
Notes Optimization Paul J. Atzberger

An Introduction to Nonlinear Optimization
We give here a brief introduction to nonlinear optimization and related concepts. The
problem is to find an x∗ which minimizes the objective function f(x) so that

x∗ = argmin
x∈Ω

f(x). (1)

The Ω gives the set of admissible solutions for the problem and can be used to represent
constraints. We call a point x ∈ Ω a feasible point. In the unconstrained case, we take
Ω = Rn.

The field of optimization is concerned with establishing theory for equation 1 when dif-
ferent assumptions are made about f and Ω, and with developing practical computational
methods for approximating solutions. Non-linear optimization has many applications in the
sciences, engineering, statistics, economics, machine learning, AI, and other disciplines.

A common strategy is to develop iterative methods with the goal of yielding a sequence
{xn}∞n=1 such that xn → x∗, where f(x∗) = minx∈Ω f(x). In these notes, as a starting point
for discussions, we shall discuss primarily line search methods and handle constraints using
penalty terms or projections. Further discussions can be found in the literature and books,
such as [1–3].

In line search algorithms, the sequence {xn}∞n=1 is constructed iteratively at each step
choosing a search direction pk and attempting to minimize the objective function along a
line or ray in this direction. This reduces the problem to a sequence of one dimensional
problems with objective ϕ(α) = f(xk + αpk). This yields xk given by the recurrence

xk+1 = xk + αkpk. (2)

An important part of these methods is to determine at each stage a choice for the step-length
αk.

The key to having a method that generates a sequence xk which converges rapidly is to
construct an algorithm which makes effective use of assumptions about f(x) and information
from previous iterates. For these iterative methods, this requires good choices for pk and
the step-length αk.

A natural condition to try to impose on pk, to help ensure that progress can be made each
iteration, is that the function decrease at least locally in this direction. We call pk a descent
direction if ∇fTpk < 0. Typically, the descent direction has the form pk = −B−1

k ∇fk. In
the case that Bk is positive definite this ensures that pk is a descent direction

∇fT
k pk = −∇fT

k B
−1
k ∇fk < 0. (3)

1

Notes Optimization Paul J. Atzberger

A few examples include

• Gradient Descent has Bk = I set to the identity matrix so that pk = −∇fk.

• Newton’s Method has Bk = ∇2fk set to the Hessian so that pk = − (∇2fk)
−1∇fk.

It is important to note that pk is only ensured to be descent direction if the Hessian is
positive definite. The Hessian however is often expensive to compute numerically.

• Quasi-Newton Methods construct a Bk which approximates the Hessian by making
use of the previous function evaluations f(xk) and ∇f(xk).

In designing a good numerical optimization method some care also must be taken in the
choice of step-lengths αk. This will usually depend on the structure and smoothness of the
function f(x) being optimized. We now discuss one widely-used strategy for choosing at
each stage the step-length αk.

Conditions for Steps αk.

For the search direction pk, we consider the one dimensional objective function ϕ(α) =
f(xk + αpk). One choice would be to try to take αk to be the global minimizer of ϕ(α).
However, in practice, this is typically too expensive and computational resources are usually
better spent searching over more directions pk. In designing algorithms there is often a
balance between making progress in minimizing the objective function ϕ for each search
direction pk vs exploring a larger variety of different directions.

Another aspect of designing algorithms is to find criteria that ensures they converge, at
least to a local minimizer. For this purpose, it is important to be more mathematically precise
about what we mean by making adequate progress over each search direction. We might be
tempted to only require the function is reduced over a given step, f(xk + αkpk) < f(xk).
However, this is not sufficient to ensure convergence to a local minimizer x∗. For example,
consider f(x, y) = x2 + y2, and suppose the algorithm has the output xk+1 = xk + αkpk

where αk = 1/2k and x0 = [3, 0]. Now if pk = [−1, 0]T we have f(xk+1) < f(xk), but
xk+1 = x0+

∑∞
k=0 2

−kpk = x0− [2, 0] = [1, 0] ̸= x∗ = [0, 0]. In general, if the first component

of x0 has x
(1)
0 ̸= 2 then x

(1)
k ̸→ 0. The issue here is that the step size decayed too rapidly

resulting in insufficient progress being made each iteration toward the minimizer. This causes
the sequence to prematurely converge to a sub-optimal value. While this example may seem
contrived, in practice algorithms encounter similar challenges since they often also need to
adjust the step size αk during iterations.

We now discuss a set of criteria that will ensure that “sufficient progress” is made during
each iteration. These are given by the following

Wolfe Conditions for f(x):

(i) (sufficient decrease) f(xk + αpk) ≤ f(xk) + c1α∇fT
k pk, where c1 ∈ (0, 1).

(ii) (curvature condition) ∇f(xk + αpk)
Tpk ≥ c2∇fT

k pk, where c2 ∈ (c1, 1).

We illustrate each of these conditions in Figure 1.

2

Notes Optimization Paul J. Atzberger

Remark: The curvature condition can be interpreted by using the following equivalent
expression −∇f(xk + αpk)

Tpk ≤ −c2∇fT
k pk. We use here that the search direction pk

is a descent direction so that ∇fT
k pk is negative. The curvature condition requires that

|ϕ′(α)| = |∇f(xk + αpk)
Tpk| decrease sufficiently each iteration, as |ϕ′(α)| ≤ c2|ϕ′(0)|.

The conditions can be expressed equivalently as

Wolfe Conditions for ϕ(α) = f(xk + αpk):

(i) (sufficient decrease) ϕ(α) ≤ ϕ(0)− c1α|ϕ′(0)|, where c1 ∈ (0, 1).

(ii) (curvature condition) |ϕ′(α)| ≤ c2|ϕ′(0)|, where c2 ∈ (c1, 1).

We now prove if the function is smooth and bounded below there always exist steps α which
satisfy the Wolfe Conditions.

Figure 1: Sufficient Decrease Condition (left) and Curvature Condition (right).

Lemma: Let f : Rn → R be continuously differentiable, pk be a descent direction, and
R(pk) = {xk + αpk | α > 0} be the ray in direction pk. If the function f is bounded
below on the ray R then there exists α(1), α(2) so that steps α ∈ [α(1), α(2)] satisfy the Wolfe
Conditions.

Proof: Consider the line ℓ(α) = f(xk) + αc1∇fT
k pk. Since f is bounded below along the

ray we have for all α > 0 that ϕ(α) = f(xk +αpk) ≥ C0 for some finite C0. Since 0 < c1 < 1
the line ℓ(α) starts out above the graph of ϕ(α) for α > 0, see Figure 1. Since the line
ℓ(α)→ −∞ as α→∞ there is some α− where ℓ(α−) < C0.

By the intermediate value theorem ℓ(α) − ϕ(α) must be zero at some location α′. This
shows the line ℓ(α) must intersect the graph of ϕ(α) at least once for α > 0. Let α′ > 0 be
the smallest such value, so that ϕ(α′) = ℓ(α′) which gives f(xk+α′pk) = f(xk)+α′c1∇fT

k pk.
The sufficient decrease condition (i) then holds for α < α′.

3

Notes Optimization Paul J. Atzberger

By the differentiability of the function we have from the mean-value theorem that there
exists α′′ ∈ (0, α′) such that f(xk+α′pk)−f(xk) = α′∇f(xk+α′′pk)

Tpk. Now by substituting
for f(xk+α′pk) from above, we have∇f(xk+α′′pk)

Tpk = c1∇fT
k pk > c2∇fT

k pk, since c1 < c2
and ∇fT

k pk < 0. The α′′ then satisfies the curvature condition (ii).
Since c1 < c2 and α′′ < α′ we further have there exists a δ > 0 so that both the cur-

vature condition and sufficient decrease condition holds in a neighborhood of α′′ given by
α ∈ [α′′ − δ, α′′ + δ] = [α(1), α(2)] with α(1) = α′′ − δ > 0 and α(2) = α′′ + δ < α′. ■

Convergence of Line Search Optimization Methods

We now consider what additional conditions are required for line search methods to converge.
The following is a useful result concerning the role of the search directions pk.

Theorem (Zoutendijk’s Condition): Assume {xk} is generated by a line search algorithm
satisfying the Wolfe Conditions (i),(ii). Suppose that f(x) : Rn → R is bounded below and
has a Lipschitz continuous gradient ∇f ,

∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥. (4)

We then have

∞∑
k=0

cos2(θk)∥∇fk∥2 <∞, (5)

where

cos(θk) =
−∇fT

k pk

∥∇fk∥∥pk∥
. (6)

Remark: The θk gives the angle between the steepest descent direction −∇fk and the
search direction pk.

Proof: From the curvature condition (ii), we have

(∇fk+1 −∇fk)T pk ≥ (c2 − 1)∇fT
k pk. (7)

The Lipschitz continuity gives

(∇fk+1 −∇fk)T pk ≤ αkL∥pk∥2. (8)

Combining both relations yields

αk ≥
c2 − 1

L

∇fT
k pk

∥pk∥2
. (9)

By substituting this into (i),

fk+1 ≤ fk − c1
1− c2
L

(
∇fT

k pk

)2
∥pk∥2

. (10)

4

Notes Optimization Paul J. Atzberger

From the definition of cos(θk),

fk+1 ≤ fk − c cos2(θk)∥∇fk∥2, (11)

where c = c1(1−c2)
L

. By summing all indices less than k, we have fk+1 ≤ f0−c
∑k

j=0 cos
2(θj)∥∇fj∥2.

Since f(x) is bounded below, f(x) ≥ C0, we must have f0 − c
∑k

j=0 cos
2(θj)∥∇fj∥2 ≥ C0

which requires

∞∑
j=0

cos2(θj)∥∇fj∥2 <∞. (12)

■

Remark: A useful consequence of this theorem follows from the properties of convergent
series. In particular, a series

∑∞
j=0 aj converges only if the summands decay to zero, aj → 0.

The theorem requires cos2(θk)∥∇fk∥2 → 0, as k → ∞. As a result, if we construct a line
search method with the search directions pk having the uniform bound cos(θk) > δ > 0 for
some δ, the theorem requires that

lim
k→∞
∥∇fk∥ = 0. (13)

This corresponds with choosing search directions pk so they are uniformly bounded away
from being orthogonal to the descent direction −∇fk.

For such line search methods, if the sequence {xk} remains bounded then there is a limit
point x∗ that is also a critical point ∇f(x∗) = 0. Given the sufficient decrease condition
(i), this point would be a good candidate for a local minimizer. However, we caution that
without further assumptions about f and analysis we can not yet rule out a saddle point or
other structures at x∗.

To further characterize the convergence, we say that a sequence {bk} converges to b∗ at
rate p if

lim
k→∞

|bk+1 − b∗|
|bk − b∗|p

≤ c. (14)

In the case p = 1, we further require c < 1. In the other cases with p > 1, the c can be any
finite value. We say the method has linear convergence if p = 1 and quadratic convergence if
p = 2. We now show how these results can be used to establish convergence of two widely-
used optimization methods (i) Gradient Descent and (ii) Newton’s Method.

Convergence of Gradient Descent

In this case, we use pk = −gk = −∇fk for each step. This gives cos(θk) = 1 for all iterations,
so by the theorem limk→∞ ∥∇fk∥ = 0. Provided the iterations {xk} remain within a bounded
set, the methods will have a limit point that is a critical point of f .

5

Notes Optimization Paul J. Atzberger

There is more we can say about the method of Gradient Descent if we make additional
assumptions about f . To help demonstrate the concepts, we consider quadratic objective
functions for which we can analyze readily the iterations,

f(x) =
1

2
xTQx− bTx. (15)

For these objectives, we take Q = QT to be positive definite. From ∇f(x∗) = Qx∗ − b = 0,
we obtain that the minimizer satisfies the linear equation Qx∗ = b.

Without loss of generality, we will consider the case with b = 0. This form can always
be obtained by using the change of variable x̃ = x − x∗ = x − Q−1b and objective f̃(x̃) =
1
2
x̃TQx̃ = f(x) − 1

2
x∗,TQx∗. We can compute explicitly the step-length α which minimizes

ϕ(α). This can be expressed as

ϕ(α) = f(xk − αgk) =
1

2
(xk − αgk)

T Q (xk − αgk) . (16)

The minimizer α > 0 satisfies

ϕ′(α) = −∇f(xk − αgk)
Tgk = − (xk − αgk)

T Qgk = 0. (17)

By setting ϕ′(α) = 0, we obtain

αk =
xT
kQgk

gT
kQgk

=
gT
k gk

gT
kQgk

, (18)

where we use that gk = Qxk. By using gk = ∇fk, we can also express this as

αk =
∇fT

k ∇fk
∇fT

k Q∇fk
. (19)

This gives the line search iteration

xk+1 = xk −
(
∇fT

k ∇fk
∇fT

k Q∇fk

)
∇fk. (20)

From the expressions above it can be shown that the function is reduced toward the minimizer
each iteration by the factor (1− γ) < 1, where

f(xk+1)− f(x∗) = (1− γ) (f(xk)− f(x∗)) , (21)

and

γ =

(
∇fT

k ∇fk
)2

(∇fT
k Q∇fk) (∇fT

k Q
−1∇fk)

. (22)

This indicates the rate of convergence in f to the minimizer f ∗ is first order, p = 1.
We can also express this in terms of the eigenvalues of Q as

(f(xk+1)− f(x∗)) ≤
[
λn − λ1

λn + λ1

]2
(f(xk)− f(x∗)) , (23)

6

Notes Optimization Paul J. Atzberger

where 0 ≤ λ1 ≤ λ2 · · · ≤ λn are eigenvalues of Q. This is proven in [3]. This can be expressed
in terms of the condition number κ = κ(Q) = λn/λ1 as

(f(xk+1)− f(x∗)) ≤
[
1− κ−1

1 + κ−1

]2
(f(xk)− f(x∗)) . (24)

As the condition number κ→∞, we have the factor (1−γ)→ 1. This shows the performance
of Gradient Descent can become poor when the condition number of Q becomes large.

While our analysis above was for the quadratic case, many of the results are also indica-
tive of the behaviors of more general non-linear objective functions. For smooth objective
functions, we expect the behaviors close to a minimizer x∗ would behave similar to the
quadratic case since we can perform second-order Taylor expansions which yield quadratics
where Q = ∇2f is the Hessian. The results indicate the performance of the Gradient Descent
method will depend on the condition number of the Hessian. When the Hessian is non-zero,
the analysis also indicates we would expect a convergence rate of first-order p = 1. These
results indicate that we may be able to improve the convergence by making further use of
the second-order Hessian of f and surrogate models for the objective function.

Convergence of Newton’s Method

We now consider some other choices for the search directions based on second-order in-
formation of f . We use search directions based on the Hessian ∇2fk and gradient of the
form

pk = −∇2f−1
k gk, (25)

where gk = ∇fk. This is motivated by a local quadratic model approximating the objective
function qk(x− xk) = f(xk) + gT

k (x− xk) +
1
2
(x− xk)

T∇2fk(x− xk). If we minimize qk(x̃)
by taking ∇x̃qk = 0 we obtain x̃′ = −∇2f−1

k gk. Since x̃
′ = x′−xk this suggests the iteration

x′ = xk + x̃′ = xk−∇2f−1
k gk = xk +αpk. This corresponds to the search direction pk above

with step size α = 1. When the Hessian positive definite we see this will yield a descent
direction, since −gT

k pk = gT
k∇2f−1

k gk.
In the case of quadratic objective functions with Q = QT positive semi-definite, we

see that Newton’s Method would converge in one iteration. The key idea to obtain New-
ton’s Method was to use qk as a surrogate model for the objective function and to perform
minimization of qk. Other fitting and modeling approaches also could be used to obtain
iterations.

When using Newton Methods in practice, one needs to be careful since the Hessian ∇2fk
may not always be positive definite. Whether pk is a descent direction −gT

k pk = gT
k∇2f−1

k gk

will depend in this case on the direction gk. This can be problematic and iterations can
exhibit erratic iterations in this setting. Fortunately, provided Newton’s Method starts
sufficiently close to a minimizer it can be shown to converge. This is often accomplished
by using a combination with other methods, such as Gradient Descent, to perform initial
optimizations to get close to a minimizer and then using Newton’s Method to rapidly obtain
more accurate approximations.

7

Notes Optimization Paul J. Atzberger

We now show the circumstances under which Newton’s Method converges with a quadratic
rate, p = 2. Consider

xk + pk − x∗ = xk − x∗ −∇2f−1
k gk (26)

= ∇2f−1
k

[
∇2fk · (xk − x∗)− (gk − g∗)

]
where g∗ = ∇f(x∗) = 0. We can express the gradient as

gk − g∗ =

∫ 1

0

∇2f(xk + t(x∗ − xk)) · (xk − x∗)dt, (27)

we have

(28)∥∥∇2f(xk) · (xk − x∗)− (gk − g∗))
∥∥ =

∥∥∥∥∫ 1

0

[
∇2f(xk)−∇2f(xk + t(x∗ − xk))

]
· (xk − x∗)dt

∥∥∥∥
≤

∫ 1

0

∥∥∇2f(xk)−∇2f(xk + t(x∗ − xk))∥ · ∥xk − x∗∥∥ dt
≤ ∥xk − x∗∥2

∫ 1

0

Ltdt.

The L is the Lipschitz constant for ∇2f(x) for x near x∗. This gives

∥xk + pk − x∗∥ ≤ L∥∇2f(x∗)−1∥∥xk − x∗∥2 (29)

⇒ ∥xk+1 − x∗∥ ≤ L∥∇2f(x∗)−1∥∥xk − x∗∥2 (30)

⇒ ∥xk+1 − x∗∥
∥xk − x∗∥2

≤ L∥∇2f(x∗)−1∥. (31)

This shows that xk → x∗ has a quadratic rate of convergence (p = 2). As mentioned
above, Newton’s Method is typically used in conjunction with other optimization methods.
A widely employed strategy is to perform initial iterations using a more robust alternative
method, such as Gradient Descent, to obtain a rough approximate solution sufficiently close
to a minimizer. The Newton’s Methods are then employed to rapidly improve the result to
obtain a more refined accurate solution that benefits from the quadratic convergence.

Line Search Algorithms

We now discuss a few algorithms for finding step-lengths α satisfying the Wolfe Conditions.
The basic strategy is to use interpolation and a bisection search by determining which half
of an interval contains points satisfying the Wolfe conditions. We state some pseudo-code
for a few algorithms. Additional discussions and more details can be found in [1].

8

Notes Optimization Paul J. Atzberger

Algorithm: (LineSearch)

input: xk, pk, αmax.
output: α∗.

α0 ← 0, and specify α1 > 0 and αmax;
i← 1
repeat:

evaluate ϕ(αi);
if ϕ(αi) > ϕ(0) + c1αiϕ

′(0) or ϕ(αi) ≥ ϕ(αi−1) and i > 1.
α∗ ← zoom (αi−1, αi) and stop.
evaluate ϕ′(αi);
if |ϕ′(αi)| ≤ −c2ϕ′(0)

set α∗ ← αi and stop;
if ϕ′(αi) ≥ 0

set α∗ ← zoom(αi, αi−1) and stop;
choose αi+1 ∈ (αi, αmax)
i← i+ 1;

end (repeat)

Algorithm: (Zoom)

input: αlo,αhi.
output: α∗.

repeat
interpolate (using quadratic, cubic, or bisection) to find a trial step length αj

between αlo and αhi

evaluate ϕ(αj);
if ϕ(αj) > ϕ(0) + c1αjϕ

′(0) or ϕ(αj) ≥ ϕ(αlo)
αhi ← αj;

else
evaluate ϕ′(αj);

if |ϕ(αj)| ≤ −c2ϕ′(0)
set α∗ ← αj and stop;

if ϕ′(αj)(αhi − αlo) ≥ 0
αhi ← αlo;

αlo ← αj;
end (repeat)

Solving Nonlinear Unconstrained Optimization Problems
Consider unconstrained optimization problems of the form

x∗ = arg min
x∈Rn

f(x). (32)

One line search algorithm to approximate solutions of this problem is the following.

9

Notes Optimization Paul J. Atzberger

Algorithm: (An Unconstrained Line Search Optimization)

input: x0, αmax, ϵ.
output: x∗.

k ← 0
xk ← x0

evaluate ∇fk ← ∇f(xk);
repeat

pk = −B−1
k ∇fk;

αk ← LineSearch(xk,pk, αmax);
xk+1 ← xk + αkpk;
evaluate ∇fk ← ∇f(xk);
if ∥∇fk∥ < ϵ then

x∗ ← xk and stop;
end (repeat)

Solving Nonlinear Constrained Optimization Problems
Consider constrained optimization problems of the form

x∗ = argmin
x

f(x) (33)

subject: ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I.

The E gives the indices for the equality constraints and I the indices for the inequality
constraints.

A line search algorithm can be constructed to handle these constraints. This is formulated
by building on the unconstrained optimization problem and incorporating the constraints
through penalty terms. The strategy is to then solve each of the unconstrained problems
with a penalty parameter µj up to a tolerance of ϵj. By repeatedly solving a family of
these problems by successively refining ϵj, we can obtain an approximate solution to the
constrained problem. For each problem, we use as the starting point the solution x∗

j of
the previously solved problem. We successively reduce the values of µj and ϵj, to obtain a
sequence of solutions aiming for xj → x∗. In practice, one must take some care on how µj

and ϵj are reduced each iteration to ensure convergence and efficient use of computational
resources. Additional discuss on this and other details can be found in the references. One
approach to approximating solutions of the constrained optimization problem is the following.

Algorithm: (A Constrained Line Search Optimization)

input: x0, αmax, ϵ∗, δ∗.
output: x∗.

j ← 0
x∗
j ← x0

µj ← µ0

repeat 1

10

Notes Optimization Paul J. Atzberger

let F (x, µj) = f(x) + 1
2µj

∑
i∈E c

2
i (x)− µj

∑
i∈I log (ci(x))

x∗
j ← UnconstrainedOptimization(x∗

j , αmax, ϵj)
evaluate ∇Fj ← ∇xF (x∗

j , µj);
if ∥∇Fj∥ < ϵ∗ and µj < δ∗ then x∗ ← x∗

j and stop;
j ← j + 1
reduce the value of µj

reduce the value of ϵj
end (repeat 1)

Conclusion
These notes are meant to serve as a brief introduction. Non-linear optimization is a broad
field with many applications in the sciences, engineering, statistics, economics, machine
learning, AI, and other disciplines. Additional discussions and details on these algorithms
also can be found in the references.

For comments or errors concerning these notes, please email: atzberg@gmail.com.

References

[1] Jorge Nocedal and Stephen J Wright. Numerical optimization. Springer, 1999.

[2] Edwin KP Chong, Wu-Sheng Lu, and Stanislaw H Zak. An Introduction to Optimization:
With Applications to Machine Learning. John Wiley & Sons, 2023.

[3] David G Luenberger, Yinyu Ye, et al. Linear and nonlinear programming. Vol. 2.
Springer, 1984.

11

