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Abstract

These notes give an introduction to duality theory in the context of linear and positive semidefinite program-
ming. These notes are based on material from Convex Analysis and Nonlinear Optimization by Borwein and
Lewis and Numerical Optimization by Nocedal and Wright. Two examples are given to show how duality
can be used. The first optimization application is to find the matrix in an affine family that has the least
2-norm. This problem can be formulated as the dual to a positive semi-definite program. The second prob-
lem is to find for an empirical correlation matrix Q̃ the closest positive semidefinite matrix Q with respect
to the Frobenius norm. This problem can be formulated as a positive semidefinite program. We also derive
it’s dual problem. Lastly, we briefly discuss some numerical methods useful in solving these constrained
optimization problems.

Cones

An important construct that arises in optimization problems is a cone K. Cones are often used to formulate
constraints in optimization problems and have some important properties with respect to the dual. We
review here some basic definitions and results concerning cones.

Definition 1 A cone K is a set invariant under multiplication by non-negative scalars. If x ∈ K and λ ≥ 0
then λx ∈ K.

Definition 2 The dual of a cone is

Dual(K) = {z ∈ Rn|zT x ≥ 0}

Three important cones are:

Definition 3 Quadratic Cone:

Kq = {z ∈ Rm| ‖(z2, . . . , zm)‖2 ≤ z1}

Definition 4 Positive Orthant Cone:

K+ = {z ∈ Rm| z1 ≥ 0, z2 ≥ 0, . . . , zm ≥ 0}

Definition 5 Positive Semidefinite Cone:

KS+ = {X ∈ Sn×n| X º 0}

Each of these cones is self-dual:

Lemma 1 The positive orthant cone K+ in Rm is equal to its dual cone:
Proof:
We will show that zT x ≥ 0 ∀x ∈ K+ ⇐⇒ zi ≥ 0 ∀i.

If zT x ≥ 0 ∀x ∈ K+ then since ei ∈ K we have that zi ≥ 0 ∀i. If zi ≥ 0 ∀i then since any x ∈ K+ has
xi ≥ 0 ∀i we have that zT x ≥ 0. Therefore z ∈ Dual(K+) ⇐⇒ z ∈ K+. ¥
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Lemma 2 The positive semidefinite cone KS+ in Sn×n is equal to its dual cone:
Proof:
We will show that Z · X ≥ 0 ∀X ∈ KS+ ⇐⇒ Z ∈ KS+.

If Z ·X ≥ 0 ∀X ∈ KS+ then since Z ∈ Sn×n we can choose a basis so that Z is diagonal. Let X = ekeT
k

then X ∈ KS+ and Z · X = Zk,k ≥ 0. This requires that Z be positive semidefinite and Z ∈ KS+.
Let Z ∈ KS+ then by definition of positive semidefiniteness vT Zv ≥ 0,∀v. In particular eT

k Zek = Zk,k ≥
0. If for any X ∈ KS+ we represent matrices in the eigenbasis of X we obtain (µk ≥ 0 eigenvalues of X):

Z · X = µ1Z1,1 + µ2Z2,2 + · · · + µnZn,n

≥ min{µk} · tr(Z)

≥ 0

Therefore dual(KS+) = KS+.
¥

Lemma 3 The quadratic cone Kq in Rm+1 is equal to its dual cone:
Proof:

We first will show that the quadratic code is contained in the dual cone. Since all vectors in the quadratic
cone have first component non-negative we have:

zT x ≥ 0

⇐⇒ z1x1 ≥ −z2x2 − · · · − zn+1xn+1

−z2x2 − · · · − zn+1xn+1 ≤ |(z2, . . . , zn+1)
T · (x2, . . . , xn+1)|

= ‖(z2, . . . , zn+1)‖ · ‖(x2, . . . , xn+1)‖ · |cos(θ)|
≤ z1x1

Thus K ⊆ Dual(K).

Next we show that the dual cone is contained in the quadratic cone. If z ∈ Dual(K) then for all x ∈ K:

z1x1 ≥ −z2x2 − · · · − zn+1xn+1

= −(z2, . . . , zn+1)
T · (x2, . . . , xn+1)cos(θ)

= −‖(z2, . . . , zn+1)‖ · ‖(x2, . . . , xn+1)‖cos(θ)

Now choose the member x∗ of K so that |x∗
1| = 1, sign(x∗

1) = sign(z1), ‖(x∗
2, . . . , x

∗
n+1)‖ = 1 and

cos(θ) = −1 then z1x1 = |z1| and we obtain:

|z1| ≥ ‖(z2, . . . , zn+1)‖
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Thus z ∈ K and K ⊇ Dual(K).

Therefore K = Dual(K).
¥

Definition 6 The indicator function for a set U denoted δU is defined as

δU (x) =

{

0 if x ∈ U

∞ if x 6∈ U

}

Definition 7 The Fenchel Conjugate of a function f(x) is

f∗(φ) = sup
x∈Rn

{< φ, x > −f(x)}

Lemma 4 If K is a cone and δK(x) is the indicator function the Fenchel Conjugate of the indicator function
is δ∗K(φ) = δ−Dual(K)(φ).
Proof:

δ∗K(φ) = sup
x∈Rn

{< φ, x > −δK(x)}

= sup
x∈K

{< φ, x >}

=

{

∞ if ∃x ∈ K s.t. < φ, x >> 0
0 if < φ, x >≤ 0, ∀x ∈ K

= δ−Dual(K)(φ)

¥

Linear and Semidefinite Programs

Many optimization problems can be arranged into a standard form. Below we discuss some important
standard forms that can arise.

Optimization problems involving vectors with linear inequality and equality constraints and a linear
objective function can be formulated as:

LP Program:

inf
x∈Rn

{< c, x > |x ≥ 0, Ax = b}

This optimization problem is referred to as a linear program.
To formulate inequalities a slack variable z can be introduced and the linear inequality can be formulated
as an equality. For example the inequality

ax1 ≥ 2

can be formulated as

z ≥ 0

ax1 − z = 2
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Optimization problems involving matrices with linear equality constraints, linear objective function, and
inequality constraints involving the definiteness of the matrix can often be formulated as:

SDP Program:

inf
X∈Sn×n

{C · X|X º 0, Ai · X = bi}

This optimization problem is referred to as a semidefinite program.

The dot product refers to vector dot product regarding the entries of each matrix as a vector A · B =
tr(AB).

Duality

The central result we will use in the derivation of the dual problem is the Fenchel-Young Inequality.

Theorem 1 (Fenchel-Young Inequality) Let f∗(φ) = supx∈R{< φ, x > −f(x)}. This is called the
Fenchel Conjugate and the following inequality holds:

f(x) + f∗(φ) ≥< φ, x >

Equality holds if φ is a subgradient of f at x, φ ∈ ∂f(x).

Proof:

< φ, x > −f(x) ≤ f∗(φ)

⇒ f(x) + f∗(φ) ≥ < φ, x >

If φ is a subgradient of f at x then:

f(x)+ < φ, (y − x) > ≤ f(y)

⇒ f(x)− < φ, x > ≤ f(y)− < φ, y >

⇒ f(x)− < φ, x > ≤ −f∗(φ)

⇒ f(x) + f∗(φ) ≤ < φ, x >

Therefore:

f(x) + f∗(φ) =< φ, x >

¥

The Fenchel-Young Inequality has a geometric interpretation if we view the graph of f(x) as a surface
over the x hyperplane in the z-direction. We can rearrange the inequality to become:

< φ, x > −f∗(φ) ≤ f(x)

The inequality then states that out of all hyperplanes with slope vector φ the greatest z-intercept attainable
while still remaining below the surface is −f∗(φ).
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Theorem 2

inf
x∈R

{f(x)} = inf
x∈R

sup
φ∈R

{< φ, x > −f∗(φ)}

Proof:
By the Fenchel-Young Inequality:

f(x) ≥ sup
φ∈R

{< φ, x > −f∗(φ)}

⇒ inf
x∈R

{f(x)} ≥ inf
x∈R

sup
φ∈R

{< φ, x > −f∗(φ)}

For the other inequality we use:

f∗(0) = sup
x∈R

{−f(x)} = − inf
x∈R

{f(x)}

Then

sup
φ∈R

{< φ, x > −f∗(φ)} ≥ inf
x∈R

{f(x)}

¥

This consequence of the Fenchel-Young Inequality offers an alternative formulation an optimization prob-
lem.

Geometrically this can be thought of as the following procedure to find the minimum:
1. At a given x, find for all the hyperplanes that lie below the surface the one that is closest to attaining
f(x) at x, denote the value at x by g(x). (If no one hyperplane exists then use the monotonic sequence of
approximations to the value of f(x) at x to define g(x))
2. Minimize the function g(x).

Below are some examples using the alternative approach to find the minimizer. For the first example we
demonstrate that the alternative problem amounts to the same thing as the primal problem.

Example 1

inf
x∈R2

{x2 + 1}

The Fenchel Conjugate is

f∗(φ) = sup
x∈R

{φx − x2 − 1}

= sup
x∈R

{−(x − φ

2
)2 +

φ2

4
− 1}

=
φ2

4
− 1
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This gives for the dual formulation of the problem:

inf
x∈R

sup
φ∈R

{φx − φ2

4
+ 1} = inf

x∈R
sup
φ∈R

{−1

4
(φ − 2x)2 + x2 + 1}

= inf
x∈R

{x2 + 1}
= 1

¥

Example 2 The alternative formulation of the problem can sometimes lead to a problem with poor
properties. One example were this occurs is the following:

f(x) =

{

ln(1 + x) if x ≥ 0
ln(1 − x) if x ≤ 0

}

The minimizer is at x = 0. Since the tangent lines to ln(1 + x) have slopes 1
1+x

→ 0 as x → ±∞
we see no line other than the one with slope 0 lies below the graph of f(x). This means f∗(φ) = ∞ for
φ 6= 0 and f∗(0) = 0. The new objective function inside the infimum becomes discontinuous and infinity
everywhere except at the solution point. In fact even formulating the problem which involves finding the
Fenchel Conjugate (z-intercept) is the same as having found the minimizer of the problem.
¥

While the alternative formulation in the examples above might not offer much of an advantage. We will
see below that there are cases in which the alternative form does offer some advantages after an appropriate
change of variable in φ. One important advantage is that it is often possible to turn equality constraints into
inequality constraints under an appropriate change of variable. In addition many practical problems can be
formulated as the alternative problem associated with one of the standard forms above.

We refer to the alternative formulation of the minimization problem as the dual problem. The original
minimization problem is referred to as the primal problem.

We now derive the dual problem for linear programming.

LP Primal:

inf
x∈Rn

{< c, x > |x ≥ 0, Ax = b}

LP Dual:

sup
y∈Rm

{< y, b > |AT y − c ≤ 0}

Derivation:

Let

V = {x ∈ Rn|Ax = b, A ∈ Rm×n}
K+ = {x ∈ Rn|x ≥ 0}
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Then

f∗(φ) = sup
x∈Rn

{< φ − c, x > −δK+
(x) − δV (x)}

≤ sup
x∈Rn

{< φ − c, x > −δK+
(x)} + sup

x∈Rn

{−δV (x)}

= δ−K+
(φ − c) − inf

x∈Rn
{δV (x)}

If we make a change of variable:

φ = AT y

The alternative formulation becomes:

inf
x∈Rn

{f(x)} = inf
x∈Rn

sup
φ∈Rm

{< φ, x > −f∗(φ)}

≥ inf
x∈Rn

sup
y∈Rm

{< y, b > −f∗(AT y)}

≥ sup
y∈Rm

{< y, b > −δ−K+
(AT y − c) + inf

x∈Rn
{δV (x)}}

≥ sup
y∈Rm,AT y−c≤0

{< y, b >}

¥

Next we find the dual problem for semidefinite programming.

SDP Primal:

inf
X∈Sn×n

{C · X|X º 0, Ai · X = bi}

SDP Dual:

sup
y∈Rm+1,C−

∑

m+1

i=1
yiAiº0

{y · b}

Derivation of dual:
Let

KS+ = {X ∈ Sn×n|X º 0}
V = {X ∈ Sn×n|Ai · X = bi}

By the theorems above:

inf
X∈Sn×n

{C · X|X º 0, Ai · X = bi}

= inf
X∈Sn×n

{C · X + δK(X) + δV (X)}

= inf
X∈Sn×n

sup
Φ∈Rn×n

{Φ · X − f∗(Φ)}
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The Fenchel Conjugate of f(X) = C · X + δK(X) + δV (X) is by the lemmas above:

f∗(Φ) = sup
X∈Sn×n

{(Φ − C) · X − δKS+
(X) − δV (X)}

≤ δ−Dual(K)
(Φ − C) − inf

X∈Sn×n

{δV (X)}

= δ−K(Φ − C) − inf
X∈Sn×n

{δV (X)}

Under the change of variable:

Φ =

m+1
∑

i=1

yiAi

We obtain:

inf
X∈Sn×n,Ai·X=bi

sup
Φ∈Rn×n

{Φ · X − f∗(Φ)}

≥ sup
y∈Rm+1

{
m+1
∑

i=1

yibi − f∗(

m+1
∑

i=1

yiAi)}

≥ sup
y∈Rm+1

{y · b − δ−K(

m+1
∑

i=1

yiAi − C) + inf
X∈Sn×n

{δV (X)}}

≥ sup
y∈Rm+1,C−

∑

m+1

i=1
yiAiº0

{y · b}

¥

By examining the derivations above we obtain the following theorem.

Theorem 3 (Weak Duality) For the linear and positive semidefinite program if we let p denote the solution
value obtained in the primal problem and d denote the solution value obtained in the dual problem. Then

d ≤ p

Proof:(see the derivations of the dual problem) ¥

Under addition conditions on the linear and semi-definite programs it is possible to show that the primal
and dual problems obtain the same values p = d. See reference [1] for the Strong Duality Theorem.

Two Applications of SDP Programming and Duality

Before discussing the applications we first prove a theorem that will be useful.

Theorem 4 Let M be any m × n matrix. Let

C =

[

0 M

MT 0

]

The non-negative eigenvalues of C are the singular values of M.
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Proof:
Every matrix has a SVD decomposition. For M we have:

WMV ∗ = Σ

Let

U =
1√
2

[

W ∗ −W ∗

V ∗ V ∗

]

then

UU∗ =
1

2

[

W V

−W V

]

·
[

W ∗ −W ∗

V ∗ V ∗

]

=
1

2

[

WW ∗ + V V ∗ −WW ∗ + V V ∗

−WW ∗ + V V ∗ WW ∗ + V V ∗

]

=

[

I 0
0 I

]

and

UCU∗ =
1

2

[

W V

−W V

]

·
[

MV ∗ MV ∗

MT W ∗ −MT W ∗

]

=
1

2

[

WMV ∗ + V MT W ∗ WMV ∗ − V MT W ∗

−WMV ∗ + V MT W ∗ −WMV ∗ − V MT W ∗

]

=

[

Σ 0
0 −Σ

]

Since C is symmetric and U is unitary the eigenvalues are σi and −σi where

Σ = [δijσi]

¥

Problem 1

Find the member of the matrix family:

B(y) = B0 +

m
∑

k=1

ykBk

that has the least 2-norm.
This problem can be formulated as the dual problem of a semidefinite program.

SDP Dual:

sup
y∈Rm+1,C−

∑

m+1

i=1
yiAiº0

{y · b}
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Let

t := ym+1

bi := −1 for i = m + 1

bi := 0 for 1 ≤ i ≤ m

Ai := −
[

I 0
0 I

]

for i = m + 1

Ai := −
[

0 Bi

BT
i 0

]

for 1 ≤ i ≤ m

C :=

[

0 B0

BT
0 0

]

Q(y, t) :=

[

tI B(y)
B(y)T tI

]

= U∗
([

Σ 0
0 −Σ

]

+

[

tI 0
0 tI

])

U

The dual SDP problem becomes

sup
(y,t)∈Rm×R,Q(y,t)º0

{−t}

Now we show that this formulation is equivalent to the problem of finding the matrix with least 2-norm
in the affine family.

The 2-norm of a matrix is the maximum singular value. For Q(y, t) we have:

‖Q(y, t)‖2 = t + σmax(y)

The positive semidefinite constraint on the matrix Q requires that the minimum eigenvalue is non-
negative:

t − σmax(y) ≥ 0

Since the positive semidefinite program takes sup{−t} we see that it is maximized when t is smallest.
For a given y the smallest value of t is obtained when:

t = σmax(y) = ‖B(y)‖2

Therefore the 2-norm problem is equivalent to the dual positive semi-definite program.
Now we derive the primal version of the positive semidefinite program.

SDP Primal:

inf
X∈Sn×n

{C · X|X º 0, Ai · X = bi}

Which can be simplified a little.
For a general matrix P of the type above:

P · X =

[

0 M

MT 0

]

· X
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=
∑

(1≤i≤n),(1≤j≤n)

Mi,jxi,(j+n) +
∑

(1≤i≤n),(1≤j≤n)

MT
i,jx(i+n),j

=
∑

(1≤i≤n),(1≤j≤n)

2Mi,jxi,(j+n)

This gives:

C · X =
∑

(1≤i≤n),(1≤j≤n)

B0i,jxi,(j+n)

Ak · X = 0

⇐⇒
∑

(1≤i≤n),(1≤j≤n)

Bki,jxi,(j+n) = 0

[

I 0
0 I

]

· X =

2n
∑

i=1

xi,i

= 1

Now we show that the primal and dual problems both have strictly feasible points:

The dual problem requires:

(y, t) ∈ Rm × R
[

0 B(y)
B(y)T 0

]

+

[

tI 0
0 tI

]

º 0

Given any y there is a minimum eigenvalue of the first matrix, so if t is chosen sufficiently large all
eigenvalues will be positive. Therefore there is a strictly feasible point for the dual problem.

The primal problem requires:

X ∈ Sn×n

X º 0
∑

(1≤i≤n),(1≤j≤n)

Bki,jxi,(j+n) = 0

2n
∑

i=1

xi,i = 1

If all xi,j = 0 with |i − j| > 0 and xi,i = 1
2n

then the above equality constraints are satisfied and the
matrix X is positive definite. Therefore there is a strictly feasible point for the primal problem.
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Problem 2

Given a symmetric matrix Q̃ find the best approximating positive semidefinite matrix Q with respect to the
Frobenius norm.

This problem arises naturally when computing a correlation matrix from empirical data. The empirical
correlation matrix may be symmetric but lack positive definiteness.

The problem can be formulated as a mixed semidefinite-quadratic cone program.

inf
X∈Sn×n,x∈Rm

{C·X + c · x|X º 0, x ∈ Kquadratic, Ai · X + ai · x = bi}

Kquadratic := {x ∈ Rm| ‖(x2, x3, . . . , xm)‖2 ≤ x1}

Let
D = Q − Q̃

then since D is symmetric we can represent the matrix as a vector d of length n(n+1)
2 = m.

dk = Q̃α(k),β(k) − Qα(k),β(k)

where α(·),β(·) are the maps that give the corresponding i, j entry of the matrix.
Since the 2-norm of d is proportional the the Frobenius norm of D finding the best Frobenius approxi-

mation is the same as minimizing the 2-norm of d.
We can use the quadratic cone constraint to formulate this by introducing equality constraints:

xi = di−1 for 2 ≤ i ≤ m + 1

By the quadratic cone constraint

‖(x2, x3, . . . , xm+1)‖2 ≤ x1

The objective is then to minimizer x1 subject to the constraints.

Let

C = 0

c1 = e1

ci = 0 for (2 ≤ i ≤ m + 1)

A1 = 0

Ai =
1

2
eα(i−1)e

T
β(i−1) +

1

2
eβ(i−1)e

T
α(i−1) for (2 ≤ i ≤ m + 1)

a1 = 0

ai = ei for (2 ≤ i ≤ m + 1)

b1 = 0

bi = Q̃α(i−1),β(i−1) for (2 ≤ i ≤ m + 1)

The primal problem becomes:

inf
X∈Sn×n,x∈Rm+1

{x1|X º 0, x ∈ Kquadratic, xi + Xα(i−1),β(i−1) = Q̃α(i−1),β(i−1)}
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Now we derive the dual problem. Using the derivation above for the semidefinite problem and the fact
that the dual cone of the quadratic cone K is itself we obtain by a similar computation:

sup
z∈Rm+1

{z · b|
m+1
∑

i=1

ziai − c ∈ −Kquadratic,

m+1
∑

i=1

ziAi − C ¹ 0}

For the given problem this becomes:

sup
z∈Rm+1

{
m+1
∑

i=2

ziQ̃α(i−1),β(i−1)|e1 −
m+1
∑

i=2

ziei ∈ Kquadratic,

m+1
∑

i=2

zi

(

eα(i−1)e
T
β(i−1) + eβ(i−1)e

T
α(i−1)

)

¹ 0}

If we let

Z :=
1

2

m+1
∑

i=2

zi

(

eα(i−1)e
T
β(i−1) + eβ(i−1)e

T
α(i−1)

)

then the problem can be written more simply as:

sup
z∈Rm+1

{Z·Q̃|(1,−z2, . . . ,−zm+1) ∈ Kquadratic, Z ¹ 0}

We now show each method has a strictly feasible point.
For the primal problem the constraints require:

X ∈ Sn×n

x ∈ Rm+1

X º 0

x ∈ Kquadratic

xi + Xα(i−1),β(i−1) = Q̃α(i−1),β(i−1) for (2 ≤ i ≤ m + 1)

If we set Xα(i−1),β(i−1) = Q̃α(i−1),β(i−1) + Mα(i−1),β(i−1) where λmin is the minimum eigenvalue of Q̃

and M = 2λminI then X ≻ 0. We set corresponding entries of X by symmetry. We then must set
xi = −Mα(i−1),β(i−1) for (2 ≤ i ≤ m + 1) to satisfy the equality constraint and since x1 is free we can set it
to x1 = 2‖(x2, . . . , xm+1‖2. This is a strictly feasible point for the primal problem.

For the dual problem the constraints require:

z ∈ Rm+1

e1 −
m+1
∑

i=2

ziei ∈ Kquadratic

m+1
∑

i=2

zi

(

eα(i−1)e
T
β(i−1) + eβ(i−1)e

T
α(i−1)

)

¹ 0

Let zγ(k) = − 1√
2n

and all other zi = 0 where γ(k) is the map which gives the corresponding index of

the kth diagonal entry of Z. Then the negative semidefinite constraint will be satisfied strictly. The first
constraint will be satisfied since there are only n diagonal entries of Z. This gives a feasible point for the
dual problem.
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Numerical Methods

Two important classes of numerical methods used for solving constrained optimization problems are Log
Barrier Methods and Primal-Dual Interior Point Methods. We will only briefly sketch the ideas behind the
numerical methods here and refer the reader to reference [2] for more details.

The log barrier methods approximately solve constrained optimization problems by augmenting the
objective function by a penalty term:

h(x) = f(x) + µ

m
∑

i=1

log(ci(x))

The constraints are formulated as ci(x) ≥ 0.
A sequence of optimization problems is then solve for successively smaller values of µ. Typically the

initial values of µ are set to be large so that the constraints can be easily satisfied. Next µ is gradually
reduced to zero which has the effect of increasing the importance of the objective function and results in a
better approximation to the true solution. The advantage of this approach is that if a solution lies on the
boundary of the feasible set the approximate solutions will be guided along a path in the interior of the set
of feasible points as µ → 0. It can be shown that if at each stage the optimization problem corresponding
to µ is solved to sufficient accuracy and the parameter µ is taken sufficiently close to zero then the solutions
become close to the true constrained minimizer of the objective function. For more details see Chapter 17
of Nocedal and Wright [2].

A second class of numerical methods useful in solving linear and semidefinite programs with constraints
are the Primal-Dual Methods. The basic idea behind these methods is to search for a point that satisfies the
Karush-Kuhn-Tucker necessary conditions for the constrained minimization problem. The Karush-Kuhn-
Tucker conditions are:

∇f(x∗) =
∑

i∈A

λi∇ci(x
∗)

λi ≥ 0

λici(x
∗) = 0

where A = {i|ci(x) = 0} is the active set.
In addition it is usually required that the constraints be such that the gradients of {∇ci(x)|i ∈ A(x)} are

linearly independent. This is referred to as the Linear Independent Constraint Qualification (LICQ).
Geometrically the KKT conditions with LICQ can be interpreted as stating that at a local minimizer

of the constrained optimization problem the objective function f(x) must have either all derivatives zero or
any non-zero components of the steepest descent vector must point outside the feasible set. In other words
the steepest descent vector must be in the span of the negative gradients of the constraint functions ci(x).
Thus any step in a descent direction leaves the feasible set.

The Primal-Dual Interior Methods search for a minimizing feasible point by satisfying approximate KKT
conditions and the constraints of the primal and dual problems. In particular they search for a point
(xτ , λτ , sτ ) solving:

AT λ + s = c

Ax = b

xisi = τ

(x, s) ≥ 0

where s is the slack variables used to represent the dual inequality constraint.
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If the RHS is subtracted from each equation and the difference is denoted by the vector valued function
F (x, λ, s) then finding a root of F amounts to finding a point satisfying the above conditions. This can be
achieved numerically using Newton’s method. As τ is reduced to zero the sequence of points (xτ , λτ , sτ )
approaches a point satisfying the constraints and KKT conditions. It turns out the path followed by the
points in primal space x is similar to the path obtained from the log barrier method. For a more thorough
discussion of the methods and implementation see Chapter 14 of Nocedal and Wright [2].

Two implementations of Primal-Dual Methods available freely and worth experimenting with are SeDuMi
and SDPT3. As websites quickly become outdated we do not give the URL’s here. The distributions are
easy to locate using any of the popular search engines.
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