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Introduction

The Monte-Carlo method is a useful approach is estimating numerically the value of integral expressions,
especially in high dimensions. For the integral

I =

∫

Ω

f(x)dx

in which Ω is the domain of integration, the integral I can be related to an expectation of a random variable
with respect to some probability measure. For probability measures of a random variable X that have a
density ρ(x) the expectation can be expressed as:

E(f(X)) =

∫

Ω

f(x)ρ(x)dx.

The integral I can be expressed in terms of an expectation in a number of different ways. One rather general
approach is to use a density having the feature that ρ(x) > 0 whenever f(x) 6= 0. This gives that:

I =

∫

Ω

f(x)dx =

∫

Ω

f(x)

ρ(x)
ρ(x)dx

= E

(
f(X)

ρ(X)

)

= E (g(X)) .

where g(x) = f(x)
ρ(x) . In the case of a domain of integration Ω which is finite, we can always use the random

variable X uniformly distributed on Ω with density ρ(x) = 1
|Ω| to obtain:

I =

∫

Ω

f(x)dx =

∫

Ω

f(x)
1
|Ω|

1

|Ω|dx

= |Ω|E(f(X)).

The utility of expressing the integral in terms of an expectation derives from the Law of Large Numbers,
which states that for a collection of independent identically distributed random variables {Xi}∞i=1:

E (g(X)) = lim
N→∞

1

N

N∑

i=1

g(Xi).

This offers a way to estimate the numerical value of I, in particular:

• generate N random variates {Xi}N
i=1 with distribution ρ(x) on Ω.

• approximate the expectation using the Law of Large Numbers I ≈ 1
N

∑N
i=1 g(Xi).

This gives a probabilistic approach to estimating the quantity I.
The Monte-Carlo method has an accuracy which can be estimated as:

error =

∣∣∣∣∣
1

N

N∑

i=1

g(Xi) − I

∣∣∣∣∣

=

∣∣∣∣∣
σg√
N

(∑N
i=1 g(Xi) − NI

σg

√
N

)∣∣∣∣∣

≈
∣∣∣∣

σg√
N

η(0, 1)

∣∣∣∣
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where

σ2
g =

∫

Ω

(g(x) − I)
2
ρ(x)dx

and η(0, 1) denotes a standard normal random variable (Gaussian random variable) with mean zero and
variance 1. The last approximation was obtained by using the Central Limit Theorem, which states that for
a sum of i.i.d random variables Yi with mean µ and finite variance σ2:

∑N
i=1 Yi − Nµ

σ
√

N
→ η(0, 1), as N → ∞.

This shows that asymptotically the error converges at a rate O( 1√
N

), independent of the dimensionality of

the problem considered. Furthermore, the convergence rate in the Monte-Carlo method is strongly influenced
by the prefactor σg which depends on the function f(x) and the sampling distribution with density ρ(x)
that is used. The prefactor σg presents the primary avenue by which the convergence rate can be improved.
We shall discuss a number of approaches by which one can attempt to reduce the size of σg.

Variance Reduction Techniques

An important consideration in designing effective Monte-Carlo methods is to formulate the estimate for the
integrals in terms of the expectation of random variables that have variances as small as possible. The
Monte-Carlo method gives the estimate:

I = E (g(x)) ≈ 1

N

N∑

i=1

g(Xi).

As discussed in the section on the accuracy of the method the error can be estimated by:

error =
σg√
N

where

σ2
g =

∫

Ω

(g(x) − I)
2
ρ(x)dx.

In the Monte-Carlo estimate recall the random variables Xi were generated having probability density ρ(x).
This suggests one approach by which the Monte-Carlo method rate of convergence can be improved. In

particular, to use a probability density ρ(x) for which generation of variates Xi is not too difficult while
making σ2

g small.

Antithetic Variates

In the Monte-Carlo method a sequence of independent identically distributed variates Xi were generated.
One strategy to reduce the variance of the Monte-Carlo estimate is to attempt to develop a corresponding
estimate based instead on a sequence of variates Xi which have desirable correlations resulting in cancellations
in the sum which yield to a smaller effective variance for the estimate. The justification of such an estimate
of course would requiring confirming a generalization of the Law of Large Numbers in which random variables
are correlated, which is possible in many cases, see (1; 3).

To make the central ideas behind this strategy more concrete consider the following Monte-Carlo estimate
when the number of samples is even, N = 2n:

I =
1

N

N∑

i=1

g(Xi)
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=
1

N

N∑

i=1

Gi

=
1

n

n∑

i=1

G2i−1 + G2i

2

=
1

n

n∑

i=1

Hi

where we let Gi = g(Xi) and Hi = G2i−1+G2i

2 .
Now the variance appearing in the error expression when using the random variates Hi is

σ2
h = Var (Hi)

=
1

4

(
σ2

g + σ2
g + 2Cov(H2i−1,H2i)

)

=
1

2

(
σ2

g + Cov(G2i−1, G2i)
)
.

Now it is important to note that we had to generate two variates G2i−1, G2i to obtain one variate Hi so
real progress has only been made in the amount of computational effort to estimate I only if σ2

h < 1
2σ2

g . By
the last term we see that the estimate is improved if we introduce negative pairwise correlations for Gi so
that Cov(G2i−1, G2i) < 0. Furthermore, we see that if Cov(G2i−1, G2i) > 0 the performance of the estimate
is actually worse. Thus some care must be taken to ensure that negative correlations are generated. The
variate G2i is often referred to as the ”antithetic” variate of G2i−1.

One strategy to generate a sequence of Gi with negative correlations is to make use of the transformation
theorems. In the case that we generate by using the transformation from the uniform variate G2i−1 =
F−1(U2i−1) we can let G2i = F−1(1 − U2i−1). This will yield the desired negative correlations. In the case
that g(X) is monotonic we could also apply this to X2i−1 and X2i to obtain the desired correlations. In
the case that X2i−1 ∈ R

n and the probability is symmetric about 0 the antithetic variate can sometimes
be generated by letting X2i = −X2i−1, but again care must be taken to ensure this in fact yields negative
correlations. In general it is not important how the correlations are obtained algorithmically only that they
be negative and that the random variates Gi be identically distributed with the appropriate probability.

Partial Averaging

The Monte-Carlo method estimates the integral I by computing an expectation of a random variable with
probability density ρ(x) which can be expressed as:

I =

∫
g(x)ρ(x)dx.

In the case that the integrals appearing above can be partially evaluated, the variance of the estimate
can be significantly reduced. In effect, if the integrals can be integrated analytically over a subspace of Ω
this allows us to replace the integrand g(x) with another integrand ḡ(x) yielding the same value I but with
a smaller variance σ2

ḡ < σ2
g .

To make this more mathematically clear suppose we can compute the conditional expectation of g(X)
for some sigma algebra F :

ḡ = E (g(X)|F) .

By the definition of the conditional expectation:

E (ḡ(X)) = E (E (g(X)|F)) = E (g(X)) = I.
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This gives another approach to approximating I, we can generate variates Xi and estimate using:

I ≈ 1

N

N∑

i=1

ḡ(Xi).

It can be seen that this estimate has a smaller variance than the original estimate as follows:

σ2
g =

∫
(g(x) − I)

2
ρ(x)dx

=

∫
g2(x)ρ(x)dx − I2

σ2
ḡ =

∫
(ḡ(x) − I)

2
ρ(x)dx

=

∫
ḡ2(x)ρ(x)dx − I2

≤
∫

g2(x)ρ(x)dx − I2 = σ2
g

where we obtain the last line using Jensen’s Inequality ḡ2 = (E (g(X)|F))
2 ≤ E

(
g2(X)|F

)
. Therefore, any

averaging procedure yields:

σ2
ḡ ≤ σ2

g .

Example: We now demonstrate more concretely how these results can be used in practice. Consider the
integral on the unit square:

I =

∫ 1

0

∫ 1

0

e−
(x−0.5)2+(y−0.5)2

2 dxdy.

If the integral were not evaluated on the unit square but on a circle we could find the value exactly. In
particular,

Ĩ(R) =

∫

x2+y2<R2

e−
x2+y2

2 dxdy

=

∫ 2π

0

∫ R

0

re−
r2

2 drdθ

= 2π
(
1 − e−

R2

2

)
.

The integrand can be integrated explicitly for (x − 0.5)2 + (y − 0.5)2 < 0.52. Thus we can obtain an
integral which evaluates to I by replace g(x, y) by the ”partially averaged” integrand with

I =

∫ 1

0

∫ 1

0

ḡ(x, y)dxdy

where

ḡ(x, y) =





4
2π 2π

(
1 − e−

0.52

2

)
if (x − 0.5)2 + (y − 0.5)2 < 0.52

e−
x2+y2

2 otherwise
.

Note we obtained the first expression by computing the average 1
2π0.52

∫
(x−0.5)2+(y−0.5)2<0.52 g(x, y)dxdy.

Exercise: Compute the reduction in variance that occurs by using the method of partial averaging in this
example.
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Importance Sampling

Importance sampling is concerned with the choosing ρ(x) for the random variates Xi so that regions which
contribute significantly to the expectation of g(X) are sampled with greater frequency. Thus regions where
f(x) is large should be sampled more frequently than those regions where f(x) is comparatively very small.
A practical consideration in choosing ρ(x) is that the distribution be amenable to efficient generation of the
pseudo-random variates.

In the case that f(x) > 0 a probability density always exists which gives a Monte-Carlo method having
zero error, σg = 0. This is obtained by considering the definition of g:

g(x) =
f(x)

ρ(x)
.

From this it follows immediately that ρ(x) = f(x)
I gives a σ2

g = 0. In general, efficiently generating variates
with such a density requires I, which if already known would preclude performing the Monte-Carlo estimate
in the first place. However, this result suggests a strategy to reduce the variance. In particular, one should
try to choose a density which approximates f(x)/I as close as possible.

Example: Let us consider estimating the integral

I =

∫ 4

−4

e−x2

(|x2 − 1| + 0.01)1/2
dx.

To efficiently estimate the integral using the Monte-Carlo method we see that one approach is to try to
sample as closely as possible with a probability density approximating the optimal density ρ0(x) = f(x)/I.
We shall now discuss two Monte-Carlo estimates of the integral. In the first we use a standard Gaussian to
sample. In the second we use a mixture probability density consisting of a linear combination of Gaussian
densities.

Sampling with a Standard Gaussian:

If the Monte-Carlo method uses the density ρ1(x) = 1√
2π

e−
x2

2 , the prefactor is σg = 2.2853. See Figure 1

for a plot of the density rho1(x) and the optimal density ρ0(x). From the plot we see that the Monte-Carlo
estimate should be improved if the samples are distributed with higher frequency at the two peaks and in
the region where f(x) is non-negligible.

Sampling with a Gaussian Mixture (Stratified Sampling):
We now discuss a probability distribution which generates samples at the two peaks and in the regions where
f(x) is non-negligible more frequently. We can readily generate any random variates which have a density
which is given as a linear combination of probability densities of form:

ρmix(x) =
∑

j

αiρj(x).

where
∑

j αj = 1. This is done by dividing the interval into subintervals of size αj and generating the

uniform variate U ∈ [0, 1]. If U falls in the jth interval we generate Yj with density ρj and let X = Yj . Thus
at the expense of generating an additional uniform variate we can easily generate variates with multi-modal
probability distributions.

For the function above we use for example the density with σ2
1 = 1/100, σ2

2 = 1, σ2
3 = 1/100

ρ2(x) = α1
1√
2πσ2

1

e
− (x−1)2

2σ2
1 + α2

1√
2πσ2

2

e
− (x+1)2

2σ2
2 + α3

1√
2πσ2

3

e
− x2

2σ2
3 .

with α1 = 0.1, α2 = 0.1, α3 = 0.8. Sampling with this density we have σg = 1.2184.
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For a plot of the optimal density ρ0(x), Gaussian density ρ1(x) and mixture density ρ2(x), see figure 1.
We find that the second method will converge with the prefactor σg about half that of the first method.
Since the rate of convergence is the inverse to the square root of N we find that the second method requires
only 1/22 = 1/4 the number of samples as the first method for a comparable accuracy. We remark that even
though the second method required generating the extra uniform random variate, this was more than made
up for in the reduction in variance. We remark that the generation of the uniform variate could in principle
we done away with in the calculation above by simply portioning a fraction of the samples according to the
weights αi. If this modification is made then the approach falls within the class of methods referred to as
”stratified sampling”.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

x

ρ(
x)

Figure 1: Importance Sampling

Control Variates

The Monte-Carlo method estimates the mean of a random variable. One approach to improving the effective
variance that arises in the estimate is to leverage knowledge about the statistics of a random variable which
shares similarities to the random variable being sampled. In particular, if the mean of random variable
H(X) is known, this can be used to reduce the variance of the estimate of G(X). Let µH = E (H(X)) and
I = µG = E (G(X)) then

I = E (G(X) − α[H(X) − µH ])

where α is a parameter to be chosen for the method. This gives the estimate:

I ≈ αµH +
1

N

N∑

i=1

(G(Xi) − αH(Xi)) .

The variance of the estimate σ2 can be computed as:

σ2 = σ2
g + α2σ2

H − 2αCov(G,H).

Since the variance governs the convergence of the estimate, the α parameter should ideally be set to make
σ as small as possible. The optimal value α∗ is:

α∗ =
Cov(G,H)

σ2
g

.
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This gives for the minimum variance:

σ2 = σ2
g(1 − ρ2

G,H)

where ρG,H = Cov(G,H)/σGσH is the correlation between G, H. An important point is that the method of
control variates will improve the estimate (reduce σ2) provided ρG,H 6= 0. For example if H is independent
of G, ρG,H = 0 and no improvement is made. Furthermore, we find that if H has correlation ρG,H = ±1 the
estimate is exact. Intuitively, this suggests that if we choose an H which ”behaves very similar” to G the
variance will be substantially improved. In order to use the method in practice requires we address a few
issues.

In practice, we will typically not be able to determine exactly the optimal parameter value α∗, since this
requires knowledge of the variance of the random variable G whose statistics we are estimating in the first
place. Also the exact value of ρG,H will likely not be known. Nonetheless, the control variate strategy can be
carried out in practice by estimating the unknown parameter α as we go along from the samples generated.
Let us make the following definitions:

σ̃2
H =

1

N

N∑

i=1

(H(Xi) − µH)
2

Ĩ(1) =
1

N

N∑

i=1

G(Xi)

C̃G,H =
1

N

N∑

i=1

(G(Xi) − Ĩ(1))(H(Xi) − µH).

We remark that all of the estimated quanta that µH is known by the assumptions above. This gives the
estimate at the N th stage:

α̃∗ =
C̃G,H

σ2
G

Ĩ = Ĩ(1) − α̃∗ 1

N

N∑

i=1

(H(Xi) − µH).

Example: Let us consider a random variable ST which models an economic asset having an the effective
return over a period T given by a Gaussian with mean m0 and variance σ2

0 . The value of the asset at time
T is then:

ST = S0e
(σ0X+m0)T .

The asset has the expected final value:

I = E (ST )

= E (G(X))

where G(X) = S0e
(σ0X+m0).

To apply the method of control variates we need to choose a random variable H for which we know the
mean and which has positive correlation with G. One natural approach to obtaining such a random variable
is to consider a Taylor expansion of G(X) about a value X0 occurring with high probability. Let H be the
truncated Taylor expansion for G(X):

H(X) = S0

(
1 + (σ0X + m0)T +

1

2
(σ0X + m0)

2T 2

)
.
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The mean can then be readily computed by:

µH = E (H(X)) = S0

(
1 + m0T +

1

2
(σ2

0 + m2
0)

2T 2

)
.

The direct Monte-Carlo estimate of I when S0 = 1, σ0 = 0.5, m0 = 0.05 and T = 2 is σ2
G ≈ 7.0048. When

using the method of control variates for the above choice of H we obtain σ2 ≈ 0.9825. This give a reduction
in the variance of about 88%. This means that the estimate using the control variate will only require about
1/10 the number of samples to obtain a comparable accuracy as the direct Monte-Carlo method.
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