{-1, \Omega}
 \]

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\text{grad} : L^2(\Omega) \to H^{-1}(\Omega)^n$$

2. For $f \in H^{-1}(\Omega)^n$, if

$$\langle f, v \rangle = 0, \forall v \in V.$$
Theorem II

Let \(\Omega \subset \mathbb{R}^n \) be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in \(H^{-1}(\Omega)^n \)

\[\text{grad} : L_2(\Omega) \to H^{-1}(\Omega)^n \]

2. For \(f \in H^{-1}(\Omega)^n \), if

\[\langle f, v \rangle = 0, \ \forall v \in V. \]

3. There is constant \(c = c(\Omega) \) so that
Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

$$\text{grad} : L_2(\Omega) \rightarrow H^{-1}(\Omega)^n$$

(2) For $f \in H^{-1}(\Omega)^n$, if

$$\langle f, v \rangle = 0, \forall v \in V.$$

(3) There is constant $c = c(\Omega)$ so that

$$\|q\|_{0,\Omega} \leq c \left(\|\text{grad } q\|_{-1,\Omega} + \|q\|_{-1,\Omega} \right) \forall q \in L_2(\Omega).$$
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let $\Omega \subset \mathbb{R}^n$ be a bounded connected domain with Lipschitz continuous boundary.

1. For the following linear mapping, the image is closed in $H^{-1}(\Omega)^n$

 $\text{grad} : L^2(\Omega) \rightarrow H^{-1}(\Omega)^n$

2. For $f \in H^{-1}(\Omega)^n$, if

 $\langle f, v \rangle = 0, \ \forall v \in V.$

3. There is constant $c = c(\Omega)$ so that

 \[
 \|q\|_{0,\Omega} \leq c (\|\text{grad } q\|_{-1,\Omega} + \|q\|_{-1,\Omega}) \quad \forall q \in L^2(\Omega),
 \]

 \[
 \|q\|_{0,\Omega} \leq c \|\text{grad } q\|_{-1,\Omega} \quad \forall q \in L^2,0(\Omega).
 \]
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} (v, q) \|v\|_1 \geq \beta \|q\|_0. \]

Proof (sketch):

(By Theorem I):

For a \(q \in L^2_0 \), exists \(v \in H^1_0(\Omega) \) satisfying \(\text{div} v = q \) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.).

This implies

\[\sup_{v \in X} (v, q) \|v\|_1 = (\text{div} v, q) \|v\|_1 = \|q\|_{2,0} \|v\|_1 \geq \|q\|_{2,0} c \|q\|_{0,\Omega} = 1. \]

This gives the Brezzi Condition for \(b \).
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0. \]
 Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.$$
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0. \]

Proof (sketch):

(By Theorem 1):

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0. \]

Proof (sketch):
(By Theorem I): For a \(q \in L^2,0 \), exists \(v \in H^1_0(\Omega)^n \) satisfying \(\text{div } v = q \) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.)
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem I): For a \(q \in L_{2,0}\), exists \(v \in H^1_0(\Omega)^n\) satisfying \(\text{div } v = q\) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega}\) (from previous thm.) This implies
Lemma: Inf-Sup for Stokes

\[\sup_{\nu \in X} \frac{b(\nu, q)}{\|\nu\|_1} \geq \beta \|q\|_0. \]

Proof (sketch):

(By Theorem I): For a \(q \in L^2_{2,0} \), exists \(\nu \in H^1_0(\Omega)^n \) satisfying \(\text{div} \, \nu = q \) and \(\|\nu\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.) This implies

\[\sup_{\nu \in X} \frac{b(\nu, q)}{\|\nu\|_1} \]

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem I): For a \(q \in L_{2,0} \), exists \(v \in H^1_0(\Omega)^n \) satisfying \(\text{div} \; v = q \) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.) This implies

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} = \frac{(\text{div} \; v, q)}{\|v\|_1}
\]
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

\[
\sup_{v \in \mathcal{X}} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem I): For a \(q \in L^2_{2,0} \), exists \(v \in H^1_0(\Omega)^n \) satisfying \(\text{div} \, v = q \) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.) This implies

\[
\sup_{v \in \mathcal{X}} \frac{b(v, q)}{\|v\|_1} = \frac{(\text{div} \, v, q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1}
\]
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\| v \|_1} \geq \beta \| q \|_0. \]

Proof (sketch):

(By Theorem I): For a \(q \in L_{2,0} \), exists \(v \in H^1_0(\Omega)^n \) satisfying \(\text{div} \, v = q \) and \(\| v \|_{1,\Omega} \leq c \| q \|_{0,\Omega} \) (from previous thm.) This implies

\[\sup_{v \in X} \frac{b(v, q)}{\| v \|_1} = \frac{(\text{div} \, v, q)}{\| v \|_1} = \frac{\| q \|_0^2}{\| v \|_1} \geq \frac{\| q \|_0^2}{c \| q \|_0} \]
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem I): For a \(q \in L_{2,0} \), exists \(v \in H^1_0(\Omega)^n \) satisfying \(\text{div } v = q \) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.) This implies

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} = \frac{(\text{div } v, q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \geq \frac{\|q\|_0^2}{c \|q\|_0} = \frac{1}{c} \|q\|_0.
\]
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem I): For a \(q \in L^2,0 \), exists \(v \in H^1_0(\Omega)^n \) satisfying \(\text{div} \, v = q \) and \(\|v\|_{1,\Omega} \leq c \|q\|_{0,\Omega} \) (from previous thm.) This implies

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} = \frac{(\text{div} \, v, q)}{\|v\|_1} = \frac{\|q\|_0^2}{\|v\|_1} \geq \frac{\|q\|_0^2}{c \|q\|_0} = \frac{1}{c} \|q\|_0.
\]

This gives the Brezzi Condition for \(b \).
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L^2(\Omega) \), 0, and second inequality of II, that

\[
\|\nabla q\|_{-1} \geq c_{-1} \|q\|_0.
\]

From def. of negative norm, there exists \(v \in H^1_0(\Omega) \) with \(\|v\|_1 = 1 \) and

\[
(b(v, q), \Omega) \geq \frac{1}{2} \beta \|v\|_1 \|\nabla q\|_{-1} \geq \frac{1}{2} \beta \|q\|_0.
\]

By Greens Identity

\[
(b(-v, q), \Omega) = -\int v \cdot \nabla q \, dx
\]

we have

\[
(b(-v, q), \Omega) \geq \frac{1}{2} \beta \|q\|_0.
\]

This gives the Brezzi Condition for \(b \).
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II: For \(q \in L^2\), that
\[\|\nabla q\|^{-1} \geq c^{-1} \|q\|_0. \]

From definition of negative norm, there exists \(v \in H^1_0(\Omega)\) with
\[\|v\|_1 = 1 \text{ and } (v, \nabla q)_{\Omega} \geq \frac{1}{2} \|v\|_1 \|\nabla q\|^{-1} \geq \frac{1}{2} c \|q\|_0. \]

By Green's Identity
\[\langle v, q \rangle = -\int_{\Omega} v \cdot \nabla q \, dx \]

we have
\[\langle -v, q \rangle \geq \frac{1}{2} c \|q\|_0. \]

This gives the Brezzi Condition for \(b\). ■
Lemma: Inf-Sup for Stokes

\[\sup_{\mathbf{v} \in \mathbf{X}} \frac{b(\mathbf{v}, q)}{\|\mathbf{v}\|_1} \geq \beta \|q\|_0. \]

Proof (sketch):
(By Theorem II):

Paul J. Atzberger, UCSB
Finite Element Methods
http://atzberger.org/
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L_{2,0}\), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1}\|q\|_0\).
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L^2,0 \), and second inequality of II, that \(\|\text{grad} \ q\|_1 \geq c^{-1} \|q\|_0 \). From def. of negative norm, there exists \(v \in H^1_0(\Omega)^n \) with \(\|v\|_1 = 1 \) and
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0. \]

Proof (sketch):

(By Theorem II): For \(q \in L^2,0 \), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1}\|q\|_0 \). From def. of negative norm, there exists \(v \in H^1_0(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[(v, \text{grad } q)_{0,\Omega} \]
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L_{2,0} \), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1} \|q\|_0 \). From def. of negative norm, there exists \(v \in H^1_0(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[
(v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2} \|v\|_1 \|\text{grad } q\|_{-1}
\]
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta\|q\|_0. \]

Proof (sketch):
(By Theorem II): For \(q \in L^2_{0,0} \), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1}\|q\|_0 \). From def. of negative norm, there exists \(v \in H^1_0(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[(v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2}\|v\|_1\|\text{grad } q\|_{-1} \geq \frac{1}{2c}\|q\|_0. \]
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L_{2,0} \), and second inequality of II, that \(\|\text{grad} \ q\|_{−1} \geq c^{−1} \|q\|_0 \). From def. of negative norm, there exists \(v \in H_0^1(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[
(v, \text{grad} \ q)_{0,\Omega} \geq \frac{1}{2} \|v\|_1 \|\text{grad} \ q\|_{−1} \geq \frac{1}{2c} \|q\|_0.
\]

By Greens Identity \(b(v, q) = −\int v \cdot \text{grad} q \ dx \) we have
Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L^2,0 \), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1}\|q\|_0 \). From def. of negative norm, there exists \(v \in H^1_0(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[
(v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2} \|v\|_1 \|\text{grad } q\|_{-1} \geq \frac{1}{2c} \|q\|_0.
\]

By Greens Identity \(b(v, q) = -\int v \cdot \text{grad } q \, dx \) we have

\[
\frac{b(-v, q)}{\|v\|_1}
\]
Lemma: Inf-Sup for Stokes

$$\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.$$

Proof (sketch):
(By Theorem II): For $q \in L_2,0$, and second inequality of II, that $\|\text{grad } q\|_{-1} \geq c^{-1}\|q\|_0$. From def. of negative norm, there exists $v \in H_0^1(\Omega)^n$ with $\|v\|_1 = 1$ and

$$(v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2} \|v\|_1 \|\text{grad } q\|_{-1} \geq \frac{1}{2c} \|q\|_0.$$

By Greens Identity $b(v, q) = -\int v \cdot \text{grad } q \, dx$ we have

$$\frac{b(-v, q)}{\|v\|_1} = (v, \text{grad } q)_{0,\Omega}$$
Lemma: Inf-Sup for Stokes

\[\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0. \]

Proof (sketch):

(By Theorem II): For \(q \in L_{2,0} \), and second inequality of II, that \(\|\text{grad}\ q\|_{-1} \geq c^{-1}\|q\|_0 \). From def. of negative norm, there exists \(v \in H_{0}^1(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[(v, \text{grad} \ q)_{0,\Omega} \geq \frac{1}{2} \|v\|_1 \|\text{grad} \ q\|_{-1} \geq \frac{1}{2c} \|q\|_0. \]

By Greens Identity \(b(v, q) = -\int v \cdot \text{grad} \ q \, dx \) we have

\[\frac{b(-v, q)}{\|v\|_1} = (v, \text{grad} \ q)_{0,\Omega} \geq \frac{1}{2c} \|q\|_0. \]
Lemma: Inf-Sup for Stokes

\[
\sup_{\nu \in X} \frac{b(\nu, q)}{\|\nu\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L_{2,0} \), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1} \|q\|_0 \). From def. of negative norm, there exists \(\nu \in H^1_0(\Omega)^n \) with \(\|\nu\|_1 = 1 \) and

\[
(v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2} \|\nu\|_1 \|\text{grad } q\|_{-1} \geq \frac{1}{2c} \|q\|_0.
\]

By Greens Identity \(b(\nu, q) = - \int \nu \cdot \text{grad } q \, dx \) we have

\[
\frac{b(-\nu, q)}{\|\nu\|_1} = (v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2c} \|q\|_0.
\]

This gives the Brezzi Condition for \(b \).
Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

\[
\sup_{v \in X} \frac{b(v, q)}{\|v\|_1} \geq \beta \|q\|_0.
\]

Proof (sketch):

(By Theorem II): For \(q \in L_{2,0} \), and second inequality of II, that \(\|\text{grad } q\|_{-1} \geq c^{-1} \|q\|_0 \). From def. of negative norm, there exists \(v \in H_0^1(\Omega)^n \) with \(\|v\|_1 = 1 \) and

\[
(v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2} \|v\|_1 \|\text{grad } q\|_{-1} \geq \frac{1}{2c} \|q\|_0.
\]

By Greens Identity \(b(v, q) = -\int v \cdot \text{grad } q \, dx \) we have

\[
\frac{b(-v, q)}{\|v\|_1} = (v, \text{grad } q)_{0,\Omega} \geq \frac{1}{2c} \|q\|_0.
\]

This gives the Brezzi Condition for \(b \).

\[\square\]
Consider triangulation \mathcal{T}_h and polynomial shape spaces \mathcal{P}_j.

\[X_h := M_{2,0} \begin{pmatrix} n_v \in C(\bar{\Omega}) \setminus H^1_0(\Omega) \\ v_h |_T \in P_2, \forall T \in \mathcal{T}_h \end{pmatrix} \]

\[M_h := M_{1,0} \begin{pmatrix} n_q \in C(\Omega) \setminus L^2_0(\Omega) \\ q_h |_T \in P_1, T \in \mathcal{T}_h \end{pmatrix} \]
Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation \mathcal{T}_h and polynomial shape spaces \mathcal{P}_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.
Consider triangulation \mathcal{T}_h and polynomials shape spaces \mathcal{P}_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

\[
\mathcal{X}_h := \left(\mathcal{M}^2_{0,0} \right)^d = \left\{ v_h \in C(\bar{\Omega})^d \cap H^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall T \in \mathcal{T}_h \right\}
\]
Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation \mathcal{T}_h and polynomial shape spaces \mathcal{P}_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

\[
X_h := \left(M_{0,0}^2 \right)^d = \left\{ v_h \in C(\bar{\Omega})^d \cap H^1_0(\Omega)^d; v_h|_T \in \mathcal{P}_2, \forall T \in \mathcal{T}_h \right\}
\]

\[
M_h := M_{0}^1 \cap L_{2,0} = \left\{ q_h \in C(\Omega) \cap L_{2,0}(\Omega); q_h|_T \in \mathcal{P}_1, T \in \mathcal{T}_h \right\}
\]
Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation \mathcal{T}_h and polynomial shape spaces \mathcal{P}_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

\[
X_h := (\mathcal{M}^2)_{0,0}^d = \left\{ v_h \in C(\bar{\Omega})^d \cap H_0^1(\Omega)^d; \; v_h|_T \in \mathcal{P}_2, \; \forall T \in \mathcal{T}_h \right\}
\]

\[
M_h := \mathcal{M}_0^1 \cap L^2,0 = \left\{ q_h \in C(\Omega) \cap L^2,0(\Omega); \; q_h|_T \in \mathcal{P}_1, \; T \in \mathcal{T}_h \right\}
\]

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

- Figure: \times denotes pressure values, \cdot denotes velocity values.
Consider triangulation T_h and polynomial shape spaces P_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

\[X_h := \left(M^2_{0,0} \right)^d = \left\{ v_h \in C(\bar{\Omega})^d \cap H^1_0(\Omega)^d; \; v_h|_T \in P_2, \; \forall T \in T_h \right\} \]

\[M_h := M^1_0 \cap L^2_0 = \left\{ q_h \in C(\Omega) \cap L^2_0(\Omega); \; q_h|_T \in P_1, \; T \in T_h \right\} \]

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

\[X_h := M^1_{0,0} \left(T_{h/2} \right)^2 = \left\{ v_h \in C(\bar{\Omega})^d \cap H^1_0(\Omega)^d; \; v_h|_T \in P_2, \; \forall T \in T_{h/2} \right\} \]
Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation \mathcal{T}_h and polynomial shape spaces P_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

\[
X_h := \left(M_{2,0}^2 \right)^d = \left\{ v_h \in C(\bar{\Omega})^d \cap H_0^1(\Omega)^d; \; v_h|_T \in P_2, \; \forall T \in \mathcal{T}_h \right\}
\]
\[
M_h := M_0^1 \cap L_{2,0} = \left\{ q_h \in C(\Omega) \cap L_{2,0}(\Omega); \; q_h|_T \in P_1, \; T \in \mathcal{T}_h \right\}
\]

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

\[
X_h := M_{0,0}^1 (\mathcal{T}_{h/2})^2 = \left\{ v_h \in C(\bar{\Omega})^d \cap H_0^1(\Omega)^d; \; v_h|_T \in P_2, \; \forall T \in \mathcal{T}_{h/2} \right\}
\]
\[
M_h := M_0^1 \cap L_{2,0} = \left\{ q_h \in C(\Omega) \cap L_{2,0}(\Omega); \; q_h|_T \in P_1, \; T \in \mathcal{T}_h \right\}
\]
Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation \mathcal{T}_h and polynomial shape spaces \mathcal{P}_j.

Taylor-Hood Elements: Stability achieved by velocity field in polynomial space larger degree than the pressure space.

$$X_h := \left(\mathcal{M}_{0,0}^2 \right)^d = \left\{ v_h \in C(\bar{\Omega})^d \cap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall T \in \mathcal{T}_h \right\}$$

$$M_h := \mathcal{M}_0 \cap L_{2,0} = \left\{ q_h \in C(\Omega) \cap L_{2,0}(\Omega); \ q_h|_T \in \mathcal{P}_1, \ T \in \mathcal{T}_h \right\}$$

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

$$X_h := \mathcal{M}_{0,0}^1 \left(\mathcal{T}_{h/2} \right)^2 = \left\{ v_h \in C(\bar{\Omega})^d \cap H_0^1(\Omega)^d; \ v_h|_T \in \mathcal{P}_2, \ \forall T \in \mathcal{T}_{h/2} \right\}$$

$$M_h := \mathcal{M}_0^1 \cap L_{2,0} = \left\{ q_h \in C(\Omega) \cap L_{2,0}(\Omega); \ q_h|_T \in \mathcal{P}_1, \ T \in \mathcal{T}_h \right\}$$

Figure: \times denotes pressure values, \cdot denotes velocity values.
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let \(\lambda_1, \lambda_2, \lambda_3 \) denote the barycentric coordinates of a point \(x \).

Add to the shape space the "bubble" function \(b(x) = \lambda_1 \lambda_2 \lambda_3 \).

Note, \(b \) vanishes on boundary of \(T \).

The finite element spaces are \(X_h = H^1_0(\Omega) \oplus B_3 \), \(M_h = M_0(\Omega) \), where \(B_3 = \{ v \in C^0(\bar{\Omega}); v \mid_T \in \text{span}\{\lambda_1 \lambda_2 \lambda_3\}, \forall T \in \mathcal{T}_h \} \).

Figure: \(x \) denotes pressure values, \(\cdot \) denotes velocity values.
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the barycentric coordinates of a points x.

\[\text{MINI Element} \]

\[\text{P1 Element} \]

\[\text{Bubble Element} \]
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the barycentric coordinates of a points x.

Add to the shape space the "bubble" function

$$b(x) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.

Figure: x denotes pressure values, \cdot denotes velocity values.
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the barycentric coordinates of a points x.

Add to the shape space the "bubble" function

$$b(x) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.

The finite element spaces are

$$X_h := \left[M^{1}_{0,0} \oplus B_3 \right]^2, \quad M_h := M^1_0 \cap L^2(\Omega),$$
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points x.

Add to the shape space the "bubble" function

$$b(x) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.

The finite element spaces are

$$X_h := \left[M_{0,0}^1 \oplus B_3^1 \right]^2, \quad M_h := M_{0}^1 \cap L_{2,0}(\Omega),$$

where $B_3 := \{ \nu \in C^0(\bar{\Omega}); \; \nu|_T \in \text{span}[\lambda_1 \lambda_2 \lambda_3], \; \forall T \in \mathcal{T}_h \}$.

Figure: x denotes pressure values, \cdot denotes velocity values.
MINI Elements: Achieves stability by using interior "bubble" elements.

For triangle, let $\lambda_1, \lambda_2, \lambda_3$ denotes the **barycentric coordinates** of a points x.

Add to the shape space the "bubble" function

$$b(x) = \lambda_1 \lambda_2 \lambda_3.$$

Note, b vanishes on boundary of T.

The finite element spaces are

$$X_h := \left[M_{0,0}^1 \oplus B_3 \right]^2, \quad M_h := M_{0}^1 \cap L_{2,0}(\Omega),$$

where $B_3 := \{ v \in C^0(\bar{\Omega}); \ v|_T \in \text{span}[\lambda_1,\lambda_2,\lambda_3], \ \forall T \in T_h \}$.

Figure: x denotes pressure values, \cdot denotes velocity values.